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We now extend our study
of kinematics to motion
in two dimensions. This

allows us to consider a much wider range
of physical phenomena observed in
everyday life. Of particular interest is
projectile motion, the motion of 
objects that are initially launched—or
“projected”—and that then continue
moving under the influence of gravity
alone. Examples of projectile motion
include balls thrown from one person to
another, water spraying from a hose,
salmon leaping over rapids, and divers
jumping from the cliffs of Acapulco.

The main idea of this chapter is quite
simple: Horizontal and vertical motions
are independent. That’s it. For example, a
ball thrown horizontally with a speed v
continues to move with the same speed v
in the horizontal direction, even as it falls
with an increasing speed in the vertical
direction. Similarly, the time of fall is the
same whether a ball is dropped from rest
straight down, or thrown horizontally.
Simply put, each motion continues as if
the other motion were not present.

This chapter develops and applies
the idea of independence of motion to
many common physical systems.
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Two-Dimensional Kinematics

When you hear the word “projectile,” you probably think of an artillery
shell or perhaps a home run into the upper deck. But as we’ll see in this
chapter, the term applies to any object moving under the influence 
of gravity alone. For example, each of these juggling balls undergoes
projectile motion as it moves from one hand to the other. In this
chapter we will explore the physical laws that govern such motion,
and will learn—among other things—that these balls follow a
parabolic path.
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4–1 Motion in Two Dimensions
In this section we develop equations of motion to describe objects moving in two
dimensions. First, we consider motion with constant velocity, determining x and
y as functions of time. Next, we investigate motion with constant acceleration. We
show that the one-dimensional kinematic equations of Chapter 2 can be extended
in a straightforward way to apply to two dimensions.

Constant Velocity
To begin, consider the simple situation shown in Figure 4–1. A turtle starts at the ori-
gin at and moves with a constant speed in a direction 25° above
the x axis. How far has the turtle moved in the x and y directions after 5.0 seconds?

First, note that the turtle moves in a straight line a distance

as indicated in Figure 4–1(a). From the definitions of sine and cosine given in the
previous chapter, we see that

An alternative way to approach this problem is to treat the x and y motions
separately. First, we determine the speed of the turtle in each direction. Referring
to Figure 4–1(b), we see that the x component of velocity is

and the y component is

Next, we find the distance traveled by the turtle in the x and y directions by mul-
tiplying the speed in each direction by the time:

and

This is in agreement with our previous results. To summarize, we can think of the
turtle’s actual motion as a combination of separate x and y motions.

In general, the turtle might start at a position and at time 
In this case, we have

4–1x = x0 + v0xt

t = 0.y = y0x = x0

y = v0yt = 10.11 m/s215.0 s2 = 0.55 m

x = v0xt = 10.24 m/s215.0 s2 = 1.2 m

v0y = v0 sin 25° = 0.11 m/s

v0x = v0 cos 25° = 0.24 m/s

y = d sin 25° = 0.55 m
x = d cos 25° = 1.2 m

d = v0t = 10.26 m/s215.0 s2 = 1.3 m

v0 = 0.26 m/st = 0

▲ FIGURE 4–1 Constant velocity
A turtle walks from the origin with a speed of (a) In a time t the turtle moves through a straight-line distance of 
thus the x and y displacements are (b) Equivalently, the turtle’s x and y components of velocity are

and hence and y = v0yt.x = v0xtv0y = v0 sin u;v0x = v0 cos u
x = d cos u, y = d sin u.

d = v0t;v0 = 0.26 m/s.

x

y

y = d sin θd = v0 t

x = d cos θ
x = v0x t

y = v0y t

x

y

(a) (b)

θ = 25° θ = 25°
v0y = v0 sin θ

v0x = v0 cos θ

v0

O O

and
4–2

as the x and y equations of motion.

y = y0 + v0yt
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E X A M P L E  4 – 1 T H E  E A G L E  D E S C E N D S

An eagle perched on a tree limb 19.5 m above the water spots a fish swimming near the surface. The eagle pushes off from the
branch and descends toward the water. By adjusting its body in flight, the eagle maintains a constant speed of 3.10 m/s at an
angle of 20.0° below the horizontal. (a) How long does it take for the eagle to reach the water? (b) How far has the eagle traveled
in the horizontal direction when it reaches the water?

P I C T U R E  T H E  P R O B L E M

We set up our coordinate system so that the eagle starts at
and The water level is As in-

dicated in our sketch, and 
where Notice that both compo-
nents of the eagle’s velocity are constant, and therefore the
equations of motion given in Equations 4–1 and 4–2 apply.

S T R A T E G Y

As usual in such problems, it is best to treat the eagle’s flight
as a combination of separate x and y motions. Since we are
given the constant speed of the eagle, and the angle at which
it descends, we can find the x and y components of its veloc-
ity. We then use the y equation of motion, to
find the time t when the eagle reaches the water. Finally, we
use this value of t in the x equation of motion, 
to find the horizontal distance the bird travels.

S O L U T I O N

Part (a)

1. Begin by determining and 

2. Now, set in and solve for t:

Part (b)

3. Substitute into to find x:

I N S I G H T

Notice how the two minus signs in Step 2 combine to give a positive time. One minus sign comes from setting the other
from the fact that is negative. No matter where we choose the origin, or what direction we choose to be positive, the time will
always have the same value.

As mentioned in the problem statement, the eagle cannot travel in a straight line by simply dropping from the tree limb—it has
to adjust its wings and tail to produce enough lift to balance the force of gravity. Airplanes do the same thing when they adjust
their flight surfaces to make a smooth landing.

P R A C T I C E  P R O B L E M

What is the location of the eagle 2.00 s after it takes flight? [Answer: ]

Some related homework problems: Problem 2, Problem 3

x = 5.82 m, y = 17.4 m

v0y

y = 0,

x = x0 + v0xt = 0 + 12.91 m/s2118.4 s2 = 53.5 mx = x0 + v0xtt = 18.4 s

 t = -  
h
v0y

= -  
19.5 m

1-1.06 m/s2 = 18.4 s

 y = y0 + v0yt = h + v0yt = 0y = y0 + v0yty = 0

 v0y = -v0 sin u = -13.10 m/s2 sin 20.0° = -1.06 m/s

 v0x = v0 cos u = 13.10 m/s2 cos 20.0° = 2.91 m/sv0y:v0x

x = x0 + v0xt,

y = y0 + v0yt,

v0 = 3.10 m/s and u = 20.0°.
v0y = -v0 sin u,v0x = v0 cos u
y = 0.y0 = h = 19.5 m.x0 = 0

h = 19.5 m

= 20.0°� v0x = v0 cos�

v0y = –v0 sin �v0 = 3.10 m/s

O
x

y

v0
�

Compare these equations with Equation 2–11, which
gives position as a function of time in one dimension. When acceleration is zero,
as it is for the turtle, Equation 2–11 reduces to Replacing with the
x component of the velocity, yields Equation 4–1. Similarly, replacing each x in
Equation 4–1 with y converts it to Equation 4–2, the y equation of motion.

A situation illustrating the use of Equations 4–1 and 4–2 is given in Example 4–1.

v0x,
v0x = x0 + v0t.

x = x0 + v0t + 1
2 at2,

Constant Acceleration
To study motion with constant acceleration in two dimensions we repeat what was
done in one dimension in Chapter 2, but with separate equations for both x and y.
For example, to obtain x as a function of time we start with 
(Equation 2–11), and replace both and a with the corresponding x components, 
and This gives

4–3(a)x = x0 + v0xt + 1
2 axt

2

ax.
v0xv0

x = x0 + v0t + 1
2 at2
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To obtain y as a function of time, we write y in place of x in Equation 4–3(a):

4–3(b)

These are the position-versus-time equations of motion for two dimensions. (In
three dimensions we introduce a third coordinate direction and label it z. We
would then simply replace x with z in Equation 4–3(a) to obtain z as a function of
time.)

The same approach gives velocity as a function of time. Start with Equation 2–7,
and write it in terms of x and y components. This yields

4–4(a)

4–4(b)

Note that we simply repeat everything we did for one dimension, only now with
separate equations for the x and y components.

Finally, we can write in terms of components as well:

4–5(a)

4–5(b)

The following table summarizes our results:

 vy 

2 = v0y 

2 + 2ay¢y

 vx 

2 = v0x 

2 + 2ax¢x

v2 = v0 

2 + 2a¢x

 vy = v0y + ayt

 vx = v0x + axt

v = v0 + at,

y = y0 + v0yt + 1
2 ayt

2

Table 4–1 Constant-Acceleration Equations of Motion

Position as a
function of time

Velocity as a
function of time

Velocity as a 
function of position

x = x0 + v0xt + 1
2 axt

2 vx = v0x + axt vx 

2 = v0x 

2 + 2ax¢x

y = y0 + v0yt + 1
2 ayt

2 vy = v0y + ayt vy 

2 = v0y 

2 + 2ay¢y

These are the fundamental equations that will be used to obtain all of the results
presented throughout the rest of this chapter. Though it may appear sometimes
that we are writing new sets of equations for different special cases, the equations
aren’t new—what we are actually doing is simply writing these equations again,
but with specific values substituted for the constants that appear in them.

E X A M P L E  4 – 2 A  H U M M E R  A C C E L E R A T E S

A hummingbird is flying in such a way that it is initially moving vertically with a speed of 4.6 m/s and accelerating horizontally
at Assuming the bird’s acceleration remains constant for the time interval of interest, find (a) the horizontal and
vertical distances through which it moves in 0.55 s and (b) its x and y velocity components at 0.55 s.

P I C T U R E  T H E  P R O B L E M

In our sketch we have placed the origin of a two-dimensional coordinate
system at the location of the hummingbird at the initial time, In addi-
tion, we have chosen the initial direction of motion to be in the positive y di-
rection, and the direction of acceleration to be in the positive x direction. As
a result, it follows that 
and As the hummingbird moves upward, its x component of veloc-
ity increases, resulting in a curved path, as shown.

S T R A T E G Y

(a) Since we want to relate position and time, we find the horizontal
position of the hummingbird using , and the vertical 
position using . (b) The velocity components as a
function of time can be found using and 

CONTINUED ON NEXT PAGE

vy = v0y + ayt.vx = v0x + axt
y = y0 + v0yt + 1

2ayt
2
x = x0 + v0xt + 1

2axt
2

ay = 0.
x0 = y0 = 0, v0x = 0, v0y = 4.6 m/s, ax = 11 m/s2,

t = 0.

t =
11 m/s2.

v0

x

y

O
t = 0

t > 0

a
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CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

Part (a)

1. Use to find x at 

2. Use to find y at 

Part (b)

3. Use to find at :

4. Use to find at :

I N S I G H T

In 0.55 s the hummingbird moves 1.7 m horizontally and 2.5 m vertically. The horizontal position of the bird will eventually
increase more rapidly with time than the vertical position, due to the dependence of x as compared with the t dependence of
y. This results in a curved, parabolic path for the hummingbird, as shown in our sketch. The bird’s velocity at 0.55 s is 

at an angle of 
above the x axis. It’s clear the angle of flight must be less than 45° at this time, since the x component of velocity is greater than
the y component.

P R A C T I C E  P R O B L E M

How much time is required for the hummingbird to move 2.0 m horizontally from its initial position? [Answer: ]

Some related homework problems: Problem 4, Problem 5, Problem 62

t = 0.60 s

u = tan-1(vy/vx) = tan-1[(4.6 m/s)/(6.1 m/s)] = 37°v = 2vx 

2 + vy 

2 = 2(6.1 m/s)2 + (4.6 m/s)2 = 7.6 m/s

t2

vy = v0y + ayt = 4.6 m/s + (0)(0.55 s) = 4.6 m/st = 0.55 svyvy = v0y + ayt

vx = v0x + axt = 0 + (11 m/s2)(0.55 s) = 6.1 m/st = 0.55 svxvx = v0x + axt

y = y0 + v0yt + 1
2 ayt

2 = 0 + 14.6 m/s210.55 s2 + 0 = 2.5 mt = 0.55 s:y = y0 + v0yt + 1
2 ayt

2

x = x0 + v0xt + 1
2 axt2 = 0 + 0 + 1

2111 m/s2210.55 s22 = 1.7 mt = 0.55 s:x = x0 + v0xt + 1
2 axt2

4–2 Projectile Motion: Basic Equations
We now apply the independence of horizontal and vertical motions to projectiles.
Just what do we mean by a projectile? Well, a projectile is an object that is thrown,
kicked, batted, or otherwise launched into motion and then allowed to follow a
path determined solely by the influence of gravity. As you might expect, this cov-
ers a wide variety of physical systems.

In studying projectile motion we make the following assumptions:

• air resistance is ignored
• the acceleration due to gravity is constant, downward, and has a magni-

tude equal to 
• the Earth’s rotation is ignored

Air resistance can be significant when a projectile moves with relatively high
speed or if it encounters a strong wind. In many everyday situations, however,
like tossing a ball to a friend or dropping a book, air resistance is relatively
insignificant. As for the acceleration due to gravity, this value
varies slightly from place to place on the Earth’s surface and decreases with in-
creasing altitude. In addition, the rotation of the Earth can be significant when
considering projectiles that cover great distances. Little error is made in ignoring
the variation of g or the rotation of the Earth, however, in the examples of projec-
tile motion considered in this chapter.

Let’s incorporate these assumptions into the equations of motion given in the
previous section. Suppose, as in Figure 4–2, that the x axis is horizontal and the 
y axis is vertical, with the positive direction upward. Since downward is the neg-
ative direction, it follows that

Gravity causes no acceleration in the x direction. Thus, the x component of accel-
eration is zero:

With these acceleration components substituted into the fundamental
constant-acceleration equations of motion (Table 4–1) we find:

ax = 0

ay = -9.81 m/s2 = -g

g = 9.81 m/s2,

g = 9.81 m/s2

▲ FIGURE 4–2 Acceleration in free fall
All objects in free fall have acceleration
components and when
the coordinate system is chosen as shown
here. This is true regardless of whether
the object is dropped, thrown, kicked, or
otherwise set into motion.

ay = -gax = 0

x
O

O

y

a
ax = 0
ay = –g

ax = 0
ay = –g

x

y

a

v

The acceleration of
a dropped ball ...

... is the same as the
acceleration of a thrown ball.
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P R O B L E M - S O L V I N G  N O T E

Acceleration of a Projectile

When the x axis is chosen to be horizontal
and the y axis points vertically upward, it
follows that the acceleration of an ideal
projectile is and ay = -g.ax = 0

Projectile Motion (ax � 0, ay� �g)

4–6

Note that in these expressions the positive y direction is upward and the quantity
g is positive. All of our studies of projectile motion will use Equations 4–6 as our
fundamental equations—again, special cases will simply correspond to substitut-
ing specific values for the constants.

A simple demonstration illustrates the independence of horizontal and verti-
cal motions in projectile motion. First, while standing still, drop a rubber ball to
the floor and catch it on the rebound. Note that the ball goes straight down, lands
near your feet, and returns almost to the level of your hand in about a second.

Next, walk—or roller skate—with constant speed before dropping the ball,
then observe its motion carefully. To you, its motion looks the same as before: It
goes straight down, lands near your feet, bounces straight back up, and returns in
about one second. This is illustrated in Figure 4–3. The fact that you were moving
in the horizontal direction the whole time had no effect on the ball’s vertical
motion—the motions were independent.

To an observer who sees you walking by, the ball follows a curved path, as
shown. The precise shape of this curved path is determined in the next section.

x = x0 + v0xt vx = v0x vx
2 = v0x

2

y = y0 + v0yt - 1
2 gt

2 vy = v0y - gt vy
2 = v0y

2 - 2g¢y

▲ In the multiple-exposure photo at left, a ball is projected upward from a moving cart. The ball retains its initial horizontal veloc-
ity; as a result, it follows a parabolic path and remains directly above the cart at all times. When the ball lands, it falls back into the
cart, just as it would if the cart had been at rest. (In this sequence, the exposures were made at equal time intervals with light of
different colors, making it easier to follow the relative motion of the ball and the cart.) In the photo at right, the pilot ejection seat of a
jet fighter is being ground-tested. Here too the horizontal and vertical motions are independent; thus, the test dummy is still almost
directly above the cockpit from which it was ejected. Note, however, that air resistance is beginning to reduce the dummy’s horizon-
tal velocity. Eventually, it will fall far behind the speeding plane.

▲ FIGURE 4–3 Independence of vertical and horizontal motions
When you drop a ball while walking, running, or skating with constant velocity, it ap-
pears to you to drop straight down from the point where you released it. To a person
at rest, the ball follows a curved path that combines horizontal and vertical motions.

The moving person sees the ball fall
straight down below her hand ...

... but a stationary observer sees the ball follow a curved path.

x

y

O

h

▲ This rollerblader may not be thinking
about independence of motion, but the
ball she released illustrates the concept
perfectly; it continues to move horizon-
tally with constant speed—even though
she’s no longer touching it—at the 
same time that it accelerates vertically
downward.
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y

h h

v0

OO
xx

y

� > 0 v0
� = 0

(a) (b)

▲ FIGURE 4–4 Launch angle of a projectile
(a) A projectile launched at an angle above the horizontal, A launch below the
horizontal would correspond to (b) A projectile launched horizontally, In this
section we consider The next section deals with u Z 0.u = 0.

u = 0.u 6 0.
u 7 0.

▲ FIGURE 4–5 Trajectory of a projectile
launched horizontally
In this plot, the projectile was launched
from a height of 9.5 m with an initial
speed of 5.0 m/s. The positions shown in
the plot correspond to the times

Note the
uniform motion in the x direction, and
the accelerated motion in the y direction.

t = 0.20 s, 0.40 s, 0.60 s, Á .

Horizontal motion is uniform—
equal distance in equal time.

Vertical motion is accelerated—the object
goes farther in each successive interval.

O

x (m)

y (m)
10

9

8

7

6

5

4

3

2

1

21 643 5 7

4–3 Zero Launch Angle
A special case of some interest is a projectile launched horizontally, so that the
angle between the initial velocity and the horizontal is We devote this sec-
tion to a brief look at this type of motion.

Equations of Motion
Suppose you are walking with a speed when you release a ball from a height
h, as discussed in the previous section. If we choose ground level to be and
the release point to be directly above the origin, the initial position of the ball is
given by

and

This is illustrated in Figure 4–3.
The initial velocity is horizontal, corresponding to in Figure 4–4. As a

result, the x component of the initial velocity is simply the initial speed:

and the y component of the initial velocity is zero:

Substituting these specific values into our fundamental equations for projec-
tile motion (Equations 4–6) gives the following simplified results for zero launch
angle

4–7

Note that the x component of velocity remains the same for all time and that
the y component steadily decreases with time. As a result, x increases linearly
with time, and y decreases with a dependence. Snapshots of this motion at
equal time intervals are shown in Figure 4–5.

t2

x = v0t vx = v0 = constant vx
2 = v0

2 = constant
y = h - 1

2gt
2 vy = -gt vy

2 = -2g¢y

1u = 02:

v0y = v0 sin 0° = 0

v0x = v0 cos 0° = v0

u = 0

y0 = h

x0 = 0

y = 0
v0

u = 0.

P R O B L E M - S O L V I N G  N O T E

Identify Initial Conditions

The launch point of a projectile deter-
mines and The initial velocity of a
projectile determines and v0y.v0x

y0.x0
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E X A M P L E  4 – 3 D R O P P I N G  A  B A L L

A person skateboarding with a constant speed of 1.30 m/s releases a ball from a height of 1.25 m above the ground. Given 
that and find x and y for (a) and (b) (c) Find the velocity, speed, and direction of
motion of the ball at 

P I C T U R E  T H E  P R O B L E M

The ball starts at and Its initial
velocity is horizontal, therefore and

In addition, it accelerates with the acceleration due
to gravity in the negative y direction, and moves
with constant speed in the x direction, 

S T R A T E G Y

The x and y positions are given by and ,
respectively. We simply substitute time into these expres-
sions. Similarly, the velocity components are and

.

S O L U T I O N

Part (a)

1. Substitute into the x and y equations of motion:

Part (b)

2. Substitute into the x and y equations of motion:
Note that the ball is only about an inch above the ground
at this time:

Part (c)

3. First, calculate the x and y components of the velocity
at using and :

4. Use these components to determine v, and 

I N S I G H T

Note that the x position of the ball does not depend on the acceleration of gravity, g, and that its y position does not depend on
the initial horizontal speed of the ball, For example, if the person is running when he drops the ball, the ball is moving faster
in the horizontal direction, and it keeps up with the person when it is dropped. Its vertical motion doesn’t change at all, how-
ever; it drops to the ground in exactly the same time and bounces back to the same height as before.

P R A C T I C E  P R O B L E M

How long does it take for the ball to land? [Answer: Referring to the results of part (b), it is clear that the time of landing is
slightly greater than 0.500 s. Setting gives a precise answer; ]

Some related homework problems: Problem 15, Problem 16, Problem 20

t = 22h>g = 0.505 s.y = 0

v0.

 u = tan-1 
vy

vx
= tan-1 

1-4.91 m/s2
1.30 m/s

= -75.2°

 = 411.30 m/s22 + 1-4.91 m/s22 = 5.08 m/s

 v = 4vx 

2 + vy 

2

 v
!
= 11.30 m/s2xN + 1-4.91 m/s2yNu:v

!
,

vy = -gt = -(9.81 m/s2)(0.500 s) = -4.91 m/svy = -gtvx = v0t = 0.500 s
vx = v0 = 1.30 m/s

 = 1.25 m - 1
219.81 m/s2210.500 s22 = 0.0238 m

 y = h - 1
2 gt2

 x = v0t = 11.30 m/s210.500 s2 = 0.650 mt = 0.500 s

 = 1.25 m - 1
219.81 m/s2210.250 s22 = 0.943 m

 y = h - 1
2 gt2

 x = v0t = 11.30 m/s210.250 s2 = 0.325 mt = 0.250 s

vy = -gt
vx = v0

y = h - 1
2gt

2x = v0t

ax = 0.
ay = -g,

v0y = 0.
v0x = v0 = 1.30 m/s
y0 = h = 1.25 m.x0 = 0

t = 0.500 s.
t = 0.500 s.t = 0.250 sy0 = h = 1.25 m,x0 = 0

x

y

O

h = 1.25 m

v0

g
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Parabolic Path
Just what is the shape of the curved path followed by a projectile launched
horizontally? This can be found by combining and which
allows us to express y in terms of x. First, solve for time using the x equation. This
gives

Next, substitute this result into the y equation to eliminate t:

4–8

Note that y has the form

where and This is the equation of a
parabola that curves downward, a characteristic shape in projectile motion.

Landing Site
Where does a projectile land if it is launched horizontally with a speed from a
height h?

The most direct way to answer this question is to set in Equation 4–8,
since corresponds to ground level. This gives

Solving for x yields the landing site:

4–9

Note that we have chosen the positive sign for the square root since the projectile
was launched in the positive x direction, and hence lands at a positive value of x.

A useful alternative approach is to find the time of landing with the kinematic
relations given in Equation 4–7, and then substitute this time into This
approach is illustrated in the next Example.

x = v0t.

x = v0A2h
g

0 = h - a g
2v0

2 bx2

y = 0
y = 0

v0

b = -g>2v0
2 = constant.a = h = constant

y = a + bx2

y = h - 1
2 ga xv0

b2
= h - a g

2v0
2 bx2

t = x>v0

y = h - 1
2 gt

2,x = v0t

▲ Lava bombs (top) and fountain jets
(bottom) trace out parabolic paths, as is
typical in projectile motion. The trajectories
are only slightly altered by air resistance.

R E A L - W O R L D  P H Y S I C S

The parabolic trajectory
of projectiles

C O N C E P T U A L  C H E C K P O I N T  4 – 1 C O M P A R E  S P L A S H D O W N  S P E E D S

Two youngsters dive off an overhang into a lake. Diver 1 drops
straight down, diver 2 runs off the cliff with an initial horizon-
tal speed v0. Is the splashdown speed of diver 2 (a) greater
than, (b) less than, or (c) equal to the splashdown speed of
diver 1?

R E A S O N I N G  A N D  D I S C U S S I O N

Note that neither diver has an initial y component of velocity,
and that they both fall with the same vertical acceleration—the
acceleration due to gravity. Therefore, the two divers fall for
the same amount of time, and their y components of velocity
are the same at splashdown. Since diver 2 also has a nonzero x
component of velocity, unlike diver 1, the speed of diver 2 is
greater.

A N S W E R

(a) The speed of diver 2 is greater than that of diver 1.

vy vy

vx = v0

v0

v

1 2
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E X A M P L E  4 – 4 J U M P I N G  A  C R E V A S S E

A mountain climber encounters a crevasse in an ice field. The opposite side of the crevasse is 2.75 m lower, and is separated
horizontally by a distance of 4.10 m. To cross the crevasse, the climber gets a running start and jumps in the horizontal direction.
(a) What is the minimum speed needed by the climber to safely cross the crevasse? If, instead, the climber’s speed is 6.00 m/s,
(b) where does the climber land, and (c) what is the climber’s speed on landing?

P I C T U R E  T H E  P R O B L E M

The mountain climber jumps from and The
landing site for part (a) is and Note that the y po-
sition of the climber decreases by h, and therefore As
for the initial velocity, we are given that and Finally,
with our choice of coordinates it follows that and 

S T R A T E G Y

We can model the climber as a projectile, and apply our equations for
projectile motion with a horizontal launch.

a. From Equations 4–7 we have that and . Setting
determines the time of landing. Using this time in the x equa-

tion gives the horizontal landing position in terms of the initial
speed.

b. We can now use the relation from part (a) to find x in terms of
.

c. We already know , since it remains constant, and we can calculate using (Equations 4–7). With the veloc-
ity components known, we can use the Pythagorean theorem to find the speed.

S O L U T I O N

Part (a)

1. Set equal to zero (landing condition) and solve
for the corresponding time t:

2. Substitute this expression for t into the x equation of
motion, and solve for the speed, 

3. Substitute numerical values in this expression:

Part (b)

4. Substitute into the expression for x obtained
in Step 2, 

Part (c)

5. Use the fact that the x component of velocity does not change
to determine and use to determine 
For note that we choose the minus sign for the square 
root because the climber is moving downward:

6. Use the Pythagorean theorem to determine the speed:

I N S I G H T

The minimum speed needed to safely cross the crevasse is 5.48 m/s. If the initial horizontal speed is 6.00 m/s, the climber will
land beyond the edge of the crevasse with a speed of 9.49 m/s.

