\qquad
Date: \qquad

1. A person standing in the ocean notices that after a wave crest passes by, ten more crests pass in a time of 120 seconds. What is the frequency of the wave? $(0.083 \mathrm{~Hz})$
2. Sound travels at a speed of $343 \mathrm{~m} / \mathrm{s}$ in air at 20 C . The wavelength of sound wave is 1.31 m . Find the period of the wave. ($3.82 \times 10^{-3} \mathrm{sec} /$ wave)
3. The right-most key on a piano produces a sound wave that has a frequency of 4185.6 Hz . Assuming the speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$, find the corresponding wavelength. ($8.19 \times 10^{-2} \mathrm{~m} /$ wave)
4. A person fishing from a pier observes that four wave crests pass in 7.0 seconds and estimates the distance between two successive crests as 4.0 m . The timing starts with the first crest and ends with the fourth. What is the speed of the wave? $(1.71 \mathrm{~m} / \mathrm{s})$
5. A transverse wave is traveling with a speed of $300 \mathrm{~m} / \mathrm{s}$ on a horizontal string. If the tension in the string is increased by a factor of four, what is the speed of the wave? (2 times)
6. A 0.50 m string is stretched so the tension is 1.7 N . A transverse wave of frequency 120 Hz and wavelength 0.31 m travels on the string. What is the mass of the string? $\left(6.14 \times 10^{-4} \mathrm{~kg}\right)$
7. Suppose some said: "Sound whose wavelength is larger than the size of your ear cannot be heard", (a) assume that speed of sound is $343 \mathrm{~m} / \mathrm{s}$ and compute the wavelength of sound at the limits of human hearing, 20 Hz and 20 KHz . (b) Compare these values with the (estimated) width of your ear. Based on this comparison, is the statement above correct?
(a) $17.15 \mathrm{~m} /$ wave \& $1.715 \times 10^{-2} \mathrm{~m} /$ wave
(b) own answer
8. A siren can be made by blowing a jet of air through 20 equally spaced holes in a rotating disk. If the siren is to produce a 2200 Hz tone, what must be the angular speed of the disk? (110 rev/sec or $691 \mathrm{rad} / \mathrm{sec}$)
9. The sound intensity level of a jet engine is 138 dB above the threshold of hearing. What is the sound intensity? ($63.1 \mathrm{~W} / \mathrm{m}^{2}$)
10. A tuning fork with a frequency of 440 Hz is sounded together with a note played on a piano. Eight beats are heard in 2 seconds. What is the frequency or pitch of the piano note? (444 Hz or 436 Hz)
11. A tuning fork with a frequency of 440 Hz is played simultaneously with a fork with a frequency of 437 Hz . How many beats will be heard over a period of 10 seconds? (30 beats)

12. Why don't we hear beats when different keys on the piano are played at the same time?

Answer:
(Our ears can only detect beats if the two interfering sound waves have a differen ce in frequency of 7 Hz or less. No two keys on the piano are that similar in freque ncy.)
13. At a football game, a stationary spectator is watching the halftime show. A trumpet player in the band is playing a 784 Hz tone while marching directly toward the spectator at a speed of $0.83 \mathrm{~m} / \mathrm{s}$. On a day when the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, what frequency does the spectator hear? (785.9 Hz)

