\qquad

5.2 Kirchoff's laws worksheet VIII

Kirchhoff's Current Law - states that the current entering a point in a circuit is equal to the summation of the currents exiting.

Kirchhoff's Voltage Law - states that the summation of all voltage drops in a closed loop must equal to zero which is a result of the electrostatic field being conservative.
(Conventional) current flowing through the cell has a positive voltage (gains energy). Current going through a resistor has a negative voltage (loses energy).

Example Problem

Begin by labelling the junctions in our circuit, $\mathbf{J}_{\mathbf{1}}$ and \mathbf{J}_{2}. Then we label the currents as $\mathbf{I}, \mathbf{I}_{1}$ and $\mathbf{I}_{\mathbf{2}}$ in an arbitrary direction as shown in the figure below. (Direction of currents will be confirmed once we complete the problem).

Junction J_{1} :

$$
\mathbf{I}=I_{1}+I_{2} \text { (equation } 1 \text {) }
$$

Junction J_{2} :

$\mathbf{I}_{1}+\mathbf{I}_{\mathbf{2}}=\mathbf{I}$ (which is the exact same equation we got from \mathbf{J}_{1} above)

Determine the voltage drops $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{V}_{\mathrm{R} 2}$ across each resistor.
Begin by labelling the loops as loop \mathbf{A} and loop \mathbf{B} as shown below.

Loop A: (start from the upper left corner and move clockwise)
$-\mathrm{I}_{1} \times(100 \Omega)+1.5 \mathrm{~V}=0$ (equation 2$)$
Therefore: $\mathbf{l}_{\mathbf{1}}=\mathbf{0 . 0 1 5} \mathrm{A}$

Loop B:

$-9 \mathrm{~V}-\mathrm{I}_{2} \times(200 \Omega)+\mathrm{I}_{1} \times(100 \Omega)=0($ equation 3$)$
Substituting the value of I_{1} into equation 3 yields:
$-9-I_{2} \times(200 \Omega)+(0.015)(100 \Omega)=0$
$-7.5=(200) \times \mathrm{I}_{2}$ therefore: $\mathrm{I}_{\mathbf{2}}=\mathbf{- 0 . 0 3 7 5 \mathrm { A }}$
And then $\mathbf{I}=\mathbf{- 0 . 0 2 2 5} \mathbf{A}$

Note that the negative sign of the current indicates that the arbitrary direction we chose is the opposite of the actual direction the current is flowing in.

Answer Sub-Step 3: Determine the values of $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{V}_{\mathrm{R} 2}$ based on our calculated values for I_{1} and I_{2}
$\mathbf{V}_{\mathbf{R} \mathbf{1}}=\mathbf{I}_{\mathbf{1}} \times \mathbf{R}_{\mathbf{1}}=(0.015 \mathrm{~A}) \times(100 \Omega)$ therefore $\mathbf{V}_{\mathbf{R} \mathbf{1}}=\mathbf{1 . 5} \mathbf{V}$
$\mathbf{V}_{\mathbf{R} \mathbf{2}}=\mathbf{I}_{\mathbf{2}} \times \mathbf{R}_{\mathbf{2}}=(-0.0375 \mathrm{~A}) \times(200 \Omega)$ therefore $\mathbf{V}_{\mathbf{R} \mathbf{2}}=\mathbf{- 7 . 5} \mathbf{V}$

Find all the currents and voltages across each resistor and cell in the following circuits;
1.

2.

3.

4.

5.

6.