P R A C T I C E  P R O B L E M

(a) When the climber’s speed is the minimum needed to cross the crevasse, , how long is the climber in the
air? (b) How long is the climber in the air when ? [Answer: (a) .
(b) . The times are the same! The answer to both parts is simply the time needed to
fall through a height h; .]

Some related homework problems: Problem 11, Problem 12, Problem 17

t = 22h/g = 0.748 s
t = x / v0 = (4.49 m) /(6.00 m/ s) = 0.748 s

t = x / v0 = (4.10 m)/(5.48 m/ s) = 0.748 sv0 = 6.00 m / s
v0 = 5.48 m/ s

4.49 m - 4.10 m = 0.39 m

vy,
vy.vy  

2 = -2g¢yvx,

x = v022h/g:
v0 = 6.00 m/s

v0:x = v0t,

y = h - 1
2gt

2

vy 

2 = -2g¢yvyvx

v0 = 6.00 m >  s

y = 0
y = h - 1

2gt
2x = v0t

ay = -g.ax = 0
v0y = 0.v0x = v0

¢y = -h = -2.75 m.
y = 0.x = w = 4.10 m
y0 = h = 2.75 m.x0 = 0

x

h

v0

w

y

O

g

 = 4(6.00 m / s)2 + (-7.35 m / s)2 = 9.49 m / s

 v = 4vx 

2 + vy 

2

 = -4-2(9.81 m / s2)(-2.75 m) = -7.35 m / s

 vy = ;2-2g¢y
 vx = v0 = 6.00 m / s

 x = v0A2h
g

= (6.00 m >  s)C 2(2.75 m)

9.81 m / s2
= 4.49 m

 v0 = x A g2h = (4.10 m) C9.81 m/s2

2(2.75 m)
= 5.48 m/s

 x = v0t = v0 A2h
g

  or v0 = x A g2h
 t = A2h

g

 y = h - 1
2gt

2 = 0
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4–4 General Launch Angle
We now consider the more general case of a projectile launched at an arbitrary
angle with respect to the horizontal. This means we can no longer use the simpli-
fications associated with zero launch angle. As always, we return to our basic
equations for projectile motion (Equations 4–6), and this time we simply let be
nonzero.

Figure 4–6 (a) shows a projectile launched with an initial speed at an angle 
above the horizontal. Since the projectile starts at the origin, the initial x and y
positions are zero:

The components of the initial velocity are determined as indicated in Figure 4–6 (b):

and

As a quick check, note that if then and Similarly, if
we find and These checks are depicted in Figure 4–6 (c).

Substituting these results into the basic equations for projectile motion yields
the following results for a general launch angle:

4–10

Note that these equations, which are valid for any launch angle, reduce to the
simpler Equations 4–7 when we set and In the next two Exercises,
we use Equations 4–10 to calculate a projectile’s position and velocity for three
equally spaced times.

E X E R C I S E  4 – 1
A projectile is launched from the origin with an initial speed of 20.0 m/s at an angle
of 35.0° above the horizontal. Find the x and y positions of the projectile at times
(a) (b) and (c)

S O L U T I O N

a.

b.

c. Note that x increases steadily; y increases, 
then decreases.
x = 24.6 m, y = 6.17 m.

x = 16.4 m, y = 6.57 m,

x = 8.19 m, y = 4.51 m,

t = 1.50 s.t = 1.00 s,t = 0.500 s,

y0 = h.u = 0

y = 1v0 sin u2t - 1
2 gt

2 vy = v0 sin u - gt vy
2 = v0

2 sin2 u - 2g¢y

x = 1v0 cos u2t vx = v0 cos u vx
2 = v0

2 cos2 u

v0y = v0.v0x = 0u = 90°
v0y = 0.v0x = v0u = 0,

v0y = v0 sin u

v0x = v0 cos u

x0 = y0 = 0

uv0

u

▲ FIGURE 4–6 Projectile with an
arbitrary launch angle
(a) A projectile launched from the origin
at an angle above the horizontal.
(b) The x and y components of the initial
velocity. (c) Velocity components in the
limits and u = 90°.u = 0

u

O

O

O v0x = v0 cos �

� = 0
v0x = v0
v0y = 0

x

y

v0

�

x

y

v0

v0

v0

�

v0y = v0 sin�

x

y

� = 90°
v0x = 0
v0y = v0

(a)

(b)

(c)

C O N C E P T U A L  C H E C K P O I N T  4 – 2 M I N I M U M  S P E E D

If the height h is increased in the previous example but the width w remains the same,
does the minimum speed needed to cross the crevasse (a) increase, (b) decrease, or
(c) stay the same?

R E A S O N I N G  A N D  D I S C U S S I O N

If the height is greater, the time of fall is also greater. Since the climber is in the air for a
greater time, the horizontal distance covered for a given initial speed is also greater.
Thus, if the width of the crevasse is the same, a lower initial speed allows for a safe
crossing.

A N S W E R

(b) The minimum speed decreases.

P R O B L E M - S O L V I N G  N O T E

Use Independence of Motion

Projectile problems can be solved by
breaking the problem into its x and y com-
ponents, and then solving for the motion
of each component separately.
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E X E R C I S E  4 – 2
Referring to Exercise 4–1, find the velocity of the projectile at times (a)
(b) and (c)

S O L U T I O N

a.

b

c.

Figure 4–7 shows the projectile referred to in the previous Exercises for a series
of times spaced by 0.10 s. Note that the points in Figure 4–7 are not evenly spaced
in terms of position, even though they are evenly spaced in time. In fact, the
points bunch closer together at the top of the trajectory, showing that a compara-
tively large fraction of the flight time is spent near the highest point. This is why
it seems that a basketball player soaring toward a slam dunk, or a ballerina per-
forming a grand jeté, is “hanging” in air.

v
!
= 116.4 m/s2xN + 1-3.24 m/s2yN .

v
!
= 116.4 m/s2xN + 11.66 m/s2yN ,

v
!
= 116.4 m/s2xN + 16.57 m/s2yN ,

t = 1.50 s.t = 1.00 s,
t = 0.500 s,

▲ “Hanging” in air near the peak of a jump requires no special knack—in fact, it’s an unavoidable consequence of the laws of physics. This
phenomenon, which makes big leapers (such as deer and dancers) look particularly graceful, can also make life more dangerous for salmon
fighting their way upstream to spawn.

▲ FIGURE 4–7 Snapshots of a trajectory
This plot shows a projectile launched from
the origin with an initial speed of 20.0 m/s
at an angle of 35.0° above the horizontal.
The positions shown in the plot corre-
spond to the times 
Red dots mark the positions considered in
Exercises 4–1 and 4–2.

t = 0.1 s, 0.2 s, 0.3 s, Á .

O x (m)

y (m)

6
5
4

7

3
2

1

5 10 15 20 25 30 35

E X A M P L E  4 – 5 A  R O U G H  S H O T

Chipping from the rough, a golfer sends the ball over a 3.00-m-high tree that is 14.0 m away. The ball lands at the same level 
from which it was struck after traveling a horizontal distance of 17.8 m—on the green, of course. (a) If the ball left the club 54.0°
above the horizontal and landed on the green 2.24 s later, what was its initial speed? (b) How high was the ball when it passed
over the tree?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the ball taking flight from the origin,
with a launch angle of 54.0°, and arcing over the

tree. The individual points along the parabolic trajectory corre-
spond to equal time intervals.

S T R A T E G Y

a. Since the projectile moves with constant speed in the x
direction, the x component of velocity is simply horizontal
distance divided by time. Knowing and , we can find 
from .

b. We can use to find the time when the ball is at
. Substituting this time into 

gives the height.

S O L U T I O N

Part (a)

1. Divide the horizontal distance, d, by the time of
flight, t, to obtain 

CONTINUED ON NEXT PAGE
vx:

vx =
d
t

=
17.8 m
2.24 s

= 7.95 m/s

y = (v0 sin u)t - 1
2gt

2x = 14.0 m
x = (v0 cos u)t

vx = v0 cos u
v0uvx

x0 = y0 = 0,

O

6

5

4

3

2

1

4 8 12 16
Distance, x (m)

H
ei

gh
t,

y 
(m

)

54.0°
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CONTINUED FROM PREVIOUS PAGE

2. Use to find the initial speed: or

Part (b)

3. Use to find the time when or
Recall that 

4. Evaluate at the time found in
Step 3. Recall that 

I N S I G H T

The ball clears the top of the tree by 1.03 m and lands on the green 0.48 s later. When it lands, its speed (in the absence of air
resistance) is again 13.5 m/s—the same as when it was launched. This result will be verified in the next section.

P R A C T I C E  P R O B L E M

What are the speed and direction of the ball when it passes over the tree? [Answer: To find the ball’s speed and direction, note that
and It follows that and ]

Some related homework problems: Problem 31, Problem 39

u = tan-11vy>vx2 = -38.6°.v = 2vx 

2 + vy 

2 = 10.2 m/svy = v0 sin u - gt = -6.34 m/s.vx = 7.95 m/s

 = 4.03 m

 = [113.5 m/s2 sin 54.0°]11.76 s2 - 1
219.81 m/s2211.76 s22y0 = 0:

y = 1v0 sin u2t - 1
2 gt2y = 1v0 sin u2t - 1

2 gt2

x0 = 0:
t =

x
v0 cos u

=
14.0 m

7.95 m/s
= 1.76 sx = 1v0 cos u2tx = 14.0 m.x = 1v0 cos u2t

v0 =
vx

cos u
=

7.95 m/s
cos 54.0°

= 13.5 m/svx = v0 cos uv0,vx = v0 cos u

A C T I V E  E X A M P L E  4 – 1 A N  E L E V A T E D  G R E E N

A golfer hits a ball from the origin with an initial speed of 30.0 m/s at an angle of
50.0° above the horizontal. The ball lands on a green that is 5.00 m above the level
where the ball was struck.

a. How long is the ball in the air?

b. How far has the ball traveled in the horizontal direction when it lands?

c. What are the speed and direction of motion of the ball just before it lands?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Let and solve for t: 4.46 s

2. When the ball is moving upward;
when the ball is on the way down.
Choose the later time:

Part (b)

3. Substitute into 

Part (c)

4. Use to calculate 

5. Substitute into 
to find 

6. Calculate v and 

Y O U R  T U R N

How long is the ball in the air if the green is 5.00 m below the level where the ball 
was struck?

(Answers to Your Turn problems are given in the back of the book.)

v = 28.4 m/s, u = -47.1°u:

vy:
vy = -20.8 m/svy = v0 sin u - gtt = 4.46 s

vx = 19.3 m/svx:vx = v0 cos u

x = 86.0 mx = 1v0 cos u2t:t = 4.46 s

t = 4.46 s,
t = 4.46 st = 0.229 s,

t = 0.229 s,y = 1v0 sin u2t - 1
2 gt2 = 5.00 m

The next Example presents a classic situation in which two projectiles collide.
One projectile is launched from the origin, and thus its equations of motion are
given by Equations 4–10. The second projectile is simply dropped from a height,
which is a special case of the equations of motion in Equations 4–7 with v0 = 0.
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E X A M P L E  4 – 6 A  L E A P  O F  F A I T H

A trained dolphin leaps from the water with an initial speed of 12.0 m/s. It jumps directly toward a ball held by the trainer a hor-
izontal distance of 5.50 m away and a vertical distance of 4.10 m above the water. In the absence of gravity the dolphin would
move in a straight line to the ball and catch it, but because of gravity the dolphin follows a parabolic path well below the ball’s
initial position, as shown in the sketch. If the trainer releases the ball the instant the dolphin leaves the water, show that the dol-
phin and the falling ball meet.

P I C T U R E  T H E  P R O B L E M

In our sketch we have the dolphin leaping from the water at the
origin with an angle above the horizontal given by

The initial position of the ball is 
and and its initial velocity is zero. The ball
drops straight down with the acceleration of gravity, 

S T R A T E G Y

We want to show that when the dolphin is at , its height
above the water is the same as the height of the ball above the
water. To do this we first find the time when the dolphin is at

, then calculate y for the dolphin at this time. Next, we cal-
culate y of the ball at the same time and then check to see if they
are equal.

Since the ball drops from rest from a height h, its y equation of
motion is , as in Equations 4–7 in Section 4–3.

S O L U T I O N

1. Calculate the angle at which the dolphin leaves the water:

2. Use this angle and the initial speed to find the time t when
the x position of the dolphin, is equal to 5.50 m.
The x equation of motion is 

3. Evaluate the y position of the dolphin, at 
The y equation of motion is 

4. Finally, evaluate the y position of the ball, at
The ball’s equation of motion is

I N S I G H T

In the absence of gravity, both the dolphin and the ball would be
at and at . Because of gravity,
however, the dolphin and the ball fall below their zero-gravity
positions—and by the same amount, 1.60 m. In fact, from the
point of view of the dolphin, the ball is always at the same angle
of 36.7° above the horizontal until it is caught.

This is shown in the accompanying plot, where the red dots
show the position of the ball at ten equally spaced times, and the
blue dots show the position of the dolphin at the corresponding
times. In addition, the dashed lines from the dolphin to the ball
all make the same angle with the horizontal, 36.7°.

P R A C T I C E  P R O B L E M

At what height does the dolphin catch the ball if it leaves the water
with an initial speed of 8.00 m/s? [Answer: If the dolphin’s initial speed is less than 7.50 m/s, it reenters the
water before catching the ball.]

Some related homework problems: Problem 31, Problem 40

yd = yb = 0.493 m.

t = 0.572 sy = 4.10 mx = 5.50 m

yb = h - 1
2 gt2:

 = 4.10 m - 1.60 m = 2.50 mt = 0.572 s.
 yb = h - 1

2 gt2 = 4.10 m - 1
219.81 m>s2210.572 s22yb,

 = 4.10 m - 1.60 m = 2.50 m

 = [112.0 m/s2 sin 36.7°]10.572 s2 - 1
219.81 m/s2210.572 s22yd = 1v0 sin u2t - 1

2 gt2:
 yd = 1v0 sin u2t - 1

2 gt2t = 0.572 s.yd,

 t =
5.50 m

9.62 m/s
= 0.572 s

xd = 1v0 cos u2t:
 = 5.50 mxd,
xd = 1v0 cos u2t = [112.0 m/s2 cos 36.7°]t = 19.62 m/s2t
u = tan-1ah

d
b = tan-1a4.10 m

5.50 m
b = 36.7°

y = h - 1
2gt

2

x = d

x = d

ay = -g.
y0 = h = 4.10 m,

x0 = d = 5.50 mu = tan-11h/d2.
x0 = y0 = 0

O x

d = 5.50 m

h = 4.10 m

y

�

O
x (m)

y (m)

2

1

2

3

4

4 6 8 10 12 14
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4–5 Projectile Motion: Key Characteristics
We conclude this chapter with a brief look at some additional characteristics of
projectile motion that are both interesting and useful. In all cases our results follow
as a direct consequence of the fundamental kinematic equations (Equations 4–10)
describing projectile motion.

Range
The range, R, of a projectile is the horizontal distance it travels before landing. We
consider the case shown in Figure 4–8, where the initial and final elevations are the
same One way to obtain the range, then, is as follows: (i) Find the time
when the projectile lands by setting in the expression 
(ii) Substitute the time found in (i) into the x equation of motion.

Carrying out the first part of the calculation yields the following:

Clearly, is a solution to this equation—corresponding to the initial condition—
but the solution we seek is a time that is greater than zero. We can find the desired
time by dividing both sides of the equation by t. This gives

4–11

This is the time when the projectile lands—also known as the time of flight.
Now, substitute this time into to find the value of x when the

projectile lands:

This value of x is the range, R, thus

Using the trigonometric identity as given in Appendix A,
we can write this more compactly as follows:

(same initial and final elevation) 4–12R = a v0 

2

g
b  sin 2u

sin 2u = 2 sin u cos u,

R = a 2v0 

2

g
b  sin u cos u

x = 1v0 cos u2t = 1v0 cos u2a2v0

g
b  sin u = a2v0 

2

g
b  sin u cos u

x = 1v0 cos u2t

1v0 sin u2 = 1
2 gt or t = a 2v0

g
b  sin u

t = 0

1v0 sin u2t - 1
2 gt2 = 0 or 1v0 sin u2t = 1

2 gt2

y = 1v0 sin u2t - 1
2 gt2;y = 0

1y = 02.

A C T I V E  E X A M P L E  4 – 2 F I N D  T H E  I N I T I A L  S P E E D

A football game begins with a kickoff in which the ball travels a horizontal distance of 45 yd and lands on the ground. If the ball
was kicked at an angle of 40.0° above the horizontal, what was its initial speed?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Solve Equation 4–12 for the initial speed 

2. Convert the range to meters:

3. Substitute numerical values:

I N S I G H T

Note that we choose the positive square root in Step 1 because we are interested only in the speed of the ball, which is always
positive.

Y O U R  T U R N

Suppose the initial speed of the ball is increased by 10%, to 22 m/s. By what percentage does the range increase?

(Answers to Your Turn problems are given in the back of the book.)

 v0 = 20 m>s
 R = 41 m

 v0 = 2gR>sin 2uv0:

▲ FIGURE 4–8 Range of a projectile
The range R of a projectile is the horizon-
tal distance it travels between its takeoff
and landing positions.

x

y

O

v0

R

�

P R O B L E M - S O L V I N G  N O T E

Use the Same Math Regardless
of the Initial Conditions

Once an object is launched, its trajectory
follows the kinematic equations of mo-
tion, regardless of specific differences in
the initial conditions. Thus, our equations
of motion can be used to derive any de-
sired characteristic of projectile motion,
including range, symmetry, and maxi-
mum height.
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Note that R depends inversely on the acceleration of gravity, g—thus the
smaller g, the larger the range. For example, a projectile launched on the Moon,
where the acceleration of gravity is only about 1/6 that on Earth, travels about six
times as far as it would on Earth. It was for this reason that astronaut Alan Shep-
ard simply couldn’t resist the temptation of bringing a golf club and ball with him
on the third lunar landing mission in 1971. He ambled out onto the Fra Mauro
Highlands and became the first person to hit a tee shot on the Moon. His distance
was undoubtedly respectable—unfortunately, his ball landed in a sand trap.

Now, what launch angle gives the greatest range? From Equation 4–12 we see
that R varies with angle as thus R is largest when is largest—that is,
when Since it follows that gives the maximum
range. Thus

4–13

As expected, the range (Equation 4–12) and maximum range (Equation 4–13)
depend strongly on the initial speed of the projectile—they are both proportional
to

Note that these results are specifically for the case where a projectile lands at
the same level from which it was launched. If a projectile lands at a higher level,
for example, the launch angle that gives maximum range is greater than 45°, and
if it lands at a lower level, the angle for maximum range is less than 45°.

Finally, the range given here applies only to the ideal case of no air resistance.
In cases where air resistance is significant, as in the flight of a rapidly moving golf
ball, for example, the overall range of the ball is reduced. In addition, the maxi-
mum range occurs for a launch angle less than 45° (Figure 4–9). The reason is that
with a smaller launch angle the golf ball is in the air for less time, giving air resis-
tance less time to affect its flight.

Symmetry in Projectile Motion
There are many striking symmetries in projectile motion, beginning with the
graceful symmetry of the parabola itself. As a first example, recall that earlier in
this section, in Equation 4–11, we found the time when a projectile lands:

Now, by symmetry, the time it takes a projectile to reach its highest point (in the ab-
sence of air resistance) should be just half this time. After all, the projectile moves
in the x direction with constant speed, and the highest point—by symmetry—
occurs at 

This all seems reasonable, but is there another way to check? Well, at the high-
est point the projectile is moving horizontally, thus its y component of velocity is
zero. Let’s find the time when and compare with the time to land:

4–14

As expected from symmetry, the time at the highest point is one-half the time at
landing.

There is another interesting symmetry concerning speed. Recall that when a
projectile is launched, its y component of velocity is When the pro-
jectile lands, at time its y component of velocity is

vy = v0 sin u - gt = v0 sin u - ga2v0

g
b  sin u = -v0 sin u

t = 12v0/g2 sin u,
vy = v0 sin u.

t = a v0

g
b  sin u

vy = v0y - gt = v0 sin u - gt = 0

vy = 0

x = 1
2 R.

t = a2v0

g
b  sin u

v0
2.

Rmax =
v0

2

g

u = 45°sin 90° = 1,sin 2u = 1.
sin 2usin 2u;

▲ FIGURE 4–9 Projectiles with 
air resistance
Projectiles with the same initial speed 
but different launch angles showing the
effects of air resistance. Notice that the
maximum range occurs for a launch
angle less than 45°, and that the projec-
tiles return to the ground at a steeper
angle than the launch angle.

y

Range (m)
O

x

3.5

3

2.5

2

1.5

1

0.5

2 4 6 8 10

 = 45°�

 = 35°�

 = 25°�

 = 15°�

▲ To be successful, a juggler must master
the behavior of projectile motion. Physicist
Richard Feynman shows that just knowing
the appropriate equations is not enough;
one must also practice. In this sense, learn-
ing to juggle is similar to learning to solve
physics problems.

R E A L - W O R L D  P H Y S I C S

Golf on the Moon
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This is exactly the opposite of the y component of the velocity when it was
launched. Since the x component of velocity is always the same, it follows that
when the projectile lands, its speed, is the same as when it was
launched—as one might expect from symmetry.

The velocities are different, however, since the direction of motion is different
at launch and landing. Even so, there is still a symmetry—the initial velocity is
above the horizontal by the angle the landing velocity is below the horizontal by
the same angle 

So far, these results have referred to launching and landing, which both occur
at The same symmetry extends to any level, though. That is, at a given
height the speed of a projectile is the same on the way up as on the way down. In
addition, the angle of the velocity above the horizontal on the way up is the same
as the angle below the horizontal on the way down. This is illustrated in Figure 4–10
and in the next Conceptual Checkpoint.

y = 0.

u.
u;

v = 2vx2 + vy2,

▲ FIGURE 4–10 Velocity vectors for a projectile launched at the origin
At a given height the speed (length of velocity vector) is the same on the
way up as on the way down. The direction of motion on the way up is above
the horizontal by the same amount that it is below the horizontal on the way
down. In this case, the total time of flight is T, and the greatest height is
reached at the time T/2. Notice that the speed is the same at the time (T/2) - t
as it is at the time (T/2) + t.

O
x (m)

y (m)

15
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10

7.5
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2
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vx � –vy
–

vx

C O N C E P T U A L  C H E C K P O I N T  4 – 3 C O M P A R E  L A N D I N G  S P E E D S

You and a friend stand on a snow-covered roof. You both throw snowballs with the same
initial speed, but in different directions. You throw your snowball downward, at 40°
below the horizontal; your friend throws her snowball upward, at 40° above the horizon-
tal. When the snowballs land on the ground, is the speed of your snowball (a) greater
than, (b) less than, or (c) the same as the speed of your friend’s snowball?

R E A S O N I N G  A N D  D I S C U S S I O N

One consequence of symmetry in projectile motion is that when your friend’s snowball
returns to the level of the throw, its speed will be the same as the initial speed. In addition,
it will be moving downward, at 40° below the horizontal. From that point on its motion
is the same as that of your snowball; thus it lands with the same speed.

What if you throw your snowball horizontally? Or suppose you throw it straight down?
In either case, the final speed is unchanged! In fact, for a given initial speed, the speed on
landing simply doesn’t depend on the direction in which you throw the ball. This is
shown in Homework Problems 35 and 76. We return to this point in Chapter 8 when we
discuss potential energy and energy conservation.

A N S W E R

(c) The snowballs have the same speed.

40°
40°

40°
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▲ FIGURE 4–11 Range and launch angle in the absence of air resistance
(a) A plot of range versus launch angle for a projectile launched with an initial speed of 20 m/s. Note that the maximum range occurs at

Launch angles equally greater than or less than 45°, such as 30° and 60°, give the same range. (b) Trajectories of projectiles with
initial speeds of 20 m/s and launch angles of 60°, 45°, and 30°. The projectiles with launch angles of 30° and 60° land at the same location.
u = 45°.
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(a) Launch angles that are greater or less than 45° by the same amount
give the same range.
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(b) Projectiles with    = 30° and     = 60° follow different paths but have
the same range.

� �

As our final example of symmetry, consider the range R. A plot of R versus
launch angle is shown in Figure 4–11 (a) for Note that in the ab-
sence of air resistance, R is greatest at as pointed out previously. In ad-
dition, we can see from the figure that the range for angles equally above or
below 45° is the same. For example, if air resistance is negligible, the range for

is the same as the range for as we can see in both parts (a) and (b)
of Figure 4–11.

Symmetries such as these are just some of the many reasons why physicists
find physics to be “beautiful” and “aesthetically pleasing.” Discovering such pat-
terns and symmetries in nature is really what physics is all about. A physicist does
not consider the beauty of projectile motion to be diminished by analyzing it in
detail. Just the opposite—detailed analysis reveals deeper, more subtle, and some-
times unexpected levels of beauty.

Maximum Height
Let’s follow up on an observation made earlier in this section, namely, that a
projectile is at maximum height when its y component of velocity is zero. In
fact, we will use this observation to determine the maximum height of an arbi-
trary projectile. This can be accomplished with the following two-step calcula-
tion: (i) Find the time when (ii) Substitute this time into the y-versus-t
equation of motion, This calculation is carried out in the
next Example.

y = 1v0 sin u2t - 1
2 gt

2.
vy = 0;

u = 60°,u = 30°

u = 45°,
v0 = 20 m/s.u

▲ An archerfish would have trouble
procuring its lunch without an instinctive
grasp of projectile motion.

E X A M P L E  4 – 7 W H A T  A  S H O T !

The archerfish hunts by dislodging an unsuspecting insect from its resting place with a stream of water expelled from the
fish’s mouth. Suppose the archerfish squirts water with an initial speed of 2.30 m/s at an angle of 19.5° above the horizon-
tal. When the stream of water reaches a beetle on a leaf at height h above the water’s surface, it is moving horizontally.

a. How much time does the beetle have to react?

b. What is the height h of the beetle?

c. What is the horizontal distance d between the fish and the beetle when the water is launched?

CONTINUED ON NEXT PAGE
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CONTINUED FROM PREVIOUS PAGE

P I C T U R E  T H E  P R O B L E M

Our sketch shows the fish squirting water from the origin,
and the beetle at The stream of

water starts off with a speed at an angle
above the horizontal. Note that the water is moving

horizontally when it reaches the beetle.

