# 5.2 Kirchoff's laws worksheet VIII

**Kirchhoff's Current Law -** states that the current entering a point in a circuit is equal to the summation of the currents exiting.

**Kirchhoff's Voltage Law -** states that the summation of all voltage drops in a closed loop must equal to zero which is a result of the electrostatic field being conservative.

(Conventional) current flowing through the cell has a positive voltage (gains energy). Current going through a resistor has a negative voltage (loses energy).

## **Example Problem**



Begin by labelling the junctions in our circuit,  $J_1$  and  $J_2$ . Then we label the currents as I,  $I_1$  and  $I_2$  in an arbitrary direction as shown in the figure below. (Direction of currents will be confirmed once we complete the problem).



#### Junction J<sub>1</sub>:

 $I = I_1 + I_2$  (equation 1)

## Junction J<sub>2</sub>:

 $I_1 + I_2 = I$  (which is the exact same equation we got from  $J_1$  above)

Determine the voltage drops  $V_{R1}$  and  $V_{R2}$  across each resistor.

Begin by labelling the loops as loop **A** and loop **B** as shown below.



Loop A: (start from the upper left corner and move clockwise)

 $-I_1 x (100 \Omega) + 1.5V = 0$  (equation 2)

Therefore: I<sub>1</sub> = 0.015 A

### Loop B:

 $-9V - I_2 \times (200 \Omega) + I_1 \times (100 \Omega) = 0$  (equation 3)

Substituting the value of  $I_1$  into equation 3 yields:

 $-9 - I_2 \times (200 \ \Omega) + (0.015)(100 \ \Omega) = 0$ 

 $-7.5 = (200) \times I_2$  therefore:  $I_2 = -0.0375 \text{ A}$ 

And then I = -0.0225 A

<u>Note</u> that the negative sign of the current indicates that the arbitrary direction we chose is the opposite of the actual direction the current is flowing in.

Answer Sub-Step 3: Determine the values of V<sub>R1</sub> and V<sub>R2</sub> based on our calculated values for I<sub>1</sub> and I<sub>2</sub>

 $V_{R1}$  = I<sub>1</sub> x R<sub>1</sub> = (0.015 A) x (100 Ω) therefore  $V_{R1}$  = 1.5V

 $V_{R2} = I_2 \times R_2 = (-0.0375 \text{ A}) \times (200 \Omega)$  therefore  $V_{R2} = -7.5V$ 

Find all the currents and voltages across each resistor and cell in the following circuits;





2.



3.





5.



6.



4.