Name: \qquad
Date: \qquad Period: \qquad

Problems: Show all of your work and label all of your units.

1. A sound is directed toward a vertical cliff 660 m from the source. A reflected pulse is detected 4.0 seconds after the pulse is produced. 2 pts each.
a. What is the speed of sound in air? [$330 \mathrm{~m} / \mathrm{s}$]
b. The sound pulse has a frequency of 500 Hz . What is its wavelength? [$0.66 \mathrm{~m} /$ wave]
c. What is the period of the pulse? [$2.0 \times 10^{-3} \mathrm{sec} /$ wave]
2. A bat emits sound whose frequency is 91 kHz . The air temperature is $35^{\circ} \mathrm{C}$. Find the wavelength of the sound. 5 pts. [$3.87 \times 10^{-3} \mathrm{~m} /$ wave]
3. Use the Doppler equation for a moving source to calculate the observed frequency for a $250-\mathrm{Hz}$ source of sound if it is moving with a speed of \qquad . (Assume speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.) (2 pts each)
a. $300 . \mathrm{m} / \mathrm{s}$ towards the observer. (2125 Hz)
b. $300 . \mathrm{m} / \mathrm{s}$ away from the observer. $(133 \mathrm{~Hz})$
c. $100 \mathrm{~m} / \mathrm{s}$ towards the observer when the observer is moving $50 \mathrm{~m} / \mathrm{s}$ away from source. (302 Hz)
d. $100 \mathrm{~m} / \mathrm{s}$ away from the observer when the observer is moving $50 \mathrm{~m} / \mathrm{s}$ away from source. (165 Hz)
4. The distance between a loudspeaker and the left ear of a listener is 2.7 m .4 pts each.
a. Calculate the time required for sound to travel this distance if the air temperature is $20^{\circ} \mathrm{C}$. [$7.87 \times 10^{-3} \mathrm{sec}$]
b. Assuming the sound frequency is 523 Hz , how many wavelength of sound are contained in this distance? [4.11 waves]
5. What is the intensity of a sound whose intensity level is $60 \mathrm{~d} \beta$? $\left[1 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right] 2$ pts.
6. The " G " string on a violin has a fundamental frequency of 196 Hz , the length of the vibrating portion is 32 cm and has a mass of 0.50 grams. Under what tension the string must be placed? [24.6 N] 6 pts.
7. In the tubes below, DRAW the modes of vibration experience by both the open tubes and closed tubes. [own answer] 6 pts.

8. The speed of sound waves in air is found to be $340 \mathrm{~m} / \mathrm{s}$. Determine the fundamental frequency (1st harmonic) of an open-end air column that has a length of 67.5 cm . [252 Hz] (5 pts)
9. In the diagram below, the two speakers are separated by 3.2 m , and both are reproducing identical 214 Hz tones. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$. Suppose point C is 6.0 m directly in front of speaker B. Does constructive or destructive interference occur at point C? 5 pts. [destructive - solve \& explain]

10. A piano tuner uses tuning forks to determine if the piano is "in tune". She strikes the Middle C key on the piano and compares it to a 262 Hz tuning fork. She can tell the piano is not in tune because she hears a 2 Hz beat frequency. To determine the exact frequency she compares the piano's note she compares it to a 270 Hz tuning fork. This time she hears a 6 Hz beat frequency. What is the frequency of the piano's unturned Middle C note? 4 pts. [264 Hz]