S T R A T E G Y

a. Because the stream of water is moving horizontally when
it reaches the beetle, it is at the top of its parabolic trajec-
tory, as can be seen in Figure 4–10. This means that its y
component of velocity is zero. Therefore, we can set 
in and solve for the time t.

b. To find the maximum height of the stream of water, and of the beetle, we substitute the time found in part (a) into

c. Similarly, we can find the horizontal distance d by substituting the time from part (a) into 

S O L U T I O N

Part (a)

1. Set equal to zero and solve for the
corresponding time t:

2. Substitute numerical values to determine the 
reaction time:

Part (b)

3. To calculate the height, we substitute 
into 

4. Substitute numerical values to find the height h:

Part (c)

5. We can find the horizontal distance d using x as a
function of time, 

I N S I G H T

To hit the beetle, the fish aims 19.5° above the horizontal. For comparison, note that the straight-line angle to the beetle is
Therefore, the fish cannot aim directly at its prey if it wants a meal.

Finally, note that by working symbolically in Step 3 we have derived a general result for the maximum height of a projectile. In
particular, we find a result that is valid for any launch speed and angle. As a check of our result, note that 
if we launch a projectile straight upward the maximum height is Comparing with the one-dimensional
kinematics of Chapter 2, if an object is thrown straight upward with an initial speed and the object accelerates downward
with the acceleration of gravity, it comes to rest after covering a vertical distance given by  
Solving for the distance yields This is an example of the internal consistency that characterizes all 
of physics.

P R A C T I C E  P R O B L E M

How far does the stream of water go if it happens to miss the beetle? [Answer: By symmetry, the distance d is half the range.
Thus the stream of water travels a distance ]

Some related homework problems: Problem 81, Problem 82

R = 2d = 0.340 m.

¢y = v0  

2>2g = ymax.
0 = v0  

2 + 21-g2¢y.¢y1v = 02a = -g,
v0,

ymax = v0  

2>2g.1u = 90°2,
ymax = 1v0 sin u22>2g,

tan-110.0300>0.1702 = 10.0°.

 d = [12.30 m/s2 cos 19.5°]10.0783 s2 = 0.170 mx = 1v0 cos u2t:
 x = 1v0 cos u2t

h =
1v0 sin u22

2g
=

[12.30 m/s2 sin 19.5°]2

219.81 m/s22 = 0.0300 m

y = 1v0 sin u2t - 1
2 gt2:

y = 1v0 sin u2av0 sin u
g
b -

1
2

 gav0 sin u
g
b2

=
1v0 sin u22

2g
t = 1v0 sin u2>g

t =
v0 sin u
g

=
12.30 m/s2 sin 19.5°

9.81 m/s2
= 0.0783 s

t =
v0 sin u
g

 vy = v0y - gt = v0 sin u - gt = 0vy = v0 sin u - gt

x = 1v0 cos u2t.
y = 1v0 sin u2t - 1

2 gt2.

vy = v0 sin u - gt
vy = 0

u = 19.5°
v0 = 2.30 m>s
x = d, y = h.x0 = y0 = 0,

d

h

�
x

y

v0
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C H A P T E R  S U M M A RY

4 – 1 M O T I O N  I N  T W O  D I M E N S I O N S

Independence of Motion
Components of motion in the x and y directions can be treated independently of
one another. Thus, two-dimensional motion with constant acceleration is de-
scribed by the same kinematic equations derived in Chapter 2, only now written
in terms of x and y components.

4 – 2 P R O J E C T I L E  M O T I O N : B A S I C  E Q U AT I O N S

Projectile motion refers to the path of an object after it is thrown, kicked, batted,
or otherwise launched into the air. For the ideal case, we assume no air
resistance and a constant downward acceleration of magnitude g.

Acceleration Components
In projectile motion, with the x axis horizontal and the y axis upward, the com-
ponents of the acceleration of gravity are

x and y as Functions of Time
The x and y equations of motion are

4–6

vx and vy as Functions of Time
The velocity components vary with time as follows:

4–6

vx and vy as Functions of Displacement

vy = v0y - gt
vx = v0x

y = y0 + v0yt - 1
2 gt

2

x = x0 + v0xt

ay = -g
ax = 0

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

This chapter provides a number of
opportunities to use the vector
methods developed in Chapter 3. In
Section 4–4, for example, we resolve a
velocity vector into its x and y
components, and then use the
components in Equations 4–10.

The basic idea behind projectile motion
will be used again in Chapter 12,
when we consider orbital motion. See,
in particular, the illustration presented
in Section 12–1.

The equations of one-dimensional
kinematics derived in Chapter 2 are
used again in this chapter, even
though we are now studying
kinematics in two dimensions. For
example, the equations in Table 4–1 are
the same as those used in Chapter 2,
only now applied individually to the
x and y directions.

Two-dimensional kinematics comes
up again when we study the motion
of charged particles (like electrons) in
electric fields. To see the connection,
compare Figures 19–41 and 22–10 (a)
with the person jumping a crevasse in
Example 4–4. The same basic
principles apply.

O

ax = 0
ay = –g

x

y

a

v

and vary with displacement as

4–6
vy

2 = v0y
2 - 2g¢y

vx
2 = v0x

2

vyvx
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4 – 3 Z E R O  L A U N C H  A N G L E

Equations of Motion
A projectile launched horizontally from with an initial speed 
has the following equations of motion:

4–7

Parabolic Path
The path followed by a projectile launched horizontally with an initial speed 
is described by

4–8

This path is a parabola.

Landing Site
The landing site of a projectile launched horizontally is

4–9

In this expression, is the initial speed and h is the initial height. Note that this
result is simply the speed in the x direction multiplied by the time of fall.

4 – 4 G E N E R A L  L A U N C H  A N G L E

Launch from the Origin
The equations of motion for a launch from the origin with an initial speed at
an angle of with respect to the horizontal are

4–10

4 – 5 P R O J E C T I L E  M O T I O N :  K E Y  C H A R A C T E R I ST I C S  

Range
The range of a projectile launched from the origin with an initial speed and a
launch angle is

4–12

This expression applies only to projectiles that land at the same level from
which they were launched.

Symmetry
Projectile motion exhibits many symmetries. For example, the speed of a projec-
tile depends only on its height and not on whether it is moving upward or
downward.

Maximum Height
The maximum height of a projectile above its launch site is

In this equation, is the initial speed and is the launch angle.uv0

ymax =
v0

2 sin2 u

2g

R = av0
2

g
b  sin 2u

u

v0

y = 1v0 sin u2t - 1
2 gt

2 vy = v0 sin u - gt vy
2 = v0

2 sin2u - 2g¢y
x = 1v0 cos u2t vx = v0 cos u vx

2 = v0
2 cos2u

u

v0

v0

x = v0A2h
g

y = h - a g
2v0

2
bx2

v0

y = h - 1
2 gt

2 vy = -gt vy
2 = -2g¢y

x = v0t vx = v0 vx
2 = v0

2
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Type of Problem Relevant Physical Concepts Related Examples

Study two-dimensional motion with
constant acceleration.

Motion in the x direction is independent of motion in the 
y direction. This is the basis for the equations of motion
given in Table 4–1. Note that these equations are the same
as the kinematic equations of Chapter 2, only written in
terms of x and y components.

Examples 4–1, 4–2

Find the location and velocity of a
projectile launched horizontally.

When a projectile is launched horizontally with a speed 
its initial velocity components are and 
Make these substitutions in the equations of projectile
motion given in Equations 4–6.

v0y = 0.v0x = v0

v0 Examples 4–3, 4–4
Conceptual Check-
points 4–1, 4–2

Find the location and velocity of a
projectile launched with an arbitrary
launch angle.

If a projectile is launched at an angle its initial velocity
components are and Make
these substitutions in the equations of projectile motion
given in Equations 4–6.

v0y = v0 sin u.v0x = v0 cos u
u, Examples 4–5, 4–6, 4–7

Active Examples 4–1,
4–2

P R O B L E M - S O L V I N G  S U M M A RY

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. What is the acceleration of a projectile when it reaches its high-
est point? What is its acceleration just before and just after
reaching this point?

2. A projectile is launched with an initial speed of at an angle 
above the horizontal. It lands at the same level from which it
was launched. What was its average velocity between launch
and landing? Explain.

3. A projectile is launched from level ground. When it lands, its di-
rection of motion has rotated clockwise through 60°. What was
the launch angle? Explain.

4. In a game of baseball, a player hits a high fly ball to the outfield.
(a) Is there a point during the flight of the ball where its velocity
is parallel to its acceleration? (b) Is there a point where the ball’s
velocity is perpendicular to its acceleration? Explain in each case.

5. A projectile is launched with an initial velocity of
What is the velocity of the projectile

when it reaches its highest point? Explain.
6. A projectile is launched from a level surface with an initial ve-

locity of What is the velocity of the
projectile just before it lands? Explain.

7. Do projectiles for which air resistance is nonnegligible, such as
a bullet fired from a rifle, have maximum range when the
launch angle is greater than, less than, or equal to 45°? Explain.

v
!
= 12 m/s2xN + 14 m/s2yN .

v
!
= 14 m/s2xN + 13 m/s2yN .

uv0

8. Two projectiles are launched from the same point at the same
angle above the horizontal. Projectile 1 reaches a maximum
height twice that of projectile 2. What is the ratio of the initial
speed of projectile 1 to the initial speed of projectile 2? Ex-
plain.

9. A child rides on a pony walking with constant velocity. The boy
leans over to one side and a scoop of ice cream falls from his ice
cream cone. Describe the path of the scoop of ice cream as seen
by (a) the child and (b) his parents standing on the ground
nearby.

10. Driving down the highway, you find yourself behind a heavily
loaded tomato truck. You follow close behind the truck, keep-
ing the same speed. Suddenly a tomato falls from the back of
the truck. Will the tomato hit your car or land on the road, as-
suming you continue moving with the same speed and direc-
tion? Explain.

11. A projectile is launched from the origin of a coordinate sys-
tem where the positive x axis points horizontally to the right
and the positive y axis points vertically upward. What was
the projectile’s launch angle with respect to the x axis if, at its
highest point, its direction of motion has rotated (a) clock-
wise through 50° or (b) counterclockwise through 30°? Ex-
plain.

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both concep-
tual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for
two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used
to indicate the level of difficulty.
(Air resistance should be ignored in the problems for this chapter, unless specifically stated otherwise.)

S E C T I O N  4 – 1 M O T I O N  I N  T W O  D I M E N S I O N S

1. • CE Predict/Explain As you walk briskly down the street, you
toss a small ball into the air. (a) If you want the ball to land in
your hand when it comes back down, should you toss the ball
straight upward, in a forward direction, or in a backward direc-
tion, relative to your body?

(b) Choose the best explanation from among the following:
I. If the ball is thrown straight up you will leave it behind.

II. You have to throw the ball in the direction you are walking.
III. The ball moves in the forward direction with your walking

speed at all times.

For instructor-assigned homework, go to www.masteringphysics.com
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▲ FIGURE 4–12 Problem 7

N

S
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EW

1.5 km

45°

1.0 km

θ

2. • Asailboat runs before the wind with a constant speed of 4.2 m/s
in a direction 32° north of west. How far (a) west and (b) north
has the sailboat traveled in 25 min?

3. • As you walk to class with a constant speed of 1.75 m/s, you
are moving in a direction that is 18.0° north of east. How much
time does it take to change your displacement by (a) 20.0 m east
or (b) 30.0 m north?

4. • Starting from rest, a car accelerates at up a hill that
is inclined 5.5° above the horizontal. How far (a) horizontally
and (b) vertically has the car traveled in 12 s?

5. •• IP A particle passes through the origin with a velocity 
of . If the particle’s acceleration is ,
(a) what are its x and y positions after 5.0 s? (b) What are 
and at this time? (c) Does the speed of this particle increase
with time, decrease with time, or increase and then decrease?
Explain.

6. •• An electron in a cathode-ray tube is traveling horizontally at
when deflection plates give it an upward 

acceleration of . (a) How long does it take for
the electron to cover a horizontal distance of 6.20 cm? (b) What
is its vertical displacement during this time?

7. •• Two canoeists start paddling at the same time and head to-
ward a small island in a lake, as shown in Figure 4–12. Canoeist
1 paddles with a speed of 1.35 m/s at an angle of 45° north of
east. Canoeist 2 starts on the opposite shore of the lake, a dis-
tance of 1.5 km due east of canoeist 1. (a) In what direction
relative to north must canoeist 2 paddle to reach the island?
(b) What speed must canoeist 2 have if the two canoes are to ar-
rive at the island at the same time?

5.30 * 1017 cm/s2
2.10 * 109 cm/s

vy

vx

(-4.4 m/s2)xN(6.2 m/s)yN

2.0 m/s2

9. • CE Predict/Explain Two youngsters dive off an overhang
into a lake. Diver 1 drops straight down, and diver 2 runs off
the cliff with an initial horizontal speed . (a) Is the splash-
down speed of diver 2 greater than, less than, or equal to the
splashdown speed of diver 1? (b) Choose the best explanation
from among the following:

I. Both divers are in free fall, and hence they will have the
same splashdown speed.

II. The divers have the same vertical speed at splashdown, but
diver 2 has the greater horizontal speed.

III. The diver who drops straight down gains more speed than
the one who moves horizontally.

v0

S E C T I O N  4 – 3 Z E R O  L A U N C H  A N G L E

8. • CE Predict/Explain Two divers run horizontally off the
edge of a low cliff. Diver 2 runs with twice the speed of diver 1.
(a) When the divers hit the water, is the horizontal distance cov-
ered by diver 2 twice as much, four times as much, or equal to
the horizontal distance covered by diver 1? (b) Choose the best
explanation from among the following:

I. The drop time is the same for both divers.
II. Drop distance depends on t2.

III. All divers in free fall cover the same distance.

A

B

▲ FIGURE 4–13 Problem 15

16. •• IP A crow is flying horizontally with a constant speed of
2.70 m/s when it releases a clam from its beak (Figure 4–14). The
clam lands on the rocky beach 2.10 s later. Just before the clam
lands, what is (a) its horizontal component of velocity, and (b)
its vertical component of velocity? (c) How would your an-
swers to parts (a) and (b) change if the speed of the crow were
increased? Explain.

10. • An archer shoots an arrow horizontally at a target 15 m away.
The arrow is aimed directly at the center of the target, but it hits
52 cm lower. What was the initial speed of the arrow?

11. • Victoria Falls The great, gray-green, greasy Zambezi River
flows over Victoria Falls in south central Africa. The falls are ap-
proximately 108 m high. If the river is flowing horizontally at
3.60 m/s just before going over the falls, what is the speed of
the water when it hits the bottom? Assume the water is in free
fall as it drops.

12. • A diver runs horizontally off the end of a diving board with
an initial speed of 1.85 m/s. If the diving board is 3.00 m above
the water, what is the diver’s speed just before she enters the
water?

13. • An astronaut on the planet Zircon tosses a rock horizontally
with a speed of 6.95 m/s. The rock falls through a vertical dis-
tance of 1.40 m and lands a horizontal distance of 8.75 m from
the astronaut. What is the acceleration of gravity on Zircon?

14. •• IP Pitcher’s Mounds Pitcher’s mounds are raised to com-
pensate for the vertical drop of the ball as it travels a horizontal
distance of 18 m to the catcher. (a) If a pitch is thrown horizon-
tally with an initial speed of 32 m/s, how far does it drop by the
time it reaches the catcher? (b) If the speed of the pitch is in-
creased, does the drop distance increase, decrease, or stay the
same? Explain. (c) If this baseball game were to be played on
the Moon, would the drop distance increase, decrease, or stay
the same? Explain.

15. •• Playing shortstop, you pick up a ground ball and throw it
to second base. The ball is thrown horizontally, with a speed of
22 m/s, directly toward point A (Figure 4–13). When the ball
reaches the second baseman 0.45 s later, it is caught at point B.
(a) How far were you from the second baseman? (b) What is the
distance of vertical drop, AB?
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v0

▲ FIGURE 4–14 Problem 16

▲ FIGURE 4–16 Problems 21 and 42

d

1.75 m

17. •• A mountain climber jumps a 2.8-m-wide crevasse by leaping
horizontally with a speed of 7.8 m/s. (a) If the climber’s direc-
tion of motion on landing is , what is the height difference
between the two sides of the crevasse? (b) Where does the
climber land?

18. •• IP A white-crowned sparrow flying horizontally with a
speed of 1.80 m/s folds its wings and begins to drop in free fall.
(a) How far does the sparrow fall after traveling a horizontal
distance of 0.500 m? (b) If the sparrow’s initial speed is in-
creased, does the distance of fall increase, decrease, or stay the
same?

19. •• Pumpkin Toss In Denver, children bring their old jack-o-
lanterns to the top of a tower and compete for accuracy in hit-
ting a target on the ground (Figure 4–15). Suppose that the tower
is 9.0 m high and that the bull’s-eye is a horizontal distance of
3.5 m from the launch point. If the pumpkin is thrown horizon-
tally, what is the launch speed needed to hit the bull’s-eye?

-45°

with a reduced speed, does it take more, less, or the same time
to reach the water?

23. •• Baseball and the Washington Monument On August 25,
1894, Chicago catcher William Schriver caught a baseball
thrown from the top of the Washington Monument (555 ft, 898
steps). (a) If the ball was thrown horizontally with a speed of
5.00 m/s, where did it land? (b) What were the ball’s speed and
direction of motion when caught?

24. ••• A basketball is thrown horizontally with an initial speed of
4.20 m/s (Figure 4–17). A straight line drawn from the release
point to the landing point makes an angle of 30.0° with the hor-
izontal. What was the release height?

3.5 m

9.0 m

▲ FIGURE 4–15 Problems 19 and 20

20. •• If, in the previous problem, a jack-o-lantern is given an ini-
tial horizontal speed of 3.3 m/s, what are the direction and
magnitude of its velocity (a) 0.75 s later, and (b) just before it
lands?

21. •• Fairgoers ride a Ferris wheel with a radius of 5.00 m (Figure
4–16). The wheel completes one revolution every 32.0 s.
(a) What is the average speed of a rider on this Ferris wheel?
(b) If a rider accidentally drops a stuffed animal at the top of the
wheel, where does it land relative to the base of the ride? (Note:
The bottom of the wheel is 1.75 m above the ground.)

22. •• IP A swimmer runs horizontally off a diving board with a
speed of 3.32 m/s and hits the water a horizontal distance of
1.78 m from the end of the board. (a) How high above the water
was the diving board? (b) If the swimmer runs off the board

30.0°

▲ FIGURE 4–17 Problem 24

25. ••• IP A ball rolls off a table and falls 0.75 m to the floor, land-
ing with a speed of 4.0 m/s. (a) What is the acceleration of the
ball just before it strikes the ground? (b) What was the initial
speed of the ball? (c) What initial speed must the ball have if it
is to land with a speed of 5.0 m/s?

S E C T I O N  4 – 4 G E N E R A L  L A U N C H  A N G L E

26. • CE A certain projectile is launched with an initial speed .
At its highest point its speed is . What was the launch angle
of the projectile?

A. 30° B. 45° C. 60° D. 75°

1
2v0

v0
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▲ FIGURE 4–18 Problem 27

▲ FIGURE 4–19 Problem 28

27. • CE Three projectiles (A, B, and C) are launched with the same
initial speed but with different launch angles, as shown in
Figure 4–18. Rank the projectiles in order of increasing (a) hori-
zontal component of initial velocity and (b) time of flight. Indi-
cate ties where appropriate.

28. • CE Three projectiles (A, B, and C) are launched with different
initial speeds so that they reach the same maximum height, as
shown in Figure 4–19. Rank the projectiles in order of increasing
(a) initial speed and (b) time of flight. Indicate ties where appro-
priate.

29. • A second baseman tosses the ball to the first baseman, who
catches it at the same level from which it was thrown. The
throw is made with an initial speed of 18.0 m/s at an angle of
37.5° above the horizontal. (a) What is the horizontal compo-
nent of the ball’s velocity just before it is caught? (b) How long
is the ball in the air?

30. • Referring to the previous problem, what are the y component
of the ball’s velocity and its direction of motion just before it is
caught?

31. • A cork shoots out of a champagne bottle at an angle of 35.0°
above the horizontal. If the cork travels a horizontal distance of
1.30 m in 1.25 s, what was its initial speed?

32. • A soccer ball is kicked with a speed of 9.85 m/s at an angle of
35.0° above the horizontal. If the ball lands at the same level
from which it was kicked, how long was it in the air?

33. •• In a game of basketball, a forward makes a bounce pass to
the center. The ball is thrown with an initial speed of 4.3 m/s at
an angle of 15° below the horizontal. It is released 0.80 m above
the floor. What horizontal distance does the ball cover before
bouncing?

34. •• Repeat the previous problem for a bounce pass in which the
ball is thrown 15° above the horizontal.

35. •• IP Snowballs are thrown with a speed of 13 m/s from a roof
7.0 m above the ground. Snowball A is thrown straight down-

ward; snowball B is thrown in a direction 25° above the hori-
zontal. (a) Is the landing speed of snowball A greater than, less
than, or the same as the landing speed of snowball B? Explain.
(b) Verify your answer to part (a) by calculating the landing
speed of both snowballs.

36. •• In the previous problem, find the direction of motion of the
two snowballs just before they land.

37. •• A golfer gives a ball a maximum initial speed of 34.4 m/s.
(a) What is the longest possible hole-in-one for this golfer? Ne-
glect any distance the ball might roll on the green and assume
that the tee and the green are at the same level. (b) What is the
minimum speed of the ball during this hole-in-one shot?

38. •• What is the highest tree the ball in the previous problem
could clear on its way to the longest possible hole-in-one?

39. •• The “hang time” of a punt is measured to be 4.50 s. If the ball
was kicked at an angle of 63.0° above the horizontal and was
caught at the same level from which it was kicked, what was its
initial speed?

40. •• In a friendly game of handball, you hit the ball essentially
at ground level and send it toward the wall with a speed of
18 m/s at an angle of 32° above the horizontal. (a) How long
does it take for the ball to reach the wall if it is 3.8 m away?
(b) How high is the ball when it hits the wall?

41. •• IP In the previous problem, (a) what are the magnitude and di-
rection of the ball’s velocity when it strikes the wall? (b) Has the
ball reached the highest point of its trajectory at this time? Explain.

42. •• A passenger on the Ferris wheel described in Problem 21
drops his keys when he is on the way up and at the 10 o’clock
position. Where do the keys land relative to the base of the ride?

43. •• On a hot summer day, a young girl swings on a rope above
the local swimming hole (Figure 4–20). When she lets go of the
rope her initial velocity is 2.25 m/s at an angle of 35.0° above
the horizontal. If she is in flight for 0.616 s, how high above the
water was she when she let go of the rope?

▲ FIGURE 4–20 Problem 43

35.0°

v0

44. •• A certain projectile is launched with an initial speed . At its
highest point its speed is What was the launch angle?

S E C T I O N  4 – 5 P R O J E C T I L E  M O T I O N :
K E Y  C H A R A C T E R I ST I C S

45. • Punkin Chunkin In Sussex County, Delaware, a post-
Halloween tradition is “Punkin Chunkin,” in which contestants
build cannons, catapults, trebuchets, and other devices to
launch pumpkins and compete for the greatest distance.
Though hard to believe, pumpkins have been projected a dis-
tance of 4086 feet in this contest. What is the minimum initial
speed needed for such a shot?

v0/4.
v0
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▲ FIGURE 4–21 Problem 51
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A volcano on Io, the innermost moon of Jupiter,
displays the characteristic features of projectile

motion. (Problem 52)

46. • A dolphin jumps with an initial velocity of 12.0 m/s at an
angle of 40.0° above the horizontal. The dolphin passes through
the center of a hoop before returning to the water. If the dolphin
is moving horizontally when it goes through the hoop, how
high above the water is the center of the hoop?

47. • A player passes a basketball to another player who catches it
at the same level from which it was thrown. The initial speed of
the ball is 7.1 m/s, and it travels a distance of 4.6 m. What were
(a) the initial direction of the ball and (b) its time of flight?

48. • A golf ball is struck with a five iron on level ground. It lands
92.2 m away 4.30 s later. What were (a) the direction and (b) the
magnitude of the initial velocity?

49. • A Record Toss Babe Didrikson holds the world record for the
longest baseball throw (296 ft) by a woman. For the following
questions, assume that the ball was thrown at an angle of 45.0°
above the horizontal, that it traveled a horizontal distance of
296 ft, and that it was caught at the same level from which it
was thrown. (a) What was the ball’s initial speed? (b) How long
was the ball in the air?

50. • In the photograph to the left on page 87, suppose the cart that
launches the ball is 11 cm high. Estimate (a) the launch speed of
the ball and (b) the time interval between successive strobo-
scopic exposures.

51. •• CE Predict/Explain You throw a ball into the air with an
initial speed of 10 m/s at an angle of 60° above the horizontal.
The ball returns to the level from which it was thrown in the
time T. (a) Referring to Figure 4–21, which of the plots (A, B, or
C) best represents the speed of the ball as a function of time?
(b) Choose the best explanation from among the following:

I. Gravity causes the ball’s speed to increase during its flight.
II. The ball has zero speed at its highest point.

III. The ball’s speed decreases during its flight, but it doesn’t
go to zero.

ejects lava to a maximum height of . (a) What is the
initial speed of the lava? (The acceleration of gravity on Io is

.) (b) If this volcano were on Earth, would the maxi-
mum height of the ejected lava be greater than, less than, or the
same as on Io? Explain.

53. •• IP A soccer ball is kicked with an initial speed of 10.2 m/s in
a direction 25.0° above the horizontal. Find the magnitude and
direction of its velocity (a) 0.250 s and (b) 0.500 s after being
kicked. (c) Is the ball at its greatest height before or after 0.500 s?
Explain.

54. ••A second soccer ball is kicked with the same initial speed as
in Problem 53. After 0.750 s it is at its highest point. What was
its initial direction of motion?

55. •• IP A golfer tees off on level ground, giving the ball an initial
speed of 46.5 m/s and an initial direction of 37.5° above the hor-
izontal. (a) How far from the golfer does the ball land? (b) The
next golfer in the group hits a ball with the same initial speed
but at an angle above the horizontal that is greater than 45.0°. If
the second ball travels the same horizontal distance as the first
ball, what was its initial direction of motion? Explain.

