CHAPTER / UNIT #	#_ <u>/6</u> . ANSW	ER SHEET		E9
FORM PRE-TES	T	1	PERIOD: DATE:	
PURIVI TOLE JES		/	DATE:	
DIRECTIONS:	Use the back side f	or any Ronus nrol	hlems and he sure	to identify the
	"Work Area" is to be			-
	nd I will provide you			
	swer sheet. GOOD L			
Ē				
A_ 1.	26.		WORK AREA	
B 2.	27.			
C 3.	28.			
D 4.	29.			
<u>C</u> 5.	30.			
<u>B</u> 6.	31.			
B 7.	32.			T 0 1 000 00 0 0 0 0 00 0 0 00 0 0 0 0 0
<u>D</u> 8.	33.			
<u>E</u> 9.	34.			
<u>B</u> _10.	35.			
11.	36.			
12.	37.			
13.	38.			
14.	39.	,		
15.	40.	,		·
16.	41			
17.	42.	*		
18.	43.			
19.	44.			
20.	45.			
21.	46. 47.			
22. 23.	48.			
23. 24.	48. 49.			
24.	49.		BONIE WO	RK ON BACK
			BONUS WU	THE OIL DACK
				>
	·			

Name: _____K

/70

ate: _____ Period ____

"Interference and Diffraction"

<u>Directions:</u> Be sure to show all of your work in the space provided below to receive credit.

Free Response Section: 10 pts each.

1. Light of wavelength 550 nm falls on a slit that is 3.5 x 10⁻³ mm wide. How far from the central maximum will the first diffraction minimum be if the screen is 10 m away?

$$d = \frac{1.550 \times 10^{-9}}{d} = \frac{1.550 \times 10^{-9}}{3.5 \times 10^{-6}}$$

2. Two loudspeakers are placed 4 m apart for an open-air concert. They are playing back a flute sounding a note of 680 Hz. Members of the audience sit in a row, 20 m from the loudspeakers, parallel to the line between the loudspeakers.

Take the speed of sound as 340 m s⁻¹.

Describe, as precisely as possible, what different people in the row will hear.

3. With two slits spaced 0.2mm apart, and a screen at a distance of I=1m, the third bright fringe is found to be displaced h=7.5mm from the central fringe. Show that the wavelength, λ , of the light used is $5 \times 10^{-7} m$.

$$| = -1$$

$$| = -1$$

$$| Tan \theta = \frac{7.5m}{1000mm}$$

$$\frac{1}{3}$$

$$\frac{3}{2}$$

$$\frac{3}{7.5mm}$$

$$\frac{3}{3}$$

$$\frac{3}{7.5mm}$$

$$\frac{3}{m}$$

$$\frac{3}{m$$

4. In a double-slit experiment it is found that blue light of wavelength 460 nm gives a second-order maximum at a certain location on the screen. What wavelength of visible light would have a minimum

at the same location? (max)

$$M = 2$$
 $M = 0, 1, 2 \text{ etc}$

What is the separation between two slits for which 610-nm orange light has its first maximum at $\frac{1}{2} = 368 \text{ nm}$

at the same location? (max)

 $M = 0, 1, 2 \text{ etc}$
 $M = 0, 1, 2 \text{ et$

$$d \leq m\theta = (m + 1/2) 2$$
(MIN)

5. an angle of 30.0°?

$$d = \frac{m^{2}}{5m\theta}$$

$$d = \frac{m^{2}}{5m\theta}$$

$$d = \frac{1.60 \times 10^{m}}{5m 30^{9}}$$

$$d = 1.22 \times 10^{6} \text{ m}$$

