Name: \qquad
\qquad Per \qquad

Show all of your work! Label all units!

1. A battery is connected in series with a variable resistor and an ammeter. When the resistance of the resistor is 10Ω the current is 2.0 A . When the resistance is 5Ω the current is 3.8 A . Find the emf and the internal resistance of the battery. 10 pts.
2. A copper wire has a cross-sectional area of $5.0 \times 10^{-7} \mathrm{~m}^{2}$ and a length of 10.0 m . An aluminum wire of exactly the same dimensions is welded to the end of the copper wire. the ends of this long copper-aluminum wire are connected to a 3.0 -volt battery. Neglect the resistance of any other wires in the figure.

Determine
(a) the total resistance of the circuit. 3 pts.
(b) the total current in the wire. 2 pts.
3. Which of the following wires is likely to have the greatest resistance? 5 pts.
a. A copper wire 0.2 mm thick and 10 cm long
b. A Nichrome wire 0.2 mm thick and 10 cm long
c. A Nichrome wire 0.1 mm thick and 15 cm long
d. A copper wire 0.3 mm thick and 5 cm long.
4. In the diagram below, determine the value in each of the below parts of the problem

a. Find the equivalent capacitance of the capacitors above. 4 pts
b. Determine the total charge in the circuit. 2 pts.
c. Determine the charge on one plate of $\mathrm{C}_{1} .2$ pts.
d. Determine the electrical energy stored in $\mathrm{C}_{1} .2$ pts.
5. A light bulb oven is left on for 3 hrs and consumes 18 Watt hours of electricity. If the bulb draws a current of 0.3 A , what is the resistance of the bulb? 5 pts.
6. The ammeter shown has a meter resistance of $100[\Omega]$. Resistor R_{4} has been adjusted so that the ammeter will read zero. Find the value of R_{x} for this situation. 5 pts .

7. RC circuit: Show all of your work and label all units. 10 pts.
*Analyze the circuit below to find the charge stored on each capacitor at steady state.