56. •• IP One of the most popular events at Highland games is 
the hay toss, where competitors use a pitchfork to throw a bale
of hay over a raised bar. Suppose the initial velocity of a bale of
hay is (a) After what mini-
mum time is its speed equal to 5.00 m/s? (b) How long after the
hay is tossed is it moving in a direction that is 45.0° below the
horizontal? (c) If the bale of hay is tossed with the same initial
speed, only this time straight upward, will its time in the air in-
crease, decrease, or stay the same? Explain.

G E N E R A L  P R O B L E M S

57. • CE Child 1 throws a snowball horizontally from the top of a
roof; child 2 throws a snowball straight down. Once in flight, is
the acceleration of snowball 2 greater than, less than, or equal to
the acceleration of snowball 1?

58. • CE The penguin to the left in the accompanying photo is about
to land on an ice floe. Just before it lands, is its speed greater
than, less than, or equal to its speed when it left the water?

v
!
= (1.12 m/s)xN + (8.85 m/s)yN .

1.80 m>s2

2.00 * 105 m

59. • CE Predict/Explain A person flips a coin into the air and it
lands on the ground a few feet away. (a) If the person were to
perform an identical coin flip on an elevator rising with
constant speed, would the coin’s time of flight be greater than,
less than, or equal to its time of flight when the person was at
rest? (b) Choose the best explanation from among the fol-
lowing:

I. The floor of the elevator is moving upward, and hence it
catches up with the coin in mid flight.

52. •• IP Volcanoes on Io Astronomers have discovered several
volcanoes on Io, a moon of Jupiter. One of them, named Loki,

This penguin behaves much like a projectile from the time 
it leaves the water until it touches down on the ice. 

(Problem 58)
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69. •• Referring to Problem 68, a second seed shoots out from the pod
with the same speed but with a direction of motion 30.0° below the
horizontal. (a) How long does it take for the second seed to land?
(b) What horizontal distance does it cover during its flight?

70. •• A shot-putter throws the shot with an initial speed of 12.2 m/s
from a height of 5.15 ft above the ground. What is the range of
the shot if the launch angle is (a) 20.0°, (b) 30.0°, or (c) 40.0°?

71. •• Pararescue Jumpers Coast Guard pararescue jumpers are
trained to leap from helicopters into the sea to save boaters in
distress. The rescuers like to step off their helicopter when it is
“ten and ten”, which means that it is ten feet above the water
and moving forward horizontally at ten knots. What are (a) the
speed and (b) the direction of motion as a pararescuer enters
the water following a ten and ten jump?

72. •• A ball thrown straight upward returns to its original level in
2.75 s. A second ball is thrown at an angle of 40.0° above the
horizontal. What is the initial speed of the second ball if it also
returns to its original level in 2.75 s?

73. •• IP To decide who pays for lunch, a passenger on a moving
train tosses a coin straight upward with an initial speed of 
4.38 m/s and catches it again when it returns to its initial level.
From the point of view of the passenger, then, the coin’s initial
velocity is . The train’s velocity relative to the
ground is . (a) What is the minimum speed of the
coin relative to the ground during its flight? At what point in
the coin’s flight does this minimum speed occur? Explain. 
(b) Find the initial speed and direction of the coin as seen by an
observer on the ground. (c) Use the expression for derived
in Example 4–7 to calculate the maximum height of the coin, as
seen by an observer on the ground. (d) Calculate the maximum
height of the coin from the point of view of the passenger, who
sees only one-dimensional motion.

74. •• IP A cannon is placed at the bottom of a cliff 61.5 m high. If
the cannon is fired straight upward, the cannonball just reaches
the top of the cliff. (a) What is the initial speed of the cannonball?
(b) Suppose a second cannon is placed at the top of the cliff. This
cannon is fired horizontally, giving its cannonballs the same ini-
tial speed found in part (a). Show that the range of this cannon
is the same as the maximum range of the cannon at the base of
the cliff. (Assume the ground at the base of the cliff is level,
though the result is valid even if the ground is not level.)

75. •• Shot Put Record The men’s world record for the shot put,
23.12 m, was set by Randy Barnes of the United States on May
20, 1990. If the shot was launched from 6.00 ft above the ground
at an initial angle of 42.0°, what was its initial speed?

76. •• Referring to Conceptual Checkpoint 4–3, suppose the two
snowballs are thrown from an elevation of 15 m with an initial
speed of 12 m/s. What is the speed of each ball when it is 5.0 m
above the ground?

77. •• IP A hockey puck just clears the 2.00-m-high boards on its
way out of the rink. The base of the boards is 20.2 m from the
point where the puck is launched. (a) Given the launch angle of
the puck, , outline a strategy that you can use to find its initial
speed, . (b) Use your strategy to find for .

78. •• Referring to Active Example 4–2, suppose the ball is punted
from an initial height of 0.750 m. What is the initial speed of the
ball in this case?

79. •• A “Lob”Pass Versus a “Bullet” A quarterback can throw a
receiver a high, lazy “lob” pass or a low, quick “bullet” pass.
These passes are indicated by curves 1 and 2, respectively, in
Figure 4–22. (a) The lob pass is thrown with an initial speed of
21.5 m/s and its time of flight is 3.97 s. What is its launch angle?

u = 15.0°v0v0

u

ymax

(12.1 m/s)xN
(4.38 m/s)yN

II. The coin has the same upward speed as the elevator when
it is tossed, and the elevator’s speed doesn’t change during
the coin’s flight.

III. The coin starts off with a greater upward speed because of
the elevator, and hence it reaches a greater height.

60. • CE Predict/Explain Suppose the elevator in the previous
problem is rising with a constant upward acceleration, rather
than constant velocity. (a) In this case, would the coin’s time of
flight be greater than, less than, or equal to its time of flight
when the person was at rest? (b) Choose the best explanation
from among the following:

I. The coin has the same acceleration once it is tossed,
whether the elevator accelerates or not.

II. The elevator’s upward speed increases during the coin’s
flight, and hence it catches up with the coin at a greater
height than before.

III. The coin’s downward acceleration is less than before because
the elevator’s upward acceleration partially cancels it.

61. • A train moving with constant velocity travels 170 m north in
12 s and an undetermined distance to the west. The speed of the
train is 32 m/s. (a) Find the direction of the train’s motion rela-
tive to north. (b) How far west has the train traveled in this
time?

62. • Referring to Example 4–2, find (a) the x component and (b)
the y component of the hummingbird’s velocity at the time

. (c) What is the bird’s direction of travel at this time,
relative to the positive x axis?

63. • A racket ball is struck in such a way that it leaves the racket
with a speed of 4.87 m/s in the horizontal direction. When the
ball hits the court, it is a horizontal distance of 1.95 m from the
racket. Find the height of the racket ball when it left the racket.

64. •• IP A hot-air balloon rises from the ground with a velocity of
. A champagne bottle is opened to celebrate takeoff,

expelling the cork horizontally with a velocity of 
relative to the balloon. When opened, the bottle is 6.00 m above
the ground. (a) What is the initial velocity of the cork, as seen by
an observer on the ground? Give your answer in terms of the x
and y unit vectors. (b) What are the speed of the cork and its ini-
tial direction of motion as seen by the same observer? (c) Deter-
mine the maximum height above the ground attained by the
cork. (d) How long does the cork remain in the air?

65. •• Repeat the previous problem, this time assuming that the
balloon is descending with a speed of 2.00 m/s.

66. •• IP A soccer ball is kicked from the ground with an initial
speed of 14.0 m/s. After 0.275 s its speed is 12.9 m/s. (a) Give
a strategy that will allow you to calculate the ball’s initial di-
rection of motion. (b) Use your strategy to find the initial
direction.

67. •• A particle leaves the origin with an initial velocity
, and moves with constant acceleration 

. (a) How far does the parti-
cle move in the x direction before turning around? (b) What is
the particle’s velocity at this time? (c) Plot the particle’s position
at , 1.00 s, 1.50 s, and 2.00 s. Use these results to
sketch position versus time for the particle.

68. •• When the dried-up seed pod of a scotch broom plant bursts
open, it shoots out a seed with an initial velocity of 2.62 m/s at
an angle of 60.5° above the horizontal. If the seed pod is 
0.455 m above the ground, (a) how long does it take for the
seed to land? (b) What horizontal distance does it cover during
its flight?

t = 0.500 s

a
!
= (-1.90 m/s2)xN + (3.20 m/s2)yN

v
!
= (2.40 m/s)xN

(5.00 m>s)xN
(2.00 m/s)yN

t = 0.72 s
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▲ FIGURE 4–22 Problem 79

(b) The bullet pass is thrown with a launch angle of 25.0°. What
is the initial speed of this pass? (c) What is the time of flight of
the bullet pass?

80. ••• Collision Course A useful rule of thumb in boating is that
if the heading from your boat to a second boat remains con-
stant, the two boats are on a collision course. Consider the two
boats shown in Figure 4–23. At time , boat 1 is at the loca-
tion (X, 0) and moving in the positive y direction; boat 2 is at (0, Y)
and moving in the positive x direction. The speed of boat 1 is .
(a) What speed must boat 2 have if the boats are to collide at the
point (X, Y)? (b) Assuming boat 2 has the speed found in part
(a), calculate the displacement from boat 1 to boat 2,

. (c) Use your results from part (b) to show that
, independent of time. This shows that 

maintains a constant direction until the collision,
as specified in the rule of thumb.
¢r

!
= r

!
2 - r

!
1

(¢r)y/(¢r)x = -Y/X
¢r

!
= r

!
2 - r

!
1

v1

t = 0

side? (b) In this case, what is the climber’s direction of motion
on landing?

85. ••• Prove that the landing speed of a projectile is independent
of launch angle for a given height of launch.

86. •• Maximum Height and Range Prove that the maximum
height of a projectile, H, divided by the range of the projectile,
R, satisfies the relation .

87. •• Landing on a Different Level A projectile fired from 
with initial speed and initial angle lands on a different
level, . Show that the time of flight of the projectile is

where is the time of flight for and H is the maximum
height of the projectile.

88. ••• A mountain climber jumps a crevasse by leaping horizon-
tally with speed . If the climber’s direction of motion on land-
ing is below the horizontal, what is the height difference h be-
tween the two sides of the crevasse?

89. •••IP Referring to Problem 73, suppose the initial velocity of
the coin tossed by the passenger is 

. The train’s velocity relative to the ground is still

. (a) What is the minimum speed of the coin relative
to the ground during its flight? At what point in the coin’s flight
does this minimum speed occur? Explain. (b) Find the initial
speed and direction of the coin as seen by an observer on the
ground. (c) Use the expression for derived in Example 4–7
to calculate the maximum height of the coin, as seen by an ob-
server on the ground. (d) Repeat part (c) from the point of view
of the passenger. Verify that both observers calculate the same
maximum height.

90. ••• Projectiles: Coming or Going? Most projectiles continu-
ally move farther from the origin during their flight, but this is
not the case if the launch angle is greater than .
For example, the projectile shown in Figure 4–24 has a launch
angle of 75.0° and an initial speed of 10.1 m/s. During the portion
of its motion shown in red, it is moving closer to the origin—
it is moving away on the blue portions. Calculate the distance
from the origin to the projectile (a) at the start of the red por-
tion, (b) at the end of the red portion, and (c) just before the
projectile lands. Notice that the distance for part (b) is the
smallest of the three.

cos-1 A13 B = 70.5°

ymax

(12.1 m/s)xN
(4.38 m/s)yN

v
!
= (-2.25 m/s)xN +

u

v0

h = 0T0

T = 1
2T0a1 + A1 -

h

H
b

y = h
uv0

y = 0

H/R = 1
4 tan u

▲ FIGURE 4–23 Problem 80
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81. ••• As discussed in Example 4–7, the archerfish hunts by dis-
lodging an unsuspecting insect from its resting place with a
stream of water expelled from the fish’s mouth. Suppose the
archerfish squirts water with a speed of 2.15 m/s at an angle
of 52.0° above the horizontal, and aims for a beetle on a leaf
3.00 cm above the water’s surface. (a) At what horizontal dis-
tance from the beetle should the archerfish fire if it is to hit its
target in the least time? (b) How much time will the beetle
have to react?

82. ••• (a) What is the greatest horizontal distance from which the
archerfish can hit the beetle, assuming the same squirt speed
and direction as in Problem 81? (b) How much time does the
beetle have to react in this case?

83. ••• Find the launch angle for which the range and maximum
height of a projectile are the same.

84. ••• A mountain climber jumps a crevasse of width W by
leaping horizontally with speed . (a) If the height difference
between the two sides of the crevasse is h, what is the mini-
mum value of for the climber to land safely on the otherv0

v0

▲ FIGURE 4–24 Problem 90
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Landing Rovers on Mars
When the twin Mars exploration rovers, Spirit and Opportunity,
set down on the surface of the red planet in January of 2004,
their method of landing was both unique and elaborate. After
initial braking with retro rockets, the rovers began their long
descent through the thin Martian atmosphere on a parachute
until they reached an altitude of about 16.7 m. At that point a
system of four air bags with six lobes each were inflated, addi-
tional retro rocket blasts brought the craft to a virtual standstill,
and the rovers detached from their parachutes. After a period
of free fall to the surface, with an acceleration of , the
rovers bounced about a dozen times before coming to rest.
They then deflated their air bags, righted themselves, and
began to explore the surface.

Figure 4–25 shows a rover with its surrounding cushion of air
bags making its first contact with the Martian surface. After a
typical first bounce the upward velocity of a rover would be
9.92 m/s at an angle of 75.0° above the horizontal. Assume this
is the case for the problems that follow.

3.72 m>s2

91. • What is the maximum height of a rover between its first and
second bounces?

A. 2.58 m B. 4.68 m

C. 12.3 m D. 148 m

92. • How much time elapses between the first and second
bounces?

A. 1.38 s B. 2.58 s

C. 5.15 s D. 5.33 s

▲ FIGURE 4–25 Problems 91, 92, 93, and 94
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93. • How far does a rover travel in the horizontal direction be-
tween its first and second bounces?

A. 13.2 m B. 49.4 m

C. 51.1 m D. 98.7 m

94. •• What is the average velocity of a rover between its first and
second bounces?

A. 0

B. 2.57 m/s in the x direction

C. 9.92 m/s at 75.0° above the x axis

D. 9.58 m/s in the y direction

I N T E R A C T I V E  P R O B L E M S

95. •• Referring to Example 4–5 (a) At what launch angle greater
than 54.0° does the golf ball just barely miss the top of the tree
in front of the green? Assume the ball has an initial speed of
13.5 m/s, and that the tree is 3.00 m high and is a horizontal dis-
tance of 14.0 m from the launch point. (b) Where does the ball
land in the case described in part (a)? (c) At what launch angle
less than 54.0° does the golf ball just barely miss the top of the
tree in front of the green? (d) Where does the ball land in the
case described in part (c)?

96. •• Referring to Example 4–5 Suppose that the golf ball is
launched with a speed of 15.0 m/s at an angle of 57.5° above the
horizontal, and that it lands on a green 3.50 m above the level
where it was struck. (a) What horizontal distance does the ball
cover during its flight? (b) What increase in initial speed would
be needed to increase the horizontal distance in part (a) by 7.50 m?
Assume everything else remains the same.

97. •• Referring to Example 4–6 Suppose the ball is dropped at
the horizontal distance of 5.50 m, but from a new height of
5.00 m. The dolphin jumps with the same speed of 12.0 m/s.
(a) What launch angle must the dolphin have if it is to catch
the ball? (b) At what height does the dolphin catch the ball in
this case? (c) What is the minimum initial speed the dolphin
must have to catch the ball before it hits the water?

98. •• IP Referring to Example 4–6 Suppose we change the dol-
phin’s launch angle to 45.0°, but everything else remains the
same. Thus, the horizontal distance to the ball is 5.50 m, the
drop height is 4.10 m, and the dolphin’s launch speed is 12.0 m/s.
(a) What is the vertical distance between the dolphin and the
ball when the dolphin reaches the horizontal position of the
ball? We refer to this as the “miss distance.” (b) If the dol-
phin’s launch speed is reduced, will the miss distance in-
crease, decrease, or stay the same? (c) Find the miss distance
for a launch speed of 10.0 m/s.
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5

We are all subject to
Newton’s laws of
motion, whether we

know it or not. You can’t move your
body, drive a car, or toss a ball in a way
that violates his rules. In short, our very
existence is constrained and regulated by
these three fundamental statements
concerning matter and its motion.

Yet Newton’s laws are surprisingly
simple, especially when you consider that
they apply equally well to galaxies,
planets, comets, and yes, even apples
falling from trees. In this chapter we
present the three laws of Newton, and
we show how they can be applied to
everyday situations. Using them, we go
beyond a simple description of motion,
as in kinematics, to a study of the causes
of motion, referred to as dynamics.

With the advent of Newtonian
dynamics in 1687, science finally became
quantitative and predictive. Edmund

Halley, inspired by Newton’s laws, used
them to predict the return of the comet
that today bears his name. In all of
recorded history, no one had ever before
predicted the appearance of a comet; in
fact, they were generally regarded as
supernatural apparitions. Though Halley
didn’t live to see his comet’s return, his
correct prediction illustrated the power
of Newton’s laws in a most dramatic and
memorable way.

Today, we still recognize Newton’s laws
as the indispensable foundation for all of
physics. It would be nice to say that these
laws are the complete story when it comes
to analyzing motion, but that is not the
case. In the early part of the last century,
physicists discovered that Newton’s laws
must be modified for objects moving at
speeds near that of light and for objects
comparable in size to atoms. In the world
of everyday experience, however,
Newton’s laws still reign supreme.
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Newton’s Laws of Motion

Bobsledders know
that a force is required
to accelerate an object. In fact, the greater
the force, the greater the acceleration. What
they may not realize, however, is that forces always
come in pairs that are equal in magnitude but opposite in
direction. For example, when these athletes push on the bobsled, 
it pushes back on them with equal strength. All of these observations 
follow directly from Newton’s three laws of motion, the subject of this chapter.
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TABLE 5–1 Typical Masses in
Kilograms (kg)

Earth
Space shuttle 2,000,000
Blue whale (largest 
animal on Earth) 178,000

Whale shark 
(largest fish) 18,000

Elephant (largest 
land animal) 5400

Automobile 1200
Human (adult) 70
Gallon of milk 3.6
Quart of milk 0.9
Baseball 0.145
Honeybee 0.00015
Bacterium 10-15

5.97 * 1024

5–1 Force and Mass
A force, simply put, is a push or a pull. When you push on a box to slide it across
the floor, for example, or pull on the handle of a wagon to give a child a ride, you
are exerting a force. Similarly, when you hold this book in your hand, you exert an
upward force to oppose the downward pull of gravity. If you set the book on a
table, the table exerts the same upward force you exerted a moment before. Forces
are truly all around us.

Now, when you push or pull on something, there are two quantities that char-
acterize the force you are exerting. The first is the strength or magnitude of your
force; the second is the direction in which you are pushing or pulling. Because a
force is determined by both a magnitude and a direction, it is a vector. We con-
sider the vector properties of forces in more detail in Section 5–5.

In general, an object has several forces acting on it at any given time. In the
previous example, a book at rest on a table experiences a downward force due to
gravity and an upward force due to the table. If you push the book across the
table, it also experiences a horizontal force due to your push. The total, or net,
force exerted on the book is the vector sum of the individual forces acting on it.

After the net force acting on an object, the second key ingredient in Newton’s
laws is the mass of an object, which is a measure of how difficult it is to change its
velocity—to start an object moving if it is at rest, to bring it to rest if it is moving,
or to change its direction of motion. For example, if you throw a baseball or catch
one thrown to you, the force required is not too great. But if you want to start a car
moving or to stop one that is coming at you, the force involved is much greater. It
follows that the mass of a car is greater than the mass of a baseball.

In agreement with everyday usage, mass can also be thought of as a measure
of the quantity of matter in an object. Thus, it is clear that the mass of an automo-
bile, for example, is much greater than the mass of a baseball, but much less than
the mass of Earth. We measure mass in units of kilograms (kg), where one kilo-
gram is defined as the mass of a standard cylinder of platinum-iridium, as dis-
cussed in Chapter 1. A list of typical masses is given in Table 5–1.

These properties of force and mass are developed in detail in the next three
sections.

5–2 Newton’s First Law of Motion
If you’ve ever stood in line at an airport, pushing your bags forward a few feet at
a time, you know that as soon as you stop pushing the bags, they stop moving.
Observations such as this often lead to the erroneous conclusion that a force is re-
quired for an object to move. In fact, according to Newton’s first law of motion, a
force is required only to change an object’s motion.

What is missing in this analysis is the force of friction between the bags and
the floor. When you stop pushing the bags, it is not true that they stop moving be-
cause they no longer have a force acting on them. On the contrary, there is a rather
large frictional force between the bags and the floor. It is this force that causes the
bags to come to rest.

To see how motion is affected by reducing friction, imagine that you slide on
dirt into second base during a baseball game. You won’t slide very far before stop-
ping. On the other hand, if you slide with the same initial speed on a sheet of ice—
where the friction is much less than on a ball field—you slide considerably farther.
If you could reduce the friction more, you would slide even farther.

In the classroom, air tracks allow us to observe motion with practically no fric-
tion. An example of such a device is shown in Figure 5–1. Note that air is blown
through small holes in the track, creating a cushion of air for a small “cart” to ride
on. A cart placed at rest on a level track remains at rest—unless you push on it to
get it started.

Once set in motion, the cart glides along with constant velocity—constant
speed in a straight line—until it hits a bumper at the end of the track. The bumper
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The air track provides a cushion
of air through a grid of holes ...

... and this allows the
cart to glide with
almost no friction.

End viewSide view

Bumpers Cart

Air track 
Cart

Pressurized
air

FIGURE 5–1 The air track
An air track provides a cushion of air 
on which a cart can ride with virtually 
no friction.

▲

▲ An air track provides a nearly friction-
less environment for experiments involving
linear motion.

exerts a force on the cart, causing it to change its direction of motion. After bounc-
ing off the bumper, the cart again moves with constant velocity. If the track could
be extended to infinite length, and could be made perfectly frictionless, the cart
would simply keep moving with constant velocity forever.

Newton’s first law of motion summarizes these observations in the following
statements:

Newton’s First Law
An object at rest remains at rest as long as no net force acts on it.

An object moving with constant velocity continues to move with the same
speed and in the same direction as long as no net force acts on it.

Notice the recurring phrase, “no net force,” in these statements. It is important to
realize that this can mean one of two things: (i) no force acts on the object; or 
(ii) forces act on the object, but they sum to zero. We shall see examples of the sec-
ond possibility later in this chapter and again in the next chapter.

Newton’s first law, which was first enunciated by Galileo, is also known as the
law of inertia, which is appropriate since the literal meaning of the word inertia is
“laziness.” Speaking loosely, we can say that matter is “lazy,” in that it won’t
change its motion unless forced to do so. For example, if an object is at rest, it
won’t start moving on its own. If an object is already moving with constant ve-
locity, it won’t alter its speed or direction, unless a force causes the change. We call
this property of matter its inertia.

According to Newton’s first law, being at rest and moving with constant ve-
locity are actually equivalent. To see this, imagine two observers: one is in a train
moving with constant velocity; the second is standing next to the tracks, at rest on
the ground. The observer in the train places an ice cube on a dinner tray. From that
person’s point of view—that is, in that person’s frame of reference—the ice cube
has no net force acting on it and it is at rest on the tray. It obeys the first law. In the
frame of reference of the observer on the ground, the ice cube has no net force on
it and it moves with constant velocity. This also agrees with the first law. Thus
Newton’s first law holds for both observers: They both see an ice cube with zero
net force moving with constant velocity—it’s just that for the first observer the
constant velocity happens to be zero.

In this example, we say that each observer is in an inertial frame of reference;
that is, a frame of reference in which the law of inertia holds. In general, if one
frame is an inertial frame of reference, then any frame of reference that moves
with constant velocity relative to that frame is also an inertial frame of reference.
Thus, if an object moves with constant velocity in one inertial frame, it is always
possible to find another inertial frame in which the object is at rest. It is in this
sense that there really isn’t any difference between being at rest and moving with
constant velocity. It’s all relative—relative to the frame of reference the object is
viewed from.

This gives us a more compact statement of the first law:

If the net force on an object is zero, its velocity is constant.
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As an example of a frame of reference that is not inertial, imagine that the train
carrying the first observer suddenly comes to a halt. From the point of view of that
observer, there is still no net force on the ice cube. However, because of the rapid
braking, the ice cube flies off the tray. In fact, the ice cube simply continues to
move forward with the same constant velocity while the train comes to rest. To the
observer on the train, it appears that the ice cube has accelerated forward, even
though no force acts on it, which is in violation of Newton’s first law.

In general, any frame that accelerates relative to an inertial frame is a nonin-
ertial frame. The surface of the Earth accelerates slightly, due to its rotational and
orbital motions, but since the acceleration is so small, it may be considered an ex-
cellent approximation to an inertial frame of reference. Unless specifically stated
otherwise, we will always consider the surface of the Earth to be an inertial frame.

5–3 Newton’s Second Law of Motion
To hold an object in your hand, you have to exert an upward force to oppose, or
“balance,” the force of gravity. If you suddenly remove your hand so that the only
force acting on the object is gravity, it accelerates downward, as discussed in
Chapter 2. This is one example of Newton’s second law, which states, basically,
that unbalanced forces cause accelerations.

To explore this in more detail, consider a spring scale of the type used to
weigh fish. The scale gives a reading of the force, F, exerted by the spring con-
tained within it. If we hang one weight from the scale, it gives a reading that we
will call If two identical weights are attached, the scale reads as indi-
cated in Figure 5–2. With these two forces marked on the scale, we are ready to per-
form some force experiments.

First, attach the scale to an air-track cart, as in Figure 5–3. If we pull with a force
we observe that the cart accelerates at the rate If we now pull with a force

the acceleration we observe is Thus, the acceleration is pro-
portional to the force—the greater the force, the greater the acceleration.

a2 = 2a1.F2 = 2F1,
a1.F1,

F2 = 2F1,F1.

F1

F2 = 2 F1

0 0 0

▲ FIGURE 5–2 Calibrating a “force meter”
With two weights, the force exerted by
the scale is twice the force exerted when
only a single weight is attached.

