\qquad
\qquad Period \qquad Equipotential Surface Problems:

1. (I) A charge particle ($q=1.4 \mathrm{mC}$) moves 0.4 m along an equipotential surface of 10 volts. How much work is done by the field during this motion, explain? [Work $=0.00 \mathrm{~J}$]
2. (II) Two 1.0 C charges are at rest in a coordinate system. The first is negative and the second is positive. Their respective positions are $(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$ and $(1.0 \mathrm{~m}, 2.0 \mathrm{~m})$. Determine the shape of an equipotential surface of which the points ($1.0 \mathrm{~m}, 1.5 \mathrm{~m}$) and ($1.5 \mathrm{~m}, 1.5 \mathrm{~m}$) are a part. Also determine the magnitude of the potential on this surface. [on graph paper] (Use Phet program on charges and fields to help draw diagram)

3. (II) A positive particle ($q=1.0 \mathrm{C}$) is moving in a uniform E-field ($E=100 \mathrm{v} / \mathrm{m}$) such that it speeds up. The particle started from rest on an equipotential plane of $V=50$ volts. After $t=0.0002$ seconds the particle is on an equipotential plane of $V=10$ volts. Determine the distance (d) the particle moved. [0.4 m]
4. (II) Answer the questions below based on your interpretation of the equipotential map shown below.

a. Which position, A or C , has a greater E-Field? Explain. [$\mathrm{C}>\mathrm{A}$]
b. Show the direction of the E-field at all four positions. Explain the reason for your answers. [electron field is in direction of lower potential]
c. If a proton was released from rest at position B, Would it move toward the equipotential line of position A or position C? Explain ["C"]
d. Repeat the previous question except assume the proton is now an electron.
a. Would the electron gain or lose potential energy, explain? [lose]
b. Would the electron gain or lose electric potential, explain ? [gain]
e. If a charged particle ($q=2 C$) was moved by an external agent from position D to position B, calculate the work done by the agent and the work done by the field. Assume that the particle starts at rest and ends at rest. [-800 J]
