UCONN Physics 1202Q
Name: \qquad
Electrostatics - Practice Quiz
/ 65
Date: \qquad Period: \qquad

Directions: Show all your work and label all answers and show steps to solutions. If you show a formula not on the formula sheet, you must show how you got it!! Explain answers when necessary.

1. Two charged bodies exert a force of 0.55 N on each other. What will be the force if they are moved so they are only one fifth (1/5) as far apart? 2 pts [13.75 N]
2. How many electrons make up a charge of $300 \mu \mathrm{C}$? 2 pts [1.875 $\times 10^{15} \mathrm{e}^{-}$]
3. Particles of charge $+90,+88$, and $-50 \mu \mathrm{C}$ are placed in a line seen below. The center one is
0.45 m from each of the others. Calculate the net force on each due to the other two. 10 pts . [245.6 N Rt] [547.6 N left] [302 N Rt]

4. Three positive particles of charges $5.0 \mu \mathrm{C}$ are located at the corners of an equilateral triangle with 30 cm sides. Calculate the magnitude AND direction of the net force on each particle. 10 pts. [4.33 N @ 30 ${ }^{\circ}$]

5. What is the magnitude and direction of the electric field at a point midway between a $-6.0 \mu \mathrm{C}$ and $a+18.0 \mu \mathrm{C}$ charge 12.0 cm apart? 10 pts. $\quad\left[6.0 \times 10^{7} \mathrm{~N} / \mathrm{C}\right.$]
6. What is the acceleration of an electron in a $6500 \mathrm{~N} / \mathrm{C}$ Electric field? 3 pts.
[1.14 x $10^{15} \mathrm{~m} / \mathrm{s}^{2}$]
7. (III) Two charges below are separated by a distance of 0.50 m . Where along the line separating them can we place a point charge such that it feels no electrical force? 10 pts .
[1.21 m left of $-40 \mu \mathrm{C}$]

-40 $\mu \mathrm{C}$	$80 \mu \mathrm{C}$
0.50 m	

8. You are given two unknown point charges, Q_{1} and Q_{2}. At a point on the line joining them, one-third of the way from Q_{1} to Q_{2}, the electric field is zero. What can you say about these two charges? 10 pts. [$Q_{2} / Q_{1}=4 / 1$]
9. Examine the drawings below. Determine:
a. Which has a greater E-Field? A. -10 V
B. -5 V
C. -2 V
(1 pt) [A\}
Why?
(Density of E field lines)
b. Calculate the work done to move a charge ($q=2 C$) from -2 V to -10 V .5 pts.