0

0

a1

2 a1

2 F1

F1

With constant mass, ... ... doubling the force ... ... doubles the acceleration.

FIGURE 5–3 Acceleration is
proportional to force
The spring calibrated in Figure 5–2 is
used to accelerate a mass on a “friction-
less” air track. If the force is doubled, the
acceleration is also doubled.

▲

Second, instead of doubling the force, let’s double the mass of the cart by con-
necting two together, as in Figure 5–4. In this case, if we pull with a force we find
an acceleration equal to Thus, the acceleration is inversely proportional to
mass—the greater the mass, the less the acceleration.

Combining these results, we find that in this simple case—with just one force
in just one direction—the acceleration is given by

Rearranging the equation yields the form of Newton’s law that is perhaps best
known, F = ma.

a =
F
m

1
2a1.

F1
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F1 a1

F1
a1

1–
2

0

0

Doubling the mass ... ... with constant force, ... ... halves the acceleration.

FIGURE 5–4 Acceleration is inversely
proportional to mass
If the mass of an object is doubled but
the force remains the same, the accelera-
tion is halved.

▲

In general, there may be several forces acting on a given mass, and these
forces may be in different directions. Thus, we replace F with the sum of the force
vectors acting on a mass:

The notation, which uses the Greek letter sigma is read “sum ” Recall-
ing that acceleration is also a vector, we arrive at the formal statement of 
Newton’s second law of motion:

Newton’s Second Law

5–1

In words:

If an object of mass m is acted on by a net force it will experience an accel-
eration that is equal to the net force divided by the mass. Because the net
force is a vector, the acceleration is also a vector. In fact, the direction of an ob-
ject’s acceleration is the same as the direction of the net force acting on it.

One should note that Newton’s laws cannot be derived from anything more basic.
In fact, this is what we mean by a law of nature. The validity of Newton’s laws,
and all other laws of nature, comes directly from comparisons with experiment.

In terms of vector components, an equivalent statement of the second law is:

5–2

Note that Newton’s second law holds independently for each coordinate direc-
tion. This component form of the second law is particularly useful when solving
problems.

Let’s pause for a moment to consider an important special case of the second
law. Suppose an object has zero net force acting upon it. This may be because no
forces act on it at all, or because it is acted on by forces whose vector sum is zero.
In either case, we can state this mathematically as:

Now, according to Newton’s second law, we conclude that the acceleration of this
object must be zero:

But if an object’s acceleration is zero, its velocity must be constant. In other words,
if the net force on an object is zero, the object moves with constant velocity. This is

a
!
= a

F
!

m
=

0
m

= 0

aF
!
= 0

aFx = max  aFy = may  aFz = maz

a
! ©F

!
,

a
!
= a

F
!

m
  or  aF

!
= ma

!

F
!
.1©2,©F

!
,

sum of force vectors = F
!
net = aF

!

▲ Even though the tugboat exerts a large
force on this ship, the ship’s acceleration is
small. This is because the acceleration of an
object is inversely proportional to its mass,
and the mass of the ship is enormous. The
force exerted on the unfortunate hockey
player is much smaller. The resulting accel-
eration is much larger, however, due to the
relatively small mass of the player com-
pared to that of the ship.
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Newton’s first law. Thus we see that Newton’s first and second laws are consis-
tent with one another.

Forces are measured in units called, appropriately enough, the newton (N). In
particular, one newton is defined as the force required to give one kilogram of
mass an acceleration of Thus,

5–3

In everyday terms, a newton is roughly a quarter of a pound. Note that a force in
newtons divided by a mass in kilograms has the units of acceleration:

5–4

Other common units for force are presented in Table 5–2. Typical forces and their
magnitudes in newtons are listed in Table 5–3.

1 N
1 kg

=
1 kg # m/s2

1 kg
= 1 m/s2

1 N = 11 kg211 m/s22 = 1 kg # m/s2

1 m/s2.

TABLE 5–2 Units of Mass, Acceleration, and Force

System of units Mass Acceleration Force

SI kilogram (kg) newton (N)
cgs gram (g) dyne (dyn)
British slug pound (lb)

(Note: )1 N = 105 dyne = 0.225 lb.

ft/s2
cm/s2
m/s2

TABLE 5–3 Typical Forces in Newtons (N)

Main engines of space shuttle 31,000,000
Pulling force of locomotive 250,000
Thrust of jet engine 75,000
Force to accelerate a car 7000
Weight of adult human 700
Weight of an apple 1
Weight of a rose 0.1
Weight of an ant 0.001

C O N C E P T U A L  C H E C K P O I N T  5 – 1 T I G H T E N I N G  A  H A M M E R

The metal head of a hammer is loose. To tighten it, you drop the hammer down onto a
table. Should you (a) drop the hammer with the handle end down, (b) drop the hammer
with the head end down, or (c) do you get the same result either way?

R E A S O N I N G  A N D  D I S C U S S I O N

It might seem that since the same hammer hits against the same table in either case, there
shouldn’t be a difference. Actually, there is.

In case (a) the handle of the hammer comes to rest when it hits the table, but the head
continues downward until a force acts on it to bring it to rest. The force that acts on it is
supplied by the handle, which results in the head being wedged more tightly onto the
handle. Since the metal head is heavy, the force wedging it onto the handle is great. In
case (b) the head of the hammer comes to rest, but the handle continues to move until a
force brings it to rest. The handle is lighter than the head, however; thus the force acting
on it is less, resulting in less tightening.

A N S W E R

(a) Drop the hammer with the handle end down.

E X E R C I S E  5 – 1
The net force acting on a Jaguar XK8 has a magnitude of 6800 N. If the car’s accelera-
tion is what is its mass?

S O L U T I O N

Since the net force and the acceleration are always in the same direction, we can replace
the vectors in Equation 5–1 with magnitudes. Solving for the mass yields

The following Conceptual Checkpoint presents a situation in which both
Newton’s first and second laws play an important role.

m = a
F

a
=

6800 N
3.8 m/s2 = 1800 kg

©F = ma

3.8 m/s2,

A similar effect occurs when you walk—with each step you take you tamp
your head down onto your spine, as when dropping a hammer handle end down.
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(a) Sketch the forces

Physical picture

Free-body diagram

(b) Isolate the object of interest (c) Choose a convenient coordinate system (d) Resolve forces into their components

F

W

N

N

FW

N

FW

N

F
W

x

y

Fx = F cos θ
Wx = 0

Wy = –W

Nx = 0

Ny = N

Fy =

–F sin  θ
θ

x

y

O

▲ FIGURE 5–5 Constructing and using a free-body diagram
The four basic steps in constructing and using a free-body diagram are illustrated in these sketches. (a) Sketch all of the external forces
acting on an object of interest. Note that only forces acting on the object are shown; none of the forces exerted by the object are included.
(b) Isolate the object and treat it as a point particle. (c) Choose a convenient coordinate system. This will often mean aligning a coordi-
nate axis to coincide with the direction of one or more forces in the system. (d) Resolve each of the forces into components using the
coordinate system of part (c).

This causes you to grow shorter during the day! Try it. Measure your height first
thing in the morning, then again before going to bed. If you’re like many people,
you’ll find that you have shrunk by an inch or so during the day.

Free-Body Diagrams
When solving problems involving forces and Newton’s laws, it is essential to begin
by making a sketch that indicates each and every external force acting on a given ob-
ject. This type of sketch is referred to as a free-body diagram. If we are concerned
only with nonrotational motion, as is the case in this and the next chapter, we treat
the object of interest as a point particle and apply each of the forces acting on the
object to that point, as Figure 5–5 shows. Once the forces are drawn, we choose a co-
ordinate system and resolve each force into components. At this point, Newton’s
second law can be applied to each coordinate direction separately.

R E A L - W O R L D  P H Y S I C S :  B I O

How walking affects your height

P R O B L E M - S O L V I N G  N O T E

External Forces

External forces acting on an object fall into
two main classes: (i) Forces at the point of
contact with another object, and (ii) forces
exerted by an external agent, such as gravity.
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F

W

(a) Physical picture (b) Free-body
diagram

x

y

▲ FIGURE 5–6 A book supported in a
person’s hand
(a) The physical situation. (b) The free-
body diagram for the book, showing the
two external forces acting on it. We also
indicate our choice for a coordinate 
system.

For example, in Figure 5–5 there are three external forces acting on the chair.
One is the force exerted by the person. In addition, gravity exerts a downward
force, which is simply the weight of the chair. Finally, the floor exerts an up-
ward force on the chair that prevents it from falling toward the center of the Earth.
This force is referred to as the normal force, because it is perpendicular (that is,
normal) to the surface of the floor. We will consider the weight and the normal
force in greater detail in Sections 5–6 and 5–7, respectively.

We can summarize the steps involved in constructing a free-body diagram 
as follows:

Sketch the Forces
Identify and sketch all of the external forces acting on an object. Sketch-
ing the forces roughly to scale will help in estimating the direction and
magnitude of the net force.

Isolate the Object of Interest
Replace the object with a point particle of the same mass. Apply each of
the forces acting on the object to that point.

Choose a Convenient Coordinate System
Any coordinate system will work; however, if the object moves in a
known direction, it is often convenient to pick that direction for one of the
coordinate axes. Otherwise, it is reasonable to choose a coordinate system
that aligns with one or more of the forces acting on the object.

Resolve the Forces into Components
Determine the components of each force in the free-body diagram.

Apply Newton’s Second Law to Each Coordinate Direction
Analyze motion in each coordinate direction using the component form
of Newton’s second law, as given in Equation 5–2.

These basic steps are illustrated in Figure 5–5. Note that the figures in this chapter
use the labels “Physical picture” to indicate a sketch of the physical situation and
“Free-body diagram” to indicate a free-body sketch.

We start by applying this procedure to a simple one-dimensional example,
saving two-dimensional systems for Section 5–5. Suppose, for instance, that you
hold a book at rest in your hand. What is the magnitude of the upward force that
your hand must exert to keep the book at rest? From everyday experience, we ex-
pect that the upward force must be equal in magnitude to the weight of the book,
but let’s see how this result can be obtained directly from Newton’s second law.

We begin with a sketch of the physical situation, as shown in Figure 5–6 (a). The
corresponding free-body diagram, in Figure 5–6 (b), shows just the book, repre-
sented by a point, and the forces acting on it. Note that two forces act on the book:
(i) the downward force of gravity, and (ii) the upward force, exerted by your
hand. Only the forces acting on the book are included in the free-body diagram.

Now that the free-body diagram is drawn, we indicate a coordinate system so
that the forces can be resolved into components. In this case all the forces are ver-
tical. Thus we draw a y axis in the vertical direction in Figure 5–6 (b). Note that we
have chosen upward to be the positive direction. With this choice, the y compo-
nents of the forces are and It follows that

Using the y component of the second law we find

Since the book remains at rest, its acceleration is zero. Thus, which gives

as expected.
Next, we consider a situation where the net force acting on an object is

nonzero, meaning that its acceleration is also nonzero.

F - W = may = 0  or  F = W

ay = 0,

F - W = may

(©Fy = may)
aFy = F - W

Wy = -W.Fy = F
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P R O B L E M - S O L V I N G  N O T E

Picture the Problem

In problems involving Newton’s laws, it is
important to begin with a free-body dia-
gram and to identify all the external forces
that act on an object. Once these forces are
identified and resolved into their compo-
nents, Newton’s laws can be applied in a
straightforward way. It is crucial, how-
ever, that only external forces acting on
the object be included, and that none of
the external forces be omitted.
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E X A M P L E  5 – 1 T H R E E  F O R C E S

Moe, Larry, and Curly push on a 752-kg boat that floats next to a dock. They each exert an 80.5-N force parallel to the dock. (a)
What is the acceleration of the boat if they all push in the same direction? Give both direction and magnitude. (b) What are the
magnitude and direction of the boat’s acceleration if Larry and Curly push in the opposite direction to Moe’s push?

P I C T U R E  T H E  P R O B L E M

In our sketch we indicate the three relevant forces acting on the boat: and Note that we have chosen the positive x di-
rection to the right, in the direction that all three push for part (a). Therefore, all three forces have a positive x component in part
(a). In part (b), however, the forces exerted by Larry and Curly have negative x components.

S T R A T E G Y

Since we know the mass of the boat and the forces acting on it, we can find the acceleration using Even though this
problem is one-dimensional, it is important to think of it in terms of vector components. For example, when we sum the x com-
ponents of the forces, we are careful to use the appropriate signs—just as we always do when dealing with vectors.

S O L U T I O N

Part (a)

1. Write out the x component for each of the three forces: 

2. Sum the x components of force and set equal to 

3. Divide by the mass to find Since is positive, the 
acceleration is to the right, as expected:

Part (b)

4. Again, start by writing the x component for each force: 

5. Sum the x components of force and set equal to 

6. Solve for In this case is negative, indicating an 
acceleration to the left:

I N S I G H T

The results of this Example are in agreement with everyday experience: three forces in the same direction cause more accelera-
tion than three forces in opposing directions. The method of using vector components and being careful about their signs gives
the expected results in a simple situation like this, and also works in more complicated situations where everyday experience
may be of little help.

P R A C T I C E  P R O B L E M

If Moe, Larry, and Curly all push to the right with 85.0-N forces, and the boat accelerates at what is its mass?
[Answer: 481 kg]
Some related homework problems: Problem 2, Problem 4

0.530 m/s2,

ax = a
Fx
m

=
-80.5 N
752 kg

= -0.107 m/s2axax.

 = 80.5 N - 80.5 N - 80.5 N = -80.5 N = max

aFx = FM,x + FL,x + FC,xmax:

FL,x = FC,x = -80.5 N

FM,x = 80.5 N

ax = a
Fx
m

=
241.5 N
752 kg

= 0.321 m/s2axax.

aFx = FM,x + FL,x + FC,x = 241.5 N = maxmax:

FM,x = FL,x = FC,x = 80.5 N

©Fx = max.

F
!
C.F

!
M, F

!
L,

FM

FL

Free-body diagrams

Physical pictures
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FM
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M
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In some problems, we are given information that allows us to calculate an ob-
ject’s acceleration using the kinematic equations of Chapters 2 and 4. Once the ac-
celeration is known, the second law can be used to find the net force that caused
the acceleration.

For example, suppose that an astronaut uses a jet pack to push a satellite to-
ward the space shuttle. These jet packs, which are known to NASA as Manned
Maneuvering Units, or MMUs, are basically small “one-person rockets” strapped
to the back of an astronaut’s spacesuit. An MMU contains pressurized nitrogen
gas that can be released through varying combinations of 24 nozzles spaced
around the unit, producing a force of about 10 pounds. The MMUs contain
enough propellant for a six-hour EVA (extra-vehicular activity).

We show the physical situation in Figure 5–7 (a), where an astronaut pushes on
a 655-kg satellite. The corresponding free-body diagram for the satellite is shown
in Figure 5–7 (b). Note that we have chosen the x axis to point in the direction of the
push. Now, if the satellite starts at rest and moves 0.675 m after 5.00 seconds of
pushing, what is the force, F, exerted on it by the astronaut?

▲ A technician inspects the landing gear
of an airliner in a test of Foamcrete, a solid
paving material that is just soft enough to
collapse under the weight of an airliner. 
A plane that has run off the runway will
slow safely to a stop as its wheels plow
through the crumbling Foamcrete.

FIGURE 5–7 An astronaut using a jet
pack to push a satellite
(a) The physical situation. (b) The free-
body diagram for the satellite. Only one
force acts on the satellite, and it is in the
positive x direction.

▲

(b) Free-body diagram(a) Physical picture

x

y

F

Clearly, we would like to use Newton’s second law (basically, ) to find
the force, but we know only the mass of the satellite, not its acceleration. We can
find the acceleration, however, by assuming constant acceleration (after all, the
force is constant) and using the kinematic equation relating position to time:

We can choose the initial position of the satellite to be
and we are given that it starts at rest, thus Hence,

Since we know the distance covered in a given time, we can solve for the acceler-
ation:

Now that kinematics has provided the acceleration, we use the x component
of the second law to find the force. Only one force acts on the satellite, and its x
component is F; thus,

This force corresponds to a push of about 8 lb.
Another problem in which we use kinematics to find the acceleration is pre-

sented in the following Active Example.

F = max = 1655 kg210.0540 m/s22 = 35.4 N

aFx = F = max

ax =
2x
t2

=
210.675 m2
15.00 s22 = 0.0540 m/s2

x =
1
2
axt

2

v0x = 0.x0 = 0,
x = x0 + v0xt + 1

2axt
2.

F
!
= ma

!

A C T I V E  E X A M P L E  5 – 1 T H E  F O R C E  E X E R T E D  B Y  F O A M C R E T E

Foamcrete is a substance designed to stop an airplane that has run off the end of a runway, without
causing injury to passengers. It is solid enough to support a car, but crumbles under the weight of a
large airplane. By crumbling, it slows the plane to a safe stop. For example, suppose a 747 jetliner with

a mass of and an initial speed of 26.8 m/s is slowed to a stop in 122 m. What is the magnitude of the average
retarding force exerted by the Foamcrete on the plane?F

!1.75 * 105 kg

R E A L - W O R L D  P H Y S I C S

Astronaut jet packs

R E A L - W O R L D
P H Y S I C S
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Note again the care we take with the signs. The plane’s acceleration is negative,
hence the net force acting on it, is in the negative x direction. On the other hand,
the magnitude of the force, F, is positive, as is always the case for magnitudes.

Finally, we end this section with an estimation problem.

F
!
,

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Use to find the plane’s average acceleration: 

2. Sum the forces in the x direction. Let F represent the magnitude of the force 

3. Set the sum of forces equal to mass times acceleration:

4. Solve for the magnitude of the average force, F: 

I N S I G H T

Though the plane moves in the positive direction, its acceleration, and the net force exerted on it, are in the negative direction.
As a result, the plane’s speed decreases with time.

Y O U R  T U R N

Find the plane’s stopping distance if the magnitude of the average force exerted by the Foamcrete is doubled.

(Answers to Your Turn problems are given in the back of the book.)

F = -max = 5.15 * 105 N

-F = max

aFx = -FF
!
:

ax = -2.94 m/s2v2 = v0  

2 + 2ax ¢x

v = 26.8 m/s

Runway Foamcrete

v = 0

122 m

x

F

E X A M P L E  5 – 2 P I T C H  M A N :  E S T I M A T E  T H E  F O R C E  O N  T H E  B A L L

A pitcher throws a 0.15-kg baseball, accelerating it from rest to a speed of about 90 mi/h. Estimate the force exerted by the pitcher
on the ball.

P I C T U R E  T H E  P R O B L E M

We choose the x axis to point in the direction of the pitch. Also
indicated in the sketch is the distance over which the pitcher
accelerates the ball, Since we are interested only in the
pitch, and not in the subsequent motion of the ball, we ignore
the effects of gravity.

S T R A T E G Y

We know the mass, so we can find the force with if
we can estimate the acceleration. To find the acceleration, we
start with the fact that and . In addition,
we can see from the sketch that a reasonable estimate for 
is about 2.0 m. Combining these results with the kinematic
equation yields the acceleration, which we
then use to find the force.

S O L U T I O N

1. Starting with the fact that perform a rough 
back-of-the-envelope conversion of 90 mi/h to meters per second: 

2. Solve for the acceleration, Use the 
estimates and 

3. Find the corresponding force with 

I N S I G H T

On the one hand, this is a sizable force, especially when you consider that the ball itself weighs only about 1/3 lb. Thus, the
pitcher exerts a force on the ball that is about 30 times greater than the force exerted by Earth’s gravity. It follows that ignoring
gravity during the pitch is a reasonable approximation.

Fx = max L 10.15 kg21400 m/s22 = 60 N L 10 lbFx = max:
v L 40 m/s:¢x L 2.0 m

ax =
v2 - v0 

2

2 ¢x
L
140 m/s22 - 0

212.0 m2 = 400 m/s2ax.v2 = v0 

2 + 2ax ¢x

v L 90 mi/h =
1.5 mi
min

L
2400 m

60 s
= 40 m/s60 mi/h = 1 mi/min,

v2 = v0 

2 + 2ax¢x

¢x
v L 90 mi>hv0 = 0

Fx = max

¢x.

x
0

x�

CONTINUED ON NEXT PAGE
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Another way to find the acceleration is to estimate the amount of time it takes to
make the pitch. However, since the pitch is delivered so quickly—about 1/10 s—
estimating the time would be more difficult than estimating the distance 

5–4 Newton’s Third Law of Motion
Nature never produces just one force at a time; forces always come in pairs. In addi-
tion, the forces in a pair, which always act on different objects, are equal in magni-
tude and opposite in direction. This is Newton’s third law of motion.

Newton’s Third Law
For every force that acts on an object, there is a reaction force acting on a dif-
ferent object that is equal in magnitude and opposite in direction.

In a somewhat more specific form:

If object 1 exerts a force on object 2, then object 2 exerts a force on object 1.

This law, more commonly known by its abbreviated form, “for every action there
is an equal and opposite reaction,” completes Newton’s laws of motion.

Figure 5–8 illustrates some action-reaction pairs. Notice that there is always a
reaction force, whether the action force pushes on something hard to move, like a
refrigerator, or on something that moves with no friction, like an air-track cart. In
some cases, the reaction force tends to be overlooked, as when the Earth exerts a
downward gravitational force on the space shuttle, and the shuttle exerts an equal
and opposite upward gravitational force on the Earth. Still, the reaction force al-
ways exists.

Another important aspect of the third law is that the action-reaction forces al-
ways act on different objects. This, again, is illustrated in Figure 5–8. Thus, in
drawing a free-body diagram, only one of the action-reaction pair of forces would
be drawn for a given object. The other force in the pair would appear in the free-
body diagram of a different object. As a result, the two forces do not cancel.

-F
!

F
!

¢x.

CONTINUED FROM PREVIOUS PAGE

On the other hand, you might say that 10 lb isn’t that much force for a person to exert. That’s true, but this force is being exerted
with an average speed of about 20 m/s, which means that the pitcher is actually generating about 1.5 horsepower—a sizable
power output for a person. We will cover power in detail in Chapter 7, and relate it to human capabilities.

P R A C T I C E  P R O B L E M

What is the approximate speed of the pitch if the force exerted by the pitcher is [Answer: 30 m/s or 60 mi/h]

Some related homework problems: Problem 5, Problem 8

1
2160 N2 = 30 N?

Object on person

Earth on shuttle

Shuttle on Earth

Person on object

Object on personPerson on object

Car on ground Ground on car

–F

–F
–FF

F

F

–FF

FIGURE 5–8 Examples of action-
reaction force pairs
▲
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For example, consider a car accelerating from rest, as in Figure 5–8. As the
car’s engine turns the wheels, the tires exert a force on the road. By the third law,
the road exerts an equal and opposite force on the car’s tires. It is this second
force—which acts on the car through its tires—that propels the car forward. The
force exerted by the tires on the road does not accelerate the car.

Since the action-reaction forces act on different objects, they generally produce
different accelerations. This is the case in the next Example.

E X A M P L E  5 – 3 T I P P Y  C A N O E

Two groups of canoeists meet in the middle of a lake. After a brief visit, a person in canoe 1 pushes on canoe 2 with a force of
46 N to separate the canoes. If the mass of canoe 1 and its occupants is and the mass of canoe 2 and its occupants is

(a) find the acceleration the push gives to each canoe. (b) What is the separation of the canoes after 1.2 s of pushing?

P I C T U R E  T H E  P R O B L E M

We have chosen the positive x direction to point from canoe 1 to canoe 2. With this choice, the force exerted on canoe 2 is
By Newton’s third law, the force exerted on the person in canoe 1, and thus on canoe 1 itself if the person is 

firmly seated, is For convenience, we have placed the origin at the point where the canoes touch.

S T R A T E G Y

From Newton’s third law, the force on canoe 1 is equal in magnitude to the force on canoe 2—the masses of the canoes are dif-
ferent, however, and therefore their accelerations are different as well. (a) We can find the acceleration of each canoe by solving

for (b) The kinematic equation relating position to time, can then be used to find the dis-
placement of each canoe.

S O L U T I O N

Part (a)

1. Use Newton’s second law to find the acceleration of canoe 2:

2. Do the same calculation for canoe 1. Note that the 
acceleration of canoe 1 is in the negative direction: 

Part (b)

3. Use to find the position of canoe 2 at 
From the problem statement, we know the canoes start at the origin

and at rest :

4. Repeat the calculation for canoe 1:

5. Subtract the two positions to find the separation of the canoes:

I N S I G H T

The same magnitude of force acts on each canoe; hence the lighter one has the greater acceleration and the greater displacement.
If the heavier canoe were replaced by a large ship of great mass, both vessels would still accelerate as a result of the push. How-
ever, the acceleration of the large ship would be so small as to be practically imperceptible. In this case, it would appear as if only
the canoe moved, whereas, in fact, both vessels move.

P R A C T I C E  P R O B L E M

If the mass of canoe 2 is increased, does its acceleration increase, decrease, or stay the same? Check your answer by calculating
the acceleration for the case where canoe 2 is replaced by a 25,000-kg ship. [Answer: The acceleration will decrease. In this
case, ]

Some related homework problems: Problem 18, Problem 19

a = 0.0018 m/s2.

x2 - x1 = 0.13 m - 1-0.22 m2 = 0.35 m

x1 = 1
2a1,xt

2 = 1
21-0.31 m/s2211.2 s22 = -0.22 m

(v0x = 0)(x0 = 0)

x2 = 1
2a2,xt

2 = 1
210.18 m/s2211.2 s22 = 0.13 mt = 1.2 s.x = x0 + v0xt + 1

2axt
2

a1,x = a
F1,x

m1
=

-46 N
150 kg

= -0.31 m/s2

a2,x = a
F2,x

m2
=

46 N
250 kg

= 0.18 m/s2

x = x0 + v0xt + 1
2axt

2,ax.©Fx = max

F
!
1 = 1-46 N2xN .

F
!
2 = 1+46 N2xN .

m2 = 250 kg,
m1 = 150 kg,

x

1
1 2

2

0

Free-body diagramsPhysical picture

F2F1

F1

N1

W1

N2

W2
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When objects are touching one another, the action-reaction forces are often re-
ferred to as contact forces. The behavior of contact forces is explored in the fol-
lowing Conceptual Checkpoint.

C O N C E P T U A L  C H E C K P O I N T  5 – 2 C O N T A C T  F O R C E S

Two boxes—one large and heavy, the other small and light—rest on a smooth, level floor.
You push with a force on either the small box or the large box. Is the contact force be-
tween the two boxes (a) the same in either case, (b) larger when you push on the large
box, or (c) larger when you push on the small box?

R E A S O N I N G  A N D  D I S C U S S I O N

Since the same force pushes on the boxes, you might think the force of contact is the same
in both cases. It is not. What we can conclude, however, is that the boxes have the same
acceleration in either case—the same net force acts on the same total mass, so the same ac-
celeration, a, results.

To find the contact force between the boxes, we focus our attention on each box individ-
ually, and note that Newton’s second law must be satisfied for each of the boxes, just as it is for
the entire two-box system. For example, when the external force is applied to the small box,
the only force acting on the large box (mass ) is the contact force; hence, the contact
force must have a magnitude equal to . In the second case, the only force acting on
the small box (mass ) is the contact force, and so the magnitude of the contact force is

. Since is greater than , it follows that the force of contact is larger when you
push on the small box, , than when you push on the large box, .

To summarize, the contact force is larger when it must push the larger box.

A N S W E R

(c) The contact force is larger when you push on the small box.

m2am1a
m2m1m2a

m2

m1a
m1

F
!

1
2

1
2

F

F

In the next Example, we calculate a numerical value for the contact force in a
system similar to that described in Conceptual Checkpoint 5–2. We also show ex-
plicitly that Newton’s third law is required for a full analysis of this system.

E X A M P L E  5 – 4 W H E N  P U S H  C O M E S  T O  S H O V E

A box of mass rests on a smooth, horizontal floor next to a box of mass If you push on box 1 with a hor-
izontal force of magnitude (a) what is the acceleration of the boxes? (b) What is the force of contact between the boxes?

P I C T U R E  T H E  P R O B L E M

We choose the x axis to be horizontal and pointing to the right.
Thus, The contact forces are labeled as follows: 
is the contact force exerted on box 1; is the contact force ex-
erted on box 2. By Newton’s third law, the contact forces have the
same magnitude, f, but point in opposite directions. With our co-
ordinate system, we have and 

S T R A T E G Y

a. Since the two boxes are in contact, they have the same accel-
eration. We find this acceleration with Newton’s second law;
that is, we divide the net horizontal force by the total mass of
the two boxes.

b. Now let’s consider the system consisting solely of box 2. The
mass in this case is 5.00 kg, and the only horizontal force acting
on the system is . Thus, we can find f, the magnitude of ,
by requiring that box 2 have the acceleration found in part (a).

S O L U T I O N

Part (a)

1. Find the net horizontal force acting on the two boxes. 
Note that and are equal in magnitude but opposite 
in direction. Hence, they sum to zero; :F

!
1 + F

!
2 = 0

F
!
2F

!
1

a
both

boxes

Fx = F = 20.0 N

F
!
2F

!
2

F
!
2 = fxN .F

!
1 = -fxN

F
!
2

F
!
1F

!
= 120.0 N2xN .

F = 20.0 N,
m2 = 5.00 kg.m1 = 10.0 kg

1

10.0 kg

5.00 kg

2

F2

F1 F2

F = 20.0 N

F

Box 1 Box 2

F1

Physical picture

Free-body diagrams

0
x
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2. Divide the net force by the total mass, , to find 
the acceleration of the boxes:

Part (b)

3. Find the net horizontal force acting on box 2, and set it 
equal to the mass of box 2 times its acceleration: 

4. Determine the magnitude of the contact force, f, by 
substituting numerical values for and 

I N S I G H T

Since the net horizontal force acting on box 1 is it follows that its acceleration is
Thus, as expected,

box 1 and box 2 have precisely the same acceleration.

If box 2 were not present, the 20.0-N force acting on box 1 would give it an acceleration of As it is, the contact force
between the boxes slows box 1 so that its acceleration is less than and accelerates box 2 so that its acceleration is
greater than zero. The precise value of the contact force is simply the value that gives both boxes the same acceleration.

P R A C T I C E  P R O B L E M

Suppose the relative positions of the boxes are reversed, so
that F pushes on the small box, as shown here. Calculate the
contact force for this case, and show that the force is greater
than 6.67 N, as expected from Conceptual Checkpoint 5–2.
[Answer: The contact force in this case is 13.3 N, double its
previous value. This follows because the box being pushed
has twice the mass of the box that was pushed originally.]

Some related homework problems: Problem 20, Problem 21

2.00 m/s2,
2.00 m/s2.

113.3 N2/110.0 kg2 = 1.33 m/s2.
F - f = 20.0 N - 6.67 N = 13.3 N,

ax:m2

f = m2ax = 15.00 kg211.33 m/s22 = 6.67 N

a
box2
Fx = F2,x = f = m2ax

ax = aFx
m1 + m2

=
20.0 N

(10.0 kg + 5.00 kg)
=

20.0 N
15.0 kg

= 1.33 m>s2m1 + m2

1

0

2

F1 F2

x

10.0 kg
5.00 kgF = 20.0 N

5–5 The Vector Nature of Forces: Forces 
in Two Dimensions

When we presented Newton’s second law in Section 5–3, we said that an object’s
acceleration is equal to the net force acting on it divided by its mass. For example,
if only a single force acts on an object, its acceleration is found to be in the same di-
rection as the force. If more than one force acts on an object, experiments show that
its acceleration is in the direction of the vector sum of the forces. Thus forces are in-
deed vectors, and they exhibit all the vector properties discussed in Chapter 3.

The mass of an object, on the other hand, is simply a positive number with no
associated direction. It represents the amount of matter in an object.

As an example of the vector nature of forces, suppose two astronauts are using
jet packs to push a 940-kg satellite toward the space shuttle, as shown in Figure 5–9.
With the coordinate system indicated in the figure, astronaut 1 pushes in the
positive x direction and astronaut 2 pushes in a direction 52° above the x axis.

F1

F1

F2
52°

52°

52°52°
F2

(b) Free-body diagram

Components of F2

(a) Physical picture

x

y

F2,y = F2 sin

F2,x = F2 cos

F2

F

Total force

� = 32°

FIGURE 5–9 Two astronauts pushing a
satellite with forces that differ in magnitude
and direction
The acceleration of the satellite can be
found by calculating and separately,
then combining these components to find
a and .u

ayax

▲
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If astronaut 1 pushes with a force of magnitude and astronaut 2 pushes
with a force of magnitude what are the magnitude and direction of the
satellite’s acceleration?

The easiest way to solve a problem like this is to treat each coordinate direc-
tion independently of the other, just as we did many times when studying two-
dimensional kinematics in Chapter 4. Thus, we first resolve each force into its x
and y components. Referring to Figure 5–9, we see that for the x direction

For the y direction

Next, we find the acceleration in the x direction by using the x component of
Newton’s second law:

Applied to this system, we have

Solving for the acceleration yields

Similarly, in the y direction we start with

This gives

As a result, the y component of acceleration is:

Thus, the satellite accelerates in both the x and the y directions. Its total accel-
eration has a magnitude of

From Figure 5–9 we expect the total acceleration to be in a direction above the
x axis but at an angle less than 52°. Straightforward calculation yields

This is the same direction as the total force in Figure 5–9, as expected.
The following Example and Active Example give further practice with resolv-

ing force vectors and using Newton’s second law in component form.

u = tan-1a ay
ax
b = tan-1a0.034 m/s2

0.054 m/s2 b = tan-110.632 = 32°

a = 4ax 

2 + ay 

2 = 410.054 m/s222 + 10.034 m/s222 = 0.064 m/s2

ay = a
Fy

m
=

32 N
940 kg

= 0.034 m/s2

 = may
 aFy = F1,y + F2,y = 0 + F2 sin 52° = 141 N2 sin 52° = 32 N

aFy = may

ax = a
Fx
m

=
51 N

940 kg
= 0.054 m/s2

 = max
 aFx = F1,x + F2,x = F1 + F2 cos 52° = 26 N + 141 N2 cos 52° = 51 N

aFx = max

 F2,y = F2 sin 52°

 F1,y = 0

 F2,x = F2 cos 52°

 F1,x = F1

F2 = 41 N,
F1 = 26 N

P R O B L E M - S O L V I N G  N O T E

Component-by-Component 
Application of Newton’s Laws

Newton’s laws can be applied to each co-
ordinate direction independently of the
others. Therefore, when drawing a free-
body diagram, be sure to include a coordi-
nate system. Once the forces are resolved
into their x and y components, the second
law can be solved for each component
separately. Working in a component-by-
component fashion is the systematic way
of using Newton’s laws.

E X A M P L E  5 – 5 J A C K  A N D  J I L L

Jack and Jill lift upward on a 1.30-kg pail of water, with Jack exerting a force of magnitude 7.0 N and Jill exerting a force of
magnitude 11 N. Jill’s force is exerted at an angle of 28° with the vertical, as shown below. (a) At what angle with respect to the
vertical should Jack exert his force if the pail is to accelerate straight upward? (b) Determine the acceleration of the pail of water,
given that its weight, , has a magnitude of 12.8 N. (The simple connection between an object’s mass and weight is presented
in the next section.)

W
!

u

F
!
2F

!
1
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P I C T U R E  T H E  P R O B L E M

Our physical picture and free-body diagram show the pail and the three forces acting on it, as well as the angles relative to the
vertical. In the panels at the right, we show the x and y components of the forces and Notice, in particular, that

and Similarly, and 

S T R A T E G Y

a. We want the acceleration to be purely vertical. This means that the x component of acceleration must be zero, For 
to be zero it is necessary that the sum of forces in the x direction be zero, Since the x component of depends on
the angle the equation can be used to find 

b. Once the appropriate angle is found, we can use it to find the y component of . Add this result to the y component of . 
We’re not done yet, though—to find the total y component of the force, , we must also add the weight of the pail, which
points in the negative y direction. Finally, divide the total force by the mass of the pail, m 1.30 kg, to obtain its accelera-
tion, .

S O L U T I O N

Part (a)

1. Begin by writing out the x component of each force. 
Note that has no x component and that the x
component of points in the negative x direction: 

2. Sum the x components of force and set equal to zero. or
Note that is the only unknown in this equation: 

3. Solve for and then for :

Part (b)

4. First, determine the y component of each force. 
Note that points in the negative y direction and 
that the y components of both and are positive: 

5. Sum the y components of force and divide by the 
mass m to obtain the acceleration of the pail of water:

I N S I G H T

Note that only the y components of and contribute to the vertical acceleration of the pail. The x components of the applied
forces influence only the horizontal motion—they have no effect at all on the vertical acceleration of the pail. In this case the hor-
izontal components of the applied forces cancel, and hence the pail moves straight upward with an acceleration of 1.2 m/s2.
Finally, in the next section we shall see that the weight W of an object of mass m is W � mg. In this case, W � (1.3 kg)(9.81 m/s2) �
12.8 N.

P R A C T I C E  P R O B L E M

At what angle must Jack exert his force for the pail to accelerate straight upward if (a) is at an angle of 19° with the vertical or
(b) is at an angle of 35° with the vertical? [Answer: (a) 31°, (b) 64°]

Some related homework problems: Problem 28, Problem 33

F
!
2

F
!
2

F
!
2F

!
1

F
!
2F

!
1

W
!

u = sin-1(0.74) = 48°

sin u =
F2 sin 28°
F1

=
(11 N) sin 28°

7.0 N
= 0.74usin u

F1 sin u = F2 sin 28°u
aFx = -F1 sin u + F2 sin 28° + 0 = max = 0

F
!
1

W
! F1,x = -F1 sin u F2,x = F2 sin 28° Wx = 0

ay = (gFy)/m
=

gF
!
y

F
!
2F

!
1

u.©Fx = 0u,
F
!
1©Fx = 0.

axax = 0.

F2,y = F2 cos 28°.F2,x = F2 sin 28°F1,y = F1 cos u.F1,x = -F1 sin u
F
!
2.F

!
1

F2 F2

F1
F1

W

Free-body
diagram

Components of F1Physical picture Components of F2

x

y 28°
�

28°

� F1,y = F1 cos �
F2,y = F2 cos 28°

F1,x = –F1 sin � F2,x = F2 sin 28°

W

F2

F1

28°

�

ay = (aFy)/m = (1.6 N)/(1.3 kg) = 1.2 m/s2
= 4.7 N + 9.7 N - 12.8 N = 1.6 N

aFy = F1 cos u + F2 cos 28° - W
Wy = -W = -12.8 N

F2,y = F2 cos 28° = (11 N) cos 28° = 9.7 N

F1,y = F1 cos u = (7.0 N) cos 48° = 4.7 N
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5–6 Weight
When you step onto a scale to weigh yourself, the scale gives a measurement of the
pull of Earth’s gravity. This is your weight, W. Similarly, the weight of any object
on the Earth’s surface is simply the gravitational force exerted on it by the Earth.

• The weight, W, of an object on the Earth’s surface is the gravitational force
exerted on it by the Earth.

As we know from everyday experience, the greater the mass of an object, the
greater its weight. For example, if you put a brick on a scale and weigh it, you
might get a reading of 9.0 N. If you put a second, identical brick on the scale—
which doubles the mass—you will find a weight of Clearly,
there must be a simple connection between weight, W, and mass, m.

To see exactly what this connection is, consider taking one of the bricks just
mentioned and letting it drop in free fall. As indicated in Figure 5–10, the only force
acting on the brick is its weight, W, which is downward. If we choose upward to
be the positive direction, we have

In addition, we know from Chapter 2 that the brick moves downward with an ac-
celeration of regardless of its mass. Thus,

Using these results in Newton’s second law

we find

Therefore, the weight of an object of mass m is 

Definition: Weight, W

5–5

SI unit: newton, N

W = mg

W = mg:

-W = -mg

aFy = may

ay = -g

g = 9.81 m/s2

aFy = -W

219.0 N2 = 18 N.

A C T I V E  E X A M P L E  5 – 2 F I N D  T H E  S P E E D  O F  T H E  S L E D

A 4.60-kg sled is pulled across a smooth ice surface. The force acting on the sled is of magnitude 6.20 N and points in a direc-
tion 35.0° above the horizontal. If the sled starts at rest, how fast is it going after being pulled for 1.15 s?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Find the x component of 

2. Apply Newton’s second law 
to the x direction:

3. Solve for the x component 
of acceleration: 

4. Use to find the 
speed of the sled: 

I N S I G H T

Note that the y component of has no effect on the acceleration
of the sled.

Y O U R  T U R N

Suppose the angle of the force above the horizontal is decreased, and the sled is again pulled from rest for 1.15 s. (a) Is the final
speed of the sled greater than, less than, or the same as before? Explain. (b) Find the final speed of the sled for the case 

(Answers to Your Turn problems are given in the back of the book.)

u = 25.0°.

F
!

vx = 1.27 m/svx = v0x + axt

ax = 1.10 m/s2

aFx = Fx = max

Fx = 5.08 NF
!
:

�
F

x

y

m

a

W

x

y

Physical
picture

Free-body
diagram

W

▲ FIGURE 5–10 Weight and mass
A brick of mass m has only one force act-
ing on it in free fall—its weight, . The
resulting acceleration has a magnitude

; hence .W = mga = g

W:
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The fire alarm goes off, and a 97-kg fireman slides 3.0 m down a pole to the ground floor. Suppose the fireman starts from rest, slides
with constant acceleration, and reaches the ground floor in 1.2 s. What was the upward force exerted by the pole on the fireman?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the fireman sliding down the pole and the two
forces acting on him: the upward force exerted by the pole, and
the downward force of gravity, We choose the positive y
direction to be upward, therefore and In
addition, we choose to be at ground level.

S T R A T E G Y

The basic idea in approaching this problem is to apply Newton’s
second law to the y direction: . The acceleration is not
given directly, but we can find it using the kinematic equation

. Substituting the result for into Newton’s 
second law, along with , allows us to solve for 
the unknown force, .

S O L U T I O N

1. Solve for using the fact that v0y = 0:ay,y = y0 + v0yt + 1
2ayt

2

F
! Wy = -W = -mg

ayy = y0 + v0yt + 1
2ayt

2

gFy = may

y = 0
W

!
= 1-mg2yN .F

!
= FyN

W
!
.

F
!
,

F
!
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Note that there is a clear distinction between weight and mass. Weight is a
gravitational force, measured in newtons; mass is a measure of the inertia of an
object, and it is given in kilograms. For example, if you were to travel to the Moon,
your mass would not change—you would have the same amount of matter in
you, regardless of your location. On the other hand, the gravitational force on the
Moon’s surface is less than the gravitational force on the Earth’s surface. As a re-
sult, you would weigh less on the Moon than on the Earth, even though your
mass is the same.

To be specific, on Earth an 81.0-kg person has a weight given by

In contrast, the same person on the Moon, where the acceleration of gravity is
weighs only

This is roughly one-sixth the weight on Earth. If, sometime in the future, there is
a Lunar Olympics, the Moon’s low gravity would be a boon for pole-vaulters,
gymnasts, and others.

Finally, since weight is a force—which is a vector quantity—it has both a mag-
nitude and a direction. Its magnitude, of course, is mg, and its direction is simply
the direction of gravitational acceleration. Thus, if denotes a vector of magni-
tude g, pointing in the direction of free-fall acceleration, the weight of an object
can be written in vector form as follows:

We use the weight vector and its magnitude, mg, in the next Example.

W
!
= mg

!

g
!

WMoon = mgMoon = 181.0 kg211.62 m/s22 = 131 N

1.62 m/s2,

WEarth = mgEarth = 181.0 kg219.81 m/s22 = 795 N

▲ At the moment this picture was taken,
the acceleration of both climbers was zero
because the net force acting on them was
zero. In particular, the upward forces
exerted on the lower climber by the other
climber and the ropes exactly cancel the
downward force that gravity exerts on her.

y
3.0 m

0

W

Physical picture Free-body diagram

F

W

F

ay =
21y - y02
t2

y = y0 + v0yt + 1
2ayt

2 = y0 + 1
2ayt

2

CONTINUED ON NEXT PAGE
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Apparent Weight
We have all had the experience of riding in an elevator and feeling either heavy or
light, depending on its motion. For example, when an elevator moving down-
ward comes to rest by accelerating upward, we feel heavier. On the other hand,
we feel lighter when an elevator moving upward comes to rest by accelerating
downward. In short, the motion of an elevator can give rise to an apparent weight
that differs from our true weight. Why?

The reason is that our sensation of weight in this case is due to the force ex-
erted on our feet by the floor of the elevator. If this force is greater than our
weight, mg, we feel heavy; if it is less than mg, we feel light.

As an example, imagine you are in an elevator that is moving with an upward
acceleration a, as indicated in Figure 5–11. Two forces act on you: (i) your weight, W,
acting downward; and (ii) the upward normal force exerted on your feet by the
floor of the elevator. Let’s call the second force since it represents your appar-
ent weight—that is, is the force that pushes upward on your feet and gives you
the sensation of your “weight” pushing down on the floor. We can find by ap-
plying Newton’s second law to the vertical direction.

To be specific, the sum of the forces acting on you is

aFy = Wa - W

Wa

Wa

Wa,

CONTINUED FROM PREVIOUS PAGE

2. Substitute and to find the acceleration:

3. Sum the forces in the y direction:

4. Set the sum of the forces equal to mass times acceleration:

5. Solve for F, the y component of the force exerted by the pole. 

I N S I G H T

How is it that the pole exerts a force on the fireman? Well, by wrapping his arms and legs around the pole as he slides, the fire-
man exerts a downward force on the pole. By Newton’s third law, the pole exerts an upward force of equal magnitude on the
fireman. These forces are due to friction, which we shall study in detail in Chapter 6.

P R A C T I C E  P R O B L E M

What is the fireman’s acceleration if the force exerted on him by the pole is 650 N? [Answer: ]

Some related homework problems: Problem 36, Problem 40

ay = -3.1 m/s2

F
!
= (540 N) yN

= (97 kg)(9.81 m>s2 - 4.2 m>s2) = 540 N

F = mg + may = m(g + ay)

F - mg = may

aFy = F - mg

ay =
210 - 3.0 m2
11.2 s22 = -4.2 m/s2t = 1.2 sy = 0, y0 = 3.0 m,

Physical picture 

Free-body diagram

x

y

Wa

Wa

a

W W

FIGURE 5–11 Apparent weight
A person rides in an elevator that is
accelerating upward. Because the acceler-
ation is upward, the net force must also
be upward. As a result, the force exerted
on the person by the floor of the elevator, 

must be greater than the person’s 
weight, This means that the person
feels heavier than normal.

W
!
.

W
!
a,

▲

Use the result for F to write the force vector :F
!
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By Newton’s second law, this sum must equal Since we find

Solving for the apparent weight, yields

5–6

Note that is greater than your weight, mg, and hence you feel heavier. In fact,
your apparent weight is precisely what it would be if you were suddenly “trans-
ported” to a planet where the acceleration of gravity is instead of g.

On the other hand, if the elevator accelerates downward, so that 
your apparent weight is found by simply replacing a with in Equation 5–6:

5–7

In this case you feel lighter than usual.
We explore these results in the next Example, in which we consider weighing

a fish on a scale. The reading on the scale is equal to the upward force it exerts on
an object. Thus, the upward force exerted by the scale is the apparent weight, Wa.

 = mg - ma = m1g - a2
 Wa = W - ma

-a
ay = -a,

g + a

Wa

 = mg + ma = m1g + a2
 Wa = W + ma

Wa,

Wa - W = ma
ay = a,may.

E X A M P L E  5 – 7 H O W  M U C H  D O E S  T H E  S A L M O N  W E I G H ?

As part of an attempt to combine physics and biology in the same class, an instructor asks students to weigh a 5.0-kg salmon by
hanging it from a fish scale attached to the ceiling of an elevator. What is the apparent weight of the salmon, if the elevator
(a) is at rest, (b) moves with an upward acceleration of or (c) moves with a downward acceleration of 

P I C T U R E  T H E  P R O B L E M

The free-body diagram for the salmon shows the weight of the
salmon, and the force exerted by the scale, Note that
upward is the positive direction. Therefore, the y component 
of is and the y component of is 

S T R A T E G Y

We know the weight, , and the acceleration, a. To find
the apparent weight, , we use . (a) Set . 
(b) Set . (c) Set .

S O L U T I O N

Part (a)

1. Sum the y component of the forces and set equal to mass
times the y component of acceleration, with :

2. Solve for , then write the vector :

Part (b)

3. Again, sum the forces and set equal to mass times 
acceleration, this time with :

4. Solve for , then write the vector :

Part (c)

5. Finally, sum the forces and set equal to mass times 
acceleration, with :ay = -a = -3.2 m/s2

aFy = Wa - W = may = -ma

 W
!
a = 162 N2yN
= mg + ma = 49 N + (5.0 kg)(2.5 m>s2) = 62 N

Wa = W + maW
!
aWa

ay = a = 2.5 m/s2
aFy = Wa - W = may = ma

 W
!
a = 149 N2yN

Wa = W = mg = (5.0 kg)(9.81 m>s2) = 49 NW
!

Wa

ay = 0
aFy = Wa - W = may = 0

ay = -3.2 m/s2ay = 2.5 m/s2
ay = 0gFy = mayWa

W = mg

Wa.W
!
a-W = -mgW

!
W

!
a.W

!
,

3.2 m/s2?2.5 m/s2,
W

!
a,

y

W

Free-body
diagram

Wa

Physical picture

CONTINUED ON NEXT PAGE
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Let’s return for a moment to Equation 5–7:

This result indicates that a person feels lighter than normal when riding in an el-
evator with a downward acceleration a. In particular, if the elevator’s down-
ward acceleration is g—that is, if the elevator is in free fall—it follows that

Thus, a person feels “weightless” (zero apparent weight) in
a freely falling elevator!

NASA uses this effect when training astronauts. Trainees are sent aloft in a
KC-135 airplane affectionately known as the “vomit comet” (since many trainees
experience nausea along with the weightlessness). To generate an experience of
weightlessness, the plane flies on a parabolic path—the same path followed by a
projectile in free fall. Each round of weightlessness lasts about half a minute, after
which the plane pulls up to regain altitude and start the cycle again. On a typical
flight, trainees experience about 40 cycles of weightlessness. Many scenes in the
movie Apollo 13 were shot in 30-second takes aboard the vomit comet.

This idea of free-fall weightlessness applies to more than just the vomit comet.
In fact, astronauts in orbit experience weightlessness for the same reason—they
and their craft are actually in free fall. As we shall see in detail in Chapter 12
(Gravity), orbital motion is just a special case of free fall.

Wa = m1g - g2 = 0.

Wa = m1g - a2

6. Solve for , then write the vector :

I N S I G H T

When the salmon is at rest, or moving with constant velocity, its acceleration is zero and the apparent weight is equal to the ac-
tual weight, mg. In part (b) the apparent weight is greater than the actual weight because the scale must exert an upward force
capable not only of supporting the salmon, but of accelerating it upward as well. In part (c) the apparent weight is less than the
actual weight. In this case the net force acting on the salmon is downward, and hence its acceleration is downward.

P R A C T I C E  P R O B L E M

What is the elevator’s acceleration if the scale gives a reading of (a) 55 N or (b) 45 N? [Answer: (a)
(b) ]

Some related homework problems: Problem 38, Problem 39

ay = -0.80 m/s2
ay = 1.2 m/s2,

 W
!
a = 133 N2yN
 = mg - ma = 49 N - 15.0 kg213.2 m/s22 = 33 N

 Wa = W - maW
!
aWa

▲ Astronaut candidates pose for a floating
class picture during weightlessness train-
ing aboard the “vomit comet.”

C O N C E P T U A L  C H E C K P O I N T  5 – 3 E L E V A T O R  R I D E

If you ride in an elevator moving upward with constant speed, is your apparent weight
(a) the same as, (b) greater than, or (c) less than mg?

R E A S O N I N G  A N D  D I S C U S S I O N

If the elevator is moving in a straight line with constant speed, its acceleration is zero.
Now, if the acceleration is zero, the net force must also be zero. Hence, the upward force
exerted by the floor of the elevator, Wa, must equal the downward force of gravity, mg.
As a result, your apparent weight is equal to mg.
Note that this conclusion agrees with Equations 5–6 and 5–7, with a = 0.

A N S W E R

(a) Your apparent weight is the same as mg.

5–7 Normal Forces
As you get ready for lunch, you take a can of soup from the cupboard and place
it on the kitchen counter. The can is now at rest, which means that its accelera-
tion is zero, so the net force acting on it is also zero. Thus, you know that the

CONTINUED FROM PREVIOUS PAGE

R E A L - W O R L D  P H Y S I C S :  B I O

Simulating weightlessness



5 – 7 N O R M A L  F O R C E S 133

W

N

N

W

Physical picture

Free-body diagram

FIGURE 5–12 The normal force is perpendicular to a surface
A can of soup rests on a kitchen counter, which exerts a normal (perpendicu-
lar) force, , to support it. In the special case shown here, the normal force is
equal in magnitude to the weight, , and opposite in direction.W = mg

N
!

▲

downward force of gravity is being opposed by an upward force exerted by the
counter, as shown in Figure 5–12. As we have mentioned before, this force is re-
ferred to as the normal force, The reason the force is called normal is that it is
perpendicular to the surface, and in mathematical terms, normal simply means per-
pendicular.

The origin of the normal force is the interaction between atoms in a solid that
act to maintain its shape. When the can of soup is placed on the countertop, for
example, it causes an imperceptibly small compression of the surface of the
counter. This is similar to compressing a spring, and just like a spring, the coun-
tertop exerts a force to oppose the compression. Therefore, the greater the weight
placed on the countertop, the greater the normal force it exerts to oppose being
compressed.

In the example of the soup can and the countertop, the magnitude of the
normal force is equal to the weight of the can. This is a special case, however.
In general, the normal force may be greater than or less than the weight of an
object.

To see how this can come about, consider pulling a 12.0-kg suitcase across a
smooth floor by exerting a force, at an angle above the horizontal. The weight
of the suitcase is The normal force will have
a magnitude less than this, however, because the force has an upward compo-
nent that supports part of the suitcase’s weight. To be specific, suppose that has
a magnitude of 45.0 N and that What is the normal force exerted by the
floor on the suitcase?

The situation is illustrated in Figure 5–13, where we show the three forces act-
ing on the suitcase: (i) the weight of the suitcase, (ii) the force and (iii) the
normal force, We also indicate a typical coordinate system in the figure, with
the x axis horizontal and the y axis vertical. Now, the key to solving a problem like
this is to realize that since the suitcase does not move in the y direction, its y com-
ponent of acceleration is zero; that is, It follows, from Newton’s second
law, that the sum of the y components of force must also equal zero; that is,

Using this condition, we can solve for the one force that is 

unknown,
To find then, we start by writing out the y component of each force. For the

weight we have for the applied force, the y component
is finally, the y component of the
normal force is Setting the sum of the y components of force equal to zero
yields

Solving for N gives

In vector form,

N
!
= NyyN = 1103 N2yN

N = mg - F sin 20.0° = 118 N - 15.4 N = 103 N

aFy = Wy + Fy + Ny = -mg + F sin 20.0° + N = 0

Ny = N.
Fy = F sin 20.0° = 145.0 N2 sin 20.0° = 15.4 N;

F
!
,Wy = -mg = -118 N;

N
!
,

N
!
.

©Fy = may = 0.

ay = 0.

N
!
.

F
!
,W

!
,

u = 20.0°.
F
!F

!mg = 112.0 kg219.81 m/s22 = 118 N.
uF

!
,

N
!
.

F

�

Physical picture

�

W

N

W

N

F
�Fy = F sin 

�Fx = F cos

Free-body diagram

x

y

FIGURE 5–13 The normal force may differ from the weight
A suitcase is pulled across the floor by an applied force of magnitude F, directed at 
an angle above the horizontal. As a result of the upward component of , the
normal force will have a magnitude less than the weight of the suitcase.N

! F
!

u

▲
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Thus, as mentioned, the normal force has a magnitude less than 
because the y component of supports part of the weight. In the
following Example, however, the applied forces cause the normal force to be
greater than the weight.

F
!
, Fy = F sin 20.0°,

mg = 118 N

E X A M P L E  5 – 8 I C E  B L O C K

A 6.0-kg block of ice is acted on by two forces, and as shown in the diagram. If the magnitudes of the forces are 
and find (a) the acceleration of the ice and (b) the normal force exerted on it by the table.

P I C T U R E  T H E  P R O B L E M

The sketch shows our choice of coordinate system, as well as all the forces acting on the block of ice. Note that has a positive 
x component and a negative y component; has negative x and y components. The weight and the normal force have only y
components, therefore and 

S T R A T E G Y

The basic idea in this problem is to apply Newton’s second law to the x and y directions separately. (a) The block can accelerate
only in the horizontal direction; thus we find the acceleration by solving for (b) There is no motion in the 
y direction, and therefore the acceleration in the y direction is zero. Hence, we can find the normal force by setting

S O L U T I O N

Part (a)

1. Write out the x component of each force:

2. Sum the x components of force:

3. Divide by the mass to obtain the acceleration:

Part (b)

4. Write out the y component of each force:

The only force we don’t know is the normal. 
We represent its magnitude by N: 

5. Sum the y components of force: 

 = -11 N - 5.5 N + N - mg

 aFy = F1,y + F2,y + Ny + Wy

Ny = N    Wy = -W = -mg
F2,y = -F2 sin 30° = -(11 N) sin 30.0° = -5.5 N
F1,y = -F1 sin 60° = -(13 N) sin 60.0° = -11 N

a
!
= 1-0.50 m>s22xN
ax = a

Fx
m

=
-3.0 N
6.0 kg

= -0.50 m/s2

 = 6.5 N - 9.5 N + 0 + 0 = -3.0 N
aFx = F1,x + F2,x + Nx + Wx

Nx = 0 Wx = 0

F2,x = -F2 cos 30.0° = -111 N2 cos 30.0° = -9.5 N

F1,x = F1 cos 60.0° = 113 N2 cos 60.0° = 6.5 N

©Fy = may = 0.
N
!ax.©Fx = max

Ny = N.Wx = 0, Wy = -W = -mg, Nx = 0,
F
!
2

F
!
1

F2 = 11 N,
F1 = 13 NF

!
2,F

!
1

W

N

F1

F2

F2

30.0° 60.0° 60.0°

30.0°

W

N

Physical picture Free-body diagram

30.0°60.0°

F2

F1

F1

x

y

Components of F1
(enlarged)

Components of F2
(enlarged)

F1,y = –F1 sin 60.0°
F2,y = –F2 sin 30.0°

F1,x = F1 cos 60.0°

F2,x = –F2 cos 30.0°

x

y
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To this point, we have considered surfaces that are horizontal, in which case
the normal force is vertical. When a surface is inclined, the normal force is still at
right angles to the surface, even though it is no longer vertical. This is illustrated
in Figure 5–14. (If friction is present, a surface may also exert a force that is parallel
to its surface. This will be considered in detail in Chapter 6.)

When choosing a coordinate system for an inclined surface, it is generally best
to have the x and y axes of the system parallel and perpendicular to the surface,
respectively, as in Figure 5–15. One can imagine the coordinate system to be “bolted
down” to the surface, so that when the surface is tilted the coordinate system tilts
along with it.

With this choice of coordinate system, there is no motion in the y direction,
even on the inclined surface, and the normal force points in the positive y direc-
tion. Thus, the condition that determines the normal force is still 
as before. In addition, if the object slides on the surface, its motion is purely in the
x direction.

Finally, if the surface is inclined by an angle note that the weight—which
is still vertically downward—is at the same angle with respect to the negativeu

u,

©Fy = may = 0,

6. Set this sum equal to 0 since the acceleration in the
y direction is zero, and solve for N:

7. Finally, we write the normal force in vector form: 

I N S I G H T

The block accelerates to the left, even though the force acting to the right, has a greater magnitude than the force acting to the 
left, This is because has the greater x component. Also, note that the normal force is greater in magnitude than the weight,

In general, the normal force exerted by a surface is just as large as is necessary to prevent motion of an object into the surface. If
the required force is larger than the material can provide, the surface will break.

P R A C T I C E  P R O B L E M

At what angle must be applied if the block of ice is to have zero acceleration? [Answer: implies 
Thus, ]

Some related homework problems: Problem 44, Problem 50

u = 54°.F2 cos u.
F1 cos 60.0° =ax = 0F

!
2

mg = 59 N.
F
!
2F

!
2.

F
!
1,

N
!
= 175 N2yN
= 11 N + 5.5 N + (6.0 kg)(9.81 m>s2) = 75 N

N = 11 N + 5.5 N + mg
-11 N - 5.5 N + N - mg = 0

The normal force
is perpendicular
to the surface
that produces it ... ... and hence it may or

may not be vertical.

x

y

N

▲ FIGURE 5–14 An object on an 
inclined surface
The normal force is always at right 
angles to the surface; hence, it is not 
always in the vertical direction.

N
!

y

x
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� �+     = 90°

�′

�′

�+     = 90°�′

W

�W cos

�W sin
FIGURE 5–15 Components of the

weight on an inclined surface
Whenever a surface is tilted by an angle ,
the weight makes the same angle 
with respect to the negative y axis. This is
proven in part (b), where we show that

, and that .
From these results it follows that .
The component of the weight perpendic-
ular to the surface is ; the
component parallel to the surface is

.Wx = W sin u

Wy = -W cos u

u¿ = u
u¿ + f = 90°u + f = 90°

uW
! u

▲
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y axis, as shown in Figure 5–15. As a result, the x and y components of the
weight are

5–8

and

5–9

Let’s quickly check some special cases of these results. First, if the surface is
horizontal, and we find as expected. Second, if the
surface is vertical; therefore, the weight is parallel to the surface, pointing in the
positive x direction. In this case, and 

The next Example shows how to use the weight components to find the accel-
eration of an object on an inclined surface.

Wy = 0.Wx = mg

u = 90°Wx = 0, Wy = -mg,
u = 0

Wy = -W cos u = -mg cos u

Wx = W sin u = mg sin u

E X A M P L E  5 – 9 T O B O G G A N  T O  T H E  B O T T O M

A child of mass m rides on a toboggan down a slick, ice-covered hill inclined at an angle with respect to the horizontal. (a) What
is the acceleration of the child? (b) What is the normal force exerted on the child by the toboggan?

P I C T U R E  T H E  P R O B L E M

We choose the x axis to be parallel to the slope, with the posi-
tive direction pointing downhill. Similarly, we choose the 
y axis to be perpendicular to the slope, pointing up 
and to the right. With these choices, the x component of is
positive, and its y component is negative,

Finally, the x component of the normal force
is zero, and its y component is positive, 

S T R A T E G Y

Note that only two forces act on the child: (i) the weight, ,
and (ii) the normal force, . (a) We find the child’s accelera-
tion by solving for . (b) Because there is no mo-
tion in the y direction, the y component of acceleration is zero.
Therefore, we can find the normal force by setting

.

S O L U T I O N

Part (a)

1. Write out the x components of the forces acting on the child: 

2. Sum the x components of the forces and set equal to 

3. Divide by the mass m to find the acceleration in the x direction:

Part (b)

4. Write out the y components of the forces acting on the child: 

5. Sum the y components of the forces and set the sum equal 
to zero, since :

6. Solve for the magnitude of the normal force, N: 

7. Write the normal force in vector form: 

I N S I G H T

Note that for between 0 and 90° the acceleration of the child is less than the acceleration of gravity. This is because only a
component of the weight is causing the acceleration.

Let’s check some special cases of our general result, First, let In this case, we find zero acceleration;
This makes sense because with the hill is actually level, and we don’t expect an acceleration. Second, let

In this case, the hill is vertical, and the toboggan should drop straight down in free fall. This also agrees with our
general result; ax = g sin 90° = g.
u = 90°.

u = 0ax = g sin 0 = 0.
u = 0.ax = g sin u.

u

N
!
= (mg cos u)yN

N - mg cos u = 0  or  N = mg cos u

= may = 0ay = 0
aFy = Ny + Wy = N - mg cos u

Ny = N  Wy = -W cos u = -mg cos u

ax = a
Fx
m

=
mg sin u

m
= g sin u

aFx = Nx + Wx = mg sin u = maxmax:

Nx = 0  Wx = W sin u = mg sin u

gFy = may = 0

axgFx = max
N
! W

!

Ny = N.Nx = 0,
Wy = -W cos u.

Wx = W sin u,
W

!

u

x

y

�

��

W

Wy = –W cos

�Wx = W sin

N
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P R A C T I C E  P R O B L E M

What is the child’s acceleration if its mass is doubled to 2m? [Answer: The acceleration is still As in free fall, the
acceleration produced by gravity is independent of mass.]

Some related homework problems: Problem 45, Problem 49

ax = g sin u.

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The fact that a constant force produces a constant
acceleration gives special significance to the discussion of
constant acceleration in Chapters 2 and 4.

Forces are a central theme throughout physics. In particular,
we shall see in Chapters 7 and 8 that a force acting on an
object over a distance changes its energy.

All forces are vectors, and therefore the ability to use and
manipulate vectors confidently is essential to a full and
complete understanding of forces. Again, we see the
importance of the vector material presented in Chapter 3.

Another important application of forces is in the study of
collisions. Central to this topic is the concept of momentum,
a physical quantity that is changed when a force acts on an
object over a period of time.

As with two-dimensional kinematics in Chapter 4, where
motion in the x and y directions were seen to be
independent, the x and y components of force are
independent as well. In particular, acceleration in the x
direction depends only on the x component of force, and
acceleration in the y direction depends only on the y
component of force.

In this chapter we introduced the force law for gravity near
the Earth’s surface, F = mg. The more general law of gravity,
valid at any location, is introduced in Chapter 12. Similarly,
the force laws for electricity and magnetism are presented in
Chapters 19 and 22, respectively.

C H A P T E R  S U M M A RY

5 – 1 F O R C E  A N D  M A S S

Force
A push or a pull.

Mass
A measure of the difficulty in accelerating an object. Equivalently, a measure of
the quantity of matter in an object.

5 – 2 N E W T O N ’ S  F I R ST  L AW  O F  M O T I O N

First Law (Law of Inertia)
If the net force on an object is zero, its velocity is constant.

Inertial Frame of Reference
Frame of reference in which the first law holds. All inertial frames of reference
move with constant velocity relative to one another.

5 – 3 N E W T O N ’ S  S E C O N D  L AW  O F  M O T I O N

Second Law
An object of mass m has an acceleration given by the net force divided by
m. That is

5–1

Component Form

5–2

SI Unit: Newton (N)

5–3

Free-Body Diagram
A sketch showing all external forces acting on an object.

1 N = 1 kg # m/s2

ax = aFx/m ay = aFy/m az = aFz/m

a
!
= aF

!
/m

©F
!

a
!
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5 – 4 N E W T O N ’ S  T H I R D  L AW  O F  M O T I O N

Third Law
For every force that acts on an object, there is a reaction force acting on a
different object that is equal in magnitude and opposite in direction.

Contact Forces
Action-reaction pair of forces produced by physical contact of two objects.

5 – 5 T H E  V E C T O R  N AT U R E  O F  F O R C E S :  F O R C E S  I N  
T W O  D I M E N S I O N S

Forces are vectors.

Newton’s second law can be applied to each component of force separately and
independently.

5 – 6 W E I G H T

Gravitational force exerted by the Earth on an object.

On the surface of the Earth the weight, W, of an object of mass m has the magnitude

5–5

Apparent Weight
Force felt from contact with the floor or a scale in an accelerating system. For
example, the sensation of feeling heavier or lighter in an accelerating elevator.

5 – 7 N O R M A L  F O R C E S

Force exerted by a surface that is perpendicular to the surface.

The normal force is equal to the weight of an object only in special cases. In gen-
eral, the normal force is greater than or less than the object’s weight.

W = mg

Physical picture

x

1 2

0

F2F1

F1

F2

x

y

a
W

N

P R O B L E M - S O L V I N G  S U M M A RY

Type of Calculation Relevant Physical Concepts Related Examples

Find the acceleration of an object. Solve Newton’s second law for each component 
of the acceleration; that is, and
ay = ©Fy>m.

ax = ©Fx>m
Examples 5–1, 5–3, 5–4,
5–5, 5–8, 5–9
Active Examples 5–1, 5–2

Solve problems involving action-
reaction forces.

Apply Newton’s third law, being careful to note that the
action-reaction forces act on different objects.

Examples 5–3, 5–4

Find the normal force exerted on 
an object.

Since there is no acceleration in the normal direction, set
the sum of the normal components of force equal to zero.

Examples 5–8, 5–9

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

for a formal dinner. Perhaps you’ve even tried it yourself.
Using Newton’s laws of motion, explain how this stunt
works.

3. As you read this, you are most likely sitting quietly in a chair.
Can you conclude, therefore, that you are at rest? Explain.

1. Driving down the road, you hit the brakes suddenly. As a 
result, your body moves toward the front of the car. Explain,
using Newton’s laws.

2. You’ve probably seen pictures of someone pulling a table-
cloth out from under glasses, plates, and silverware set out

For instructor-assigned homework, go to www.masteringphysics.com
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4. When a dog gets wet, it shakes its body from head to tail to
shed the water. Explain, in terms of Newton’s first law, why this
works.

10. What are the action-reaction forces when a baseball bat hits a
fast ball? What is the effect of each force?

11. In Figure 5–17 Wilbur asks Mr. Ed, the talking horse, to pull a
cart. Mr. Ed replies that he would like to, but the laws of nature
just won’t allow it. According to Newton’s third law, he says, if
he pulls on the wagon it pulls back on him with an equal force.
Clearly, then, the net force is zero and the wagon will stay put.
How should Wilbur answer the clever horse?

A dog uses the principle of inertia to shake water
from its coat. (Conceptual Question 4)

5. A young girl slides down a rope. As she slides faster and faster
she tightens her grip, increasing the force exerted on her by the
rope. What happens when this force is equal in magnitude to
her weight? Explain.

6. A drag-racing car accelerates forward because of the force
exerted on it by the road. Why, then, does it need an engine?
Explain.

7. A block of mass m hangs from a string attached to a ceiling, as
shown in Figure 5–16. An identical string hangs down from the
bottom of the block. Which string breaks if (a) the lower string
is pulled with a slowly increasing force or (b) the lower string is
jerked rapidly downward? Explain.

m

▲ FIGURE 5–16 Conceptual Question 7

8. An astronaut on a space walk discovers that his jet pack no
longer works, leaving him stranded 50 m from the spacecraft. If
the jet pack is removable, explain how the astronaut can still
use it to return to the ship.

9. Two untethered astronauts on a space walk decide to take a
break and play catch with a baseball. Describe what happens as
the game of catch progresses.

▲ FIGURE 5–17 Conceptual Question 11

12. A whole brick has more mass than half a brick, thus the whole
brick is harder to accelerate. Why doesn’t a whole brick fall
more slowly than half a brick? Explain.

13. The force exerted by gravity on a whole brick is greater than the
force exerted by gravity on half a brick. Why, then, doesn’t a
whole brick fall faster than half a brick? Explain.

14. Is it possible for an object at rest to have only a single force act-
ing on it? If your answer is yes, provide an example. If your an-
swer is no, explain why not.

15. Is it possible for an object to be in motion and yet have zero net
force acting on it? Explain.

16. A bird cage, with a parrot inside, hangs from a scale. The parrot
decides to hop to a higher perch. What can you say about the
reading on the scale (a) when the parrot jumps, (b) when the
parrot is in the air, and (c) when the parrot lands on the second
perch? Assume that the scale responds rapidly so that it gives
an accurate reading at all times.

17. Suppose you jump from the cliffs of Acapulco and perform a
perfect swan dive. As you fall, you exert an upward force on the
Earth equal in magnitude to the downward force the Earth ex-
erts on you. Why, then, does it seem that you are the one doing
all the accelerating? Since the forces are the same, why aren’t
the accelerations?

18. A friend tells you that since his car is at rest, there are no forces
acting on it. How would you reply?

19. Since all objects are “weightless” in orbit, how is it possible for
an orbiting astronaut to tell if one object has more mass than an-
other object? Explain.

20. To clean a rug, you can hang it from a clothesline and beat it
with a tennis racket. Use Newton’s laws to explain why beating
the rug should have a cleansing effect.

21. If you step off a high board and drop to the water below, you
plunge into the water without injury. On the other hand, if you
were to drop the same distance onto solid ground, you might
break a leg. Use Newton’s laws to explain the difference.

22. A moving object is acted on by a net force. Give an example of
a situation in which the object moves (a) in the same direction
as the net force, (b) at right angles to the net force, or (c) in the
opposite direction of the net force.

23. Is it possible for an object to be moving in one direction while
the net force acting on it is in another direction? If your answer
is yes, provide an example. If your answer is no, explain why
not.

24. Since a bucket of water is “weightless” in space, would it hurt
to kick the bucket? Explain.
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25. In the movie The Rocketeer, a teenager discovers a jet-powered
backpack in an old barn. The backpack allows him to fly at in-
credible speeds. In one scene, however, he uses the backpack to
rapidly accelerate an old pickup truck that is being chased by
“bad guys.” He does this by bracing his arms against the cab of

the pickup and firing the backpack, giving the truck the accel-
eration of a drag racer. Is the physics of this scene “Good,”
“Bad,” or “Ugly?” Explain.

26. List three common objects that have a weight of approxi-
mately 1 N.

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for
two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used
to indicate the level of difficulty.

S E C T I O N  5 – 3    N E W T O N ’ S  S E C O N D  L AW  
O F  M O T I O N

1. • CE An object of mass m is initially at rest. After a force of mag-
nitude F acts on it for a time T, the object has a speed v. Suppose
the mass of the object is doubled, and the magnitude of the
force acting on it is quadrupled. In terms of T, how long does it
take for the object to accelerate from rest to a speed v now?

2. • On a planet far, far away, an astronaut picks up a rock. The
rock has a mass of 5.00 kg, and on this particular planet its
weight is 40.0 N. If the astronaut exerts an upward force of
46.2 N on the rock, what is its acceleration?

3. • In a grocery store, you push a 12.3-kg shopping cart with a
force of 10.1 N. If the cart starts at rest, how far does it move in
2.50 s?

4. • You are pulling your little sister on her sled across an icy (fric-
tionless) surface. When you exert a constant horizontal force of
120 N, the sled has an acceleration of . If the sled has a
mass of 7.4 kg, what is the mass of your little sister?

5. • A 0.53-kg billiard ball initially at rest is given a speed of 
12 m/s during a time interval of 4.0 ms. What average force
acted on the ball during this time?

6. • A 92-kg water skier floating in a lake is pulled from rest to a
speed of 12 m/s in a distance of 25 m. What is the net force 
exerted on the skier, assuming his acceleration is constant?

7. •• CE Predict/Explain You drop two balls of equal diameter
from the same height at the same time. Ball 1 is made of metal
and has a greater mass than ball 2, which is made of wood. The
upward force due to air resistance is the same for both balls. 
(a) Is the drop time of ball 1 greater than, less than, or equal to
the drop time of ball 2? (b) Choose the best explanation from
among the following:

I. The acceleration of gravity is the same for all objects, re-
gardless of mass.

II. The more massive ball is harder to accelerate.
III. Air resistance has less effect on the more massive ball.

8. •• IP A 42.0-kg parachutist is moving straight downward with
a speed of 3.85 m/s. (a) If the parachutist comes to rest with
constant acceleration over a distance of 0.750 m, what force
does the ground exert on her? (b) If the parachutist comes to
rest over a shorter distance, is the force exerted by the ground
greater than, less than, or the same as in part (a)? Explain.

9. •• IP In baseball, a pitcher can accelerate a 0.15-kg ball from
rest to 98 mi/h in a distance of 1.7 m. (a) What is the average
force exerted on the ball during the pitch? (b) If the mass of the
ball is increased, is the force required of the pitcher increased,
decreased, or unchanged? Explain.

2.5 m>s2

10. •• A major-league catcher gloves a 92-mi/h pitch and brings it
to rest in 0.15 m. If the force exerted by the catcher is 803 N,
what is the mass of the ball?

11. •• Driving home from school one day, you spot a ball rolling
out into the street (Figure 5–18). You brake for 1.20 s, slowing
your 950-kg car from 16.0 m/s to 9.50 m/s. (a) What was the av-
erage force exerted on your car during braking? (b) How far
did you travel while braking?

12. •• Stopping a 747 A 747 jetliner lands and begins to slow to a
stop as it moves along the runway. If its mass is , 
its speed is 27.0 m/s, and the net braking force is ,
(a) what is its speed 7.50 s later? (b) How far has it traveled in
this time?

13. •• IP A drag racer crosses the finish line doing 202 mi/h and
promptly deploys her drag chute (the small parachute used for
braking). (a) What force must the drag chute exert on the 891-kg
car to slow it to 45.0 mi/h in a distance of 185 m? (b) Describe
the strategy you used to solve part (a).

S E C T I O N  5 – 4    N E W T O N ’ S  T H I R D  L AW  
O F  M O T I O N

14. • CE Predict/Explain A small car collides with a large truck.
(a) Is the magnitude of the force experienced by the car greater
than, less than, or equal to the magnitude of the force experi-
enced by the truck? (b) Choose the best explanation from among
the following:

I. Action-reaction forces always have equal magnitude.
II. The truck has more mass, and hence the force exerted on it

is greater.
III. The massive truck exerts a greater force on the lightweight

car.

4.30 * 105 N
3.50 * 105 kg

v = 16.0 m/s

v = 9.50 m/s

▲ FIGURE 5–18 Problem 11
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15. • CE Predict/Explain A small car collides with a large truck.
(a) Is the acceleration experienced by the car greater than, less
than, or equal to the acceleration experienced by the truck? 
(b) Choose the best explanation from among the following:

I. The truck exerts a larger force on the car, giving it the
greater acceleration.

II. Both vehicles experience the same magnitude of force,
therefore the lightweight car experiences the greater
acceleration.

III. The greater force exerted on the truck gives it the greater
acceleration.

16. • You hold a brick at rest in your hand. (a) How many forces act
on the brick? (b) Identify these forces. (c) Are these forces equal
in magnitude and opposite in direction? (d) Are these forces an
action-reaction pair? Explain.

17. • Referring to Problem 16, you are now accelerating the brick
upward. (a) How many forces act on the brick in this case? 
(b) Identify these forces. (c) Are these forces equal in magnitude
and opposite in direction? (d) Are these forces an action-
reaction pair? Explain.

18. •• On vacation, your 1400-kg car pulls a 560-kg trailer away
from a stoplight with an acceleration of . (a) What is
the net force exerted on the trailer? (b) What force does the
trailer exert on the car? (c) What is the net force acting on the
car?

19. •• IP A 71-kg parent and a 19-kg child meet at the center of an
ice rink. They place their hands together and push. (a) Is the
force experienced by the child more than, less than, or the same
as the force experienced by the parent? (b) Is the acceleration of
the child more than, less than, or the same as the acceleration of
the parent? Explain. (c) If the acceleration of the child is

in magnitude, what is the magnitude of the parent’s
acceleration?

20. •• A force of magnitude 7.50 N pushes three boxes with masses
, , and , as shown in

Figure 5–19. Find the magnitude of the contact force (a) between
boxes 1 and 2, and (b) between boxes 2 and 3.

m3 = 4.90 kgm2 = 3.20 kgm1 = 1.30 kg

2.6 m/s2

1.85 m/s2

21. •• A force of magnitude 7.50 N pushes three boxes with masses
, , and , as shown in

Figure 5–20. Find the magnitude of the contact force (a) between
boxes 1 and 2, and (b) between boxes 2 and 3.

m3 = 4.90 kgm2 = 3.20 kgm1 = 1.30 kg

22. •• IP Two boxes sit side-by-side on a smooth horizontal sur-
face. The lighter box has a mass of 5.2 kg; the heavier box has a
mass of 7.4 kg. (a) Find the contact force between these boxes
when a horizontal force of 5.0 N is applied to the light box. 
(b) If the 5.0-N force is applied to the heavy box instead, is the
contact force between the boxes the same as, greater than, or
less than the contact force in part (a)? Explain. (c) Verify your
answer to part (b) by calculating the contact force in this case.

S E C T I O N  5 – 5    T H E  V E C T O R  N AT U R E  O F  F O R C E S

23. • CE A skateboarder on a ramp is accelerated by a nonzero net
force. For each of the following statements, state whether it is
always true, never true, or sometimes true. (a) The skate-
boarder is moving in the direction of the net force. (b) The ac-
celeration of the skateboarder is at right angles to the net force.
(c) The acceleration of the skateboarder is in the same direction
as the net force. (d) The skateboarder is instantaneously at rest.

24. • CE Three objects, A, B, and C, have x and y components of ve-
locity that vary with time as shown in Figure 5–21. What is the
direction of the net force acting on (a) object A, (b) object B, and
(c) object C, as measured from the positive x axis? (All of the
nonzero slopes have the same magnitude.)

25. • A farm tractor tows a 3700-kg trailer up an 18° incline with a
steady speed of 3.2 m/s. What force does the tractor exert on
the trailer? (Ignore friction.)

26. • A surfer “hangs ten,” and accelerates down the sloping face of
a wave. If the surfer’s acceleration is and friction can
be ignored, what is the angle at which the face of the wave is in-
clined above the horizontal?

27. • A shopper pushes a 7.5-kg shopping cart up a 13° incline, as
shown in Figure 5–22. Find the magnitude of the horizontal
force, , needed to give the cart an acceleration of .1.41 m>s2F

!

3.25 m>s2
1.30 kg

3.20 kg
4.90 kg

1

2

3

F = 7.50 N

▲ FIGURE 5–19 Problem 20

1

F = 7.50 N

2

3

1.30 kg

3.20 kg
4.90 kg

▲ FIGURE 5–20 Problem 21
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28. • Two crewmen pull a raft through a lock, as shown in 
Figure 5–23. One crewman pulls with a force of 130 N at an angle
of 34° relative to the forward direction of the raft. The second
crewman, on the opposite side of the lock, pulls at an angle of
45°. With what force should the second crewman pull so that
the net force of the two crewmen is in the forward direction?

29. •• CE A hockey puck is acted on by one or more forces, as
shown in Figure 5–24. Rank the four cases, A, B, C, and D, in
order of the magnitude of the puck’s acceleration, starting with
the smallest. Indicate ties where appropriate.

31. •• IP Before practicing his routine on the rings, a 67-kg gym-
nast stands motionless, with one hand grasping each ring and
his feet touching the ground. Both arms slope upward at an
angle of 24° above the horizontal. (a) If the force exerted by the
rings on each arm has a magnitude of 290 N, and is directed
along the length of the arm, what is the magnitude of the force
exerted by the floor on his feet? (b) If the angle his arms make
with the horizontal is greater that 24°, and everything else re-
mains the same, is the force exerted by the floor on his feet
greater than, less than, or the same as the value found in part
(a)? Explain.

32. •• IP A 65-kg skier speeds down a trail, as shown in Figure
5–26. The surface is smooth and inclined at an angle of 22° with
the horizontal. (a) Find the direction and magnitude of the net
force acting on the skier. (b) Does the net force exerted on the
skier increase, decrease, or stay the same as the slope becomes
steeper? Explain.

33. •• An object acted on by three forces moves with constant ve-
locity. One force acting on the object is in the positive x direction
and has a magnitude of 6.5 N; a second force has a magnitude
of 4.4 N and points in the negative y direction. Find the direc-
tion and magnitude of the third force acting on the object.

34. •• A train is traveling up a 3.73° incline at a speed of 3.25 m/s
when the last car breaks free and begins to coast without fric-
tion. (a) How long does it take for the last car to come to rest
momentarily? (b) How far did the last car travel before mo-
mentarily coming to rest?

35. •• The Force Exerted on the Moon Figure 5–27 shows the
Earth, Moon, and Sun (not to scale) in their relative positions at
the time when the Moon is in its third-quarter phase. Though
few people realize it, the force exerted on the Moon by the Sun
is actually greater than the force exerted on the Moon by the
Earth. In fact, the force exerted on the Moon by the Sun has a
magnitude of , whereas the force exerted 
by the Earth has a magnitude of only .
These forces are indicated to scale in Figure 5–27. Find (a) the di-
rection and (b) the magnitude of the net force acting on the Moon.
(c) Given that the mass of the Moon is ,
find the magnitude of its acceleration at the time of the third-
quarter phase.

S E C T I O N  5 – 6    W E I G H T

36. • You pull upward on a stuffed suitcase with a force of 105 N,
and it accelerates upward at . What are (a) the mass
and (b) the weight of the suitcase?

0.705 m/s2

MM = 7.35 * 1022 kg

FEM = 1.98 * 1020 N
FSM = 4.34 * 1020 N

130 N

F
45°

34°

▲ FIGURE 5–23 Problem 28

7 N5 N

A

3 N

3 N

B

3 N
3 N

C

3 N

D

▲ FIGURE 5–24 Problem 29

55 N

35°

35°a

55 N

57 N

▲ FIGURE 5–25 Problem 30

22°

▲ FIGURE 5–26 Problems 32 and 45

30. •• To give a 19-kg child a ride, two teenagers pull on a 3.7-kg
sled with ropes, as indicated in Figure 5–25. Both teenagers pull
with a force of 55 N at an angle of 35° relative to the forward di-
rection, which is the direction of motion. In addition, the snow
exerts a retarding force on the sled that points opposite to the
direction of motion, and has a magnitude of 57 N. Find the ac-
celeration of the sled and child.
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▲ FIGURE 5–27 Problem 35

37. • BIO Brain Growth A newborn baby’s brain grows rapidly.
In fact, it has been found to increase in mass by about 1.6 mg
per minute. (a) How much does the brain’s weight increase in
one day? (b) How long does it take for the brain’s weight to in-
crease by 0.15 N?

38. • Suppose a rocket launches with an acceleration of .
What is the apparent weight of an 92-kg astronaut aboard this
rocket?

39. • At the bow of a ship on a stormy sea, a crewman conducts an
experiment by standing on a bathroom scale. In calm waters,
the scale reads 182 lb. During the storm, the crewman finds a
maximum reading of 225 lb and a minimum reading of 138 lb.
Find (a) the maximum upward acceleration and (b) the maxi-
mum downward acceleration experienced by the crewman.

40. •• IP As part of a physics experiment, you stand on a bathroom
scale in an elevator. Though your normal weight is 610 N, the
scale at the moment reads 730 N. (a) Is the acceleration of the
elevator upward, downward, or zero? Explain. (b) Calculate the
magnitude of the elevator’s acceleration. (c) What, if anything,
can you say about the velocity of the elevator? Explain.

41. •• When you weigh yourself on good old terra firma (solid
ground), your weight is 142 lb. In an elevator your apparent
weight is 121 lb. What are the direction and magnitude of the 
elevator’s acceleration?

42. •• IP BIO Flight of the Samara A 1.21-g samara—the
winged fruit of a maple tree—falls toward the ground with a
constant speed of 1.1 m/s (Figure 5–28). (a) What is the force of
air resistance exerted on the samara? (b) If the constant speed of
descent is greater than 1.1 m/s, is the force of air resistance
greater than, less than, or the same as in part (a)? Explain.

30.5 m/s2

43. ••• When you lift a bowling ball with a force of 82 N, the ball
accelerates upward with an acceleration a. If you lift with a
force of 92 N, the ball’s acceleration is 2a. Find (a) the weight of
the bowling ball, and (b) the acceleration a.

S E C T I O N  5 – 7    N O R M A L  F O R C E S

44. • A 23-kg suitcase is being pulled with constant speed by a han-
dle that is at an angle of 25° above the horizontal. If the normal
force exerted on the suitcase is 180 N, what is the force F ap-
plied to the handle?

45. • (a) Draw a free-body diagram for the skier in Problem 32. 
(b) Determine the normal force acting on the skier.

46. • A 9.3-kg child sits in a 3.7-kg high chair. (a) Draw a free-
body diagram for the child, and find the normal force exerted
by the chair on the child. (b) Draw a free-body diagram for the
chair, and find the normal force exerted by the floor on the
chair.

47. •• Figure 5–29 shows the normal force as a function of the
angle for the suitcase shown in Figure 5–13. Determine the
magnitude of the force for each of the three curves shown in
Figure 5–29. Give your answer in terms of the weight of the
suitcase, mg.

F
!u

v = 1.1 m/s

▲ FIGURE 5–28 Problem 42
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▲ FIGURE 5–29 Problem 47

48. •• A 5.0-kg bag of potatoes sits on the bottom of a stationary
shopping cart. (a) Sketch a free-body diagram for the bag of
potatoes. (b) Now suppose the cart moves with a constant
velocity. How does this affect your free-body diagram?
Explain.

49. •• IP (a) Find the normal force exerted on a 2.9-kg book resting
on a surface inclined at 36° above the horizontal. (b) If the angle
of the incline is reduced, do you expect the normal force to in-
crease, decrease, or stay the same? Explain.

50. •• IP A gardener mows a lawn with an old-fashioned push
mower. The handle of the mower makes an angle of 35° with
the surface of the lawn. (a) If a 219-N force is applied along the
handle of the 19-kg mower, what is the normal force exerted by
the lawn on the mower? (b) If the angle between the surface of
the lawn and the handle of the mower is increased, does the
normal force exerted by the lawn increase, decrease, or stay the
same? Explain.

51. ••• An ant walks slowly away from the top of a bowling ball,
as shown in Figure 5–30. If the ant starts to slip when the normal
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G E N E R A L  P R O B L E M S

52. • CE Predict/Explain Riding in an elevator moving upward
with constant speed, you begin a game of darts. (a) Do you
have to aim your darts higher than, lower than, or the same as
when you play darts on solid ground? (b) Choose the best
explanation from among the following:

I. The elevator rises during the time it takes for the dart to
travel to the dartboard.

II. The elevator moves with constant velocity. Therefore,
Newton’s laws apply within the elevator in the same way
as on the ground.

III. You have to aim lower to compensate for the upward speed
of the elevator.

53. • CE Predict/Explain Riding in an elevator moving with a
constant upward acceleration, you begin a game of darts. (a) Do
you have to aim your darts higher than, lower than, or the same
as when you play darts on solid ground? (b) Choose the best
explanation from among the following:

I. The elevator accelerates upward, giving its passengers a
greater “effective” acceleration of gravity.

II. You have to aim lower to compensate for the upward 
acceleration of the elevator.

III. Since the elevator moves with a constant acceleration,
Newton’s laws apply within the elevator the same as on the
ground.

54. • CE Give the direction of the net force acting on each of the fol-
lowing objects. If the net force is zero, state “zero.” (a) A car ac-
celerating northward from a stoplight. (b) A car traveling
southward and slowing down. (c) A car traveling westward
with constant speed. (d) A skydiver parachuting downward
with constant speed. (e) A baseball during its flight from pitcher
to catcher (ignoring air resistance).

55. • CE Predict/Explain You jump out of an airplane and open
your parachute after an extended period of free fall. (a) To de-
celerate your fall, must the force exerted on you by the para-
chute be greater than, less than, or equal to your weight? (b)
Choose the best explanation from among the following:

I. Parachutes can only exert forces that are less than the
weight of the skydiver.

II. The parachute exerts a force exactly equal to the skydiver’s
weight.

III. To decelerate after free fall, the net force acting on a skydiver
must be upward.

56. • In a tennis serve, a 0.070-kg ball can be accelerated from rest
to 36 m/s over a distance of 0.75 m. Find the magnitude of the
average force exerted by the racket on the ball during the serve.

57. • A 51.5-kg swimmer with an initial speed of 1.25 m/s decides
to coast until she comes to rest. If she slows with constant ac-
celeration and stops after coasting 2.20 m, what was the force
exerted on her by the water?

58. •• CE Each of the three identical hockey pucks shown in Figure
5–31 is acted on by a 3-N force. Puck A moves with a speed of
7 m/s in a direction opposite to the force; puck B is instanta-
neously at rest; puck C moves with a speed of 7 m/s at right an-
gles to the force. Rank the three pucks in order of the magnitude
of their acceleration, starting with the smallest. Indicate ties
with an equal sign.

�

▲ FIGURE 5–30 Problem 51
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B

▲ FIGURE 5–31 Problem 58

59. •• IP The VASIMR Rocket NASA plans to use a new type of
rocket, a Variable Specific Impulse Magnetoplasma Rocket
(VASIMR), on future missions. A VASIMR can produce 1200 N
of thrust (force) when in operation. If a VASIMR has a mass of

, (a) what acceleration will it experience? Assume
that the only force acting on the rocket is its own thrust, and
that the mass of the rocket is constant. (b) Over what distance
must the rocket accelerate from rest to achieve a speed of 
9500 m/s? (c) When the rocket has covered one-quarter the ac-
celeration distance found in part (b), is its average speed 1/2,
1/3, or 1/4 its average speed during the final three-quarters of
the acceleration distance? Explain.

60. •• An object of mass has an acceleration
. Three forces act on this

object: , , and . Given that and 
, find .

61. •• At the local grocery store, you push a 14.5-kg shopping cart.
You stop for a moment to add a bag of dog food to your cart.
With a force of 12.0 N, you now accelerate the cart from rest
through a distance of 2.29 m in 3.00 s. What was the mass of the
dog food?

62. •• IP BIO The Force of Running Biomechanical research has
shown that when a 67-kg person is running, the force exerted
on each foot as it strikes the ground can be as great as 2300 N.
(a) What is the ratio of the force exerted on the foot by the
ground to the person’s body weight? (b) If the only forces act-
ing on the person are (i) the force exerted by the ground and
(ii) the person’s weight, what are the magnitude and direction
of the person’s acceleration? (c) If the acceleration found in part
(b) acts for 10.0 ms, what is the resulting change in the vertical
component of the person’s velocity?

63. •• IP BIO Grasshopper Liftoff To become airborne, a 2.0-g
grasshopper requires a takeoff speed of 2.7 m/s. It acquires this
speed by extending its hind legs through a distance of 3.7 cm.
(a) What is the average acceleration of the grasshopper during
takeoff? (b) Find the magnitude of the average net force exerted

F
!
3F

!
2 = (-1.55 N)xN + (2.05  N)yN

F
!
1 = (3.22 N)xNF

!
3F

!
2F

!
1

a
!
= (1.17 m/s2)xN + (-0.664 m/s2)yN

m = 5.95 kg

2.2 * 105 kg

force on its feet drops below one-half its weight, at what angle
does slipping begin?u
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on the grasshopper by its hind legs during takeoff. (c) If the
mass of the grasshopper increases, does the takeoff acceleration
increase, decrease, or stay the same? (d) If the mass of the
grasshopper increases, does the required takeoff force increase,
decrease, or stay the same? Explain.

64. •• Takeoff from an Aircraft Carrier On an aircraft carrier, a
jet can be catapulted from 0 to 155 mi/h in 2.00 s. If the average
force exerted by the catapult is , what is the mass
of the jet?

9.35 * 105 N

65. •• IP An archer shoots a 0.024-kg arrow at a target with a speed
of 54 m/s. When it hits the target, it penetrates to a depth of
0.083 m. (a) What was the average force exerted by the target on
the arrow? (b) If the mass of the arrow is doubled, and the
force exerted by the target on the arrow remains the same, by
what multiplicative factor does the penetration depth change?
Explain.

66. •• An apple of mass falls out of a tree from a
height . (a) What is the magnitude of the force of
gravity, mg, acting on the apple? (b) What is the apple’s
speed, v, just before it lands? (c) Show that the force of grav-
ity times the height, mgh, is equal to . (We shall investi-
gate the significance of this result in Chapter 8.) Be sure to
show that the dimensions are in agreement as well as the nu-
merical values.

67. •• An apple of mass falls from a tree and hits the
ground with a speed of . (a) What is the magnitude
of the force of gravity, mg, acting on the apple? (b) What is the
time, t, required for the apple to reach the ground? (c) Show
that the force of gravity times the time, mgt, is equal to mv. (We
shall investigate the significance of this result in Chapter 9.) Be
sure to show that the dimensions are in agreement as well as
the numerical values.

68. •• BIO The Fall of T. rex Paleontologists estimate that if a
Tyrannosaurus rex were to trip and fall, it would have experi-
enced a force of approximately 260,000 N acting on its torso
when it hit the ground. Assuming the torso has a mass of 
3800 kg, (a) find the magnitude of the torso’s upward accelera-
tion as it comes to rest. (For comparison, humans lose con-
sciousness with an acceleration of about 7g.) (b) Assuming the
torso is in free fall for a distance of 1.46 m as it falls to the
ground, how much time is required for the torso to come to rest
once it contacts the ground?

v = 14 m>s
m = 0.22 kg

1
2mv

2

h = 3.2 m
m = 0.13 kg

A jet takes off from the flight deck of an aircraft
carrier. (Problem 64)

69. •• Deep Space I The NASA spacecraft Deep Space I was shut
down on December 18, 2001, following a three-year journey to
the asteroid Braille and the comet Borrelly. This spacecraft
used a solar-powered ion engine to produce 0.064 ounces of
thrust (force) by stripping electrons from neon atoms and ac-
celerating the resulting ions to 70,000 mi/h. The thrust was
only as much as the weight of a couple sheets of paper, but the
engine operated continuously for 16,000 hours. As a result, the
speed of the spacecraft increased by 7900 mi/h. What was the
mass of Deep Space I? (Assume that the mass of the neon gas is
negligible.)

70. •• Your groceries are in a bag with paper handles. The handles
will tear off if a force greater than 51.5 N is applied to them.
What is the greatest mass of groceries that can be lifted safely
with this bag, given that the bag is raised (a) with constant
speed, or (b) with an acceleration of ?

71. •• IP While waiting at the airport for your flight to leave, you
observe some of the jets as they take off. With your watch you
find that it takes about 35 seconds for a plane to go from rest to
takeoff speed. In addition, you estimate that the distance re-
quired is about 1.5 km. (a) If the mass of a jet is ,
what force is needed for takeoff? (b) Describe the strategy you
used to solve part (a).

72. •• BIO Gecko Feet Researchers have found that a gecko’s foot
is covered with hundreds of thousands of small hairs (setae)
that allow it to walk up walls and even across ceilings. A single
foot pad, which has an area of , can attach to a wall or
ceiling with a force of 11 N. (a) How many 250-g geckos could
be suspended from the ceiling by a single foot pad? (b) Estimate
the force per square centimeter that your body exerts on the
soles of your shoes, and compare with the of the
sticky gecko foot.

11 N/cm2

1.0 cm2

1.70 * 105 kg

1.25 m/s2

A Tokay gecko (Gekko gecko) shows off its famous feet. 
(Problem 72)

73. •• Two boxes are at rest on a smooth, horizontal surface. The
boxes are in contact with one another. If box 1 is pushed with a
force of magnitude , the contact force between the
boxes is 8.50 N; if, instead, box 2 is pushed with the force F,
the contact force is . In either case,
the boxes move together with an acceleration of .
What is the mass of (a) box 1 and (b) box 2?

74. ••• IP Responding to an alarm, a 102-kg fireman slides down
a pole to the ground floor, 3.3 m below. The fireman starts at rest
and lands with a speed of 4.2 m/s. (a) Find the average force ex-
erted on the fireman by the pole. (b) If the landing speed is half
that in part (a), is the average force exerted on the fireman by
the pole doubled? Explain. (c) Find the average force exerted on
the fireman by the pole when the landing speed is 2.1 m/s.

1.70 m/s2
12.00 N - 8.50 N = 3.50 N

F = 12.00 N
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75. ••• For a birthday gift, you and some friends take a hot-air
balloon ride. One friend is late, so the balloon floats a couple of
feet off the ground as you wait. Before this person arrives, the
combined weight of the basket and people is 1220 kg, and the
balloon is neutrally buoyant. When the late arrival climbs up
into the basket, the balloon begins to accelerate downward at

. What was the mass of the last person to climb
aboard?

76. ••• A baseball of mass m and initial speed v strikes a catcher’s
mitt. If the mitt moves a distance as it brings the ball to rest,
what is the average force it exerts on the ball?

77. ••• When two people push in the same direction on an object
of mass m they cause an acceleration of magnitude . When the
same people push in opposite directions, the acceleration of the
object has a magnitude . Determine the magnitude of the force
exerted by each of the two people in terms of m, , and .

78. ••• An air-track cart of mass is moving with a 
speed to the right when it collides with a cart of
mass that is at rest. Each cart has a wad of putty
on its bumper, and hence they stick together as a result of their
collision. Suppose the average contact force between the carts is

during the collision. (a) What is the acceleration of
cart 1? Give direction and magnitude. (b) What is the accelera-
tion of cart 2? Give direction and magnitude. (c) How long does
it take for both carts to have the same speed? (Once the carts
have the same speed the collision is over and the contact force
vanishes.) (d) What is the final speed of the carts, ? (e) Show
that is equal to . (We shall investigate the sig-
nificance of this result in Chapter 9.)

PA S S A G E  P R O B L E M S

BIO Increasing Safety in a Collision
Safety experts say that an automobile accident is really a suc-
cession of three separate collisions. These can be described as
follows: (1) the automobile collides with an obstacle and comes
to rest; (2) people within the car continue to move forward until
they collide with the interior of the car, or are brought to rest by
a restraint system like a seatbelt or an air bag; (3) organs within
the occupants’ bodies continue to move forward until they col-
lide with the body wall and are brought to rest. Not much can
be done about the third collision, but the effects of the first two
can be mitigated by increasing the distance over which the car
and its occupants are brought to rest.

For example, the severity of the first collision is reduced by
building collapsible “crumple zones” into the body of a car, and
by placing compressible collision barriers near dangerous ob-
stacles like bridge supports. The second collision is addressed
primarily through the use of seatbelts and air bags. These de-
vices reduce the force that acts on an occupant to survivable
levels by increasing the distance over which he or she comes to
rest. This is illustrated in Figure 5–32, where we see the force ex-
erted on a 65.0-kg driver who slows from an initial speed of
18.0 m/s (lower curve) or 36.0 m/s (upper curve) to rest in a
distance ranging from 5.00 cm to 1.00 m.

79. • The combination of “crumple zones” and air bags/seatbelts
might increase the distance over which a person stops in a colli-
sion to as great as 1.00 m. What is the magnitude of the force 
exerted on a 65.0-kg driver who decelerates from 18.0 m/s to
0.00 m/s over a distance of 1.00 m?

A. 162 N B. 585 N

C. 1.05 � N D. 2.11 � N104104

(m1 + m2)vfm1v0

vf

F = 1.5 N

m2 = 0.25 kg
v0 = 1.3 m/s

m1 = 0.14 kg

a2a1

a2

a1

¢x

0.56 m/s2

80. • A driver who does not wear a seatbelt continues to move for-
ward with a speed of 18.0 m/s (due to inertia) until something
solid like the steering wheel is encountered. The driver now
comes to rest in a much shorter distance—perhaps only a few
centimeters. Find the magnitude of the net force acting on a
65.0-kg driver who is decelerated from 18.0 m/s to rest in 5.00 cm.

A. 3240 N B. 1.17 � 104 N

C. 2.11 � 105 N D. 4.21 � 105 N

81. • Suppose the initial speed of the driver is doubled to 36.0 m/s.
If the driver still has a mass of 65.0 kg, and comes to rest in 
1.00 m, what is the magnitude of the force exerted on the driver
during this collision?

A. 648 N B. 1170 N

C. 2.11 � 104 N D. 4.21 � 104 N

82. • If both the speed and stopping distance of a driver are dou-
bled, by what factor does the force exerted on the driver change?

A. 0.5 B. 1

C. 2 D. 4

I N T E R A C T I V E  P R O B L E M S

83. •• IP Referring to Example 5–4 Suppose that we would like
the contact force between the boxes to have a magnitude of 5.00
N, and that the only thing in the system we are allowed to
change is the mass of box 2—the mass of box 1 is 10.0 kg and the
applied force is 20.0 N. (a) Should the mass of box 2 be in-
creased or decreased? Explain. (b) Find the mass of box 2 that
results in a contact force of magnitude 5.00 N. (c) What is the ac-
celeration of the boxes in this case?

84. •• Referring to Example 5–4 Suppose the force of 20.0 N
pushes on two boxes of unknown mass. We know, however, that
the acceleration of the boxes is and the contact force has
a magnitude of 4.45 N. Find the mass of (a) box 1 and (b) box 2.

85. •• IP Referring to Figure 5–9 Suppose the magnitude of 
is increased from 41 N to 55 N, and that everything else in the
system remains the same. (a) Do you expect the direction of the
satellite’s acceleration to be greater than, less than, or equal to
32°? Explain. Find (b) the direction and (c) the magnitude of the
satellite’s acceleration in this case.

86. •• IP Referring to Figure 5–9 Suppose we would like the
acceleration of the satellite to be at an angle of 25°, and that the
only quantity we can change in the system is the magnitude of 

. (a) Should the magnitude of be increased or decreased?
Explain. (b) What is the magnitude of the satellite’s accelera-
tion in this case?
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