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James Walker obtained his Ph.D. in theoretical physics from the University 
of Washington in 1978. He subsequently served as a post-doc at the University
of Pennsylvania, the Massachusetts Institute of Technology, and the
University of California at San Diego before joining the physics faculty at
Washington State University in 1983. Professor Walker’s research interests
include statistical mechanics, critical phenomena, and chaos. His many
publications on the application of renormalization-group theory to systems
ranging from absorbed monolayers to binary-fluid mixtures have appeared in
Physical Review, Physical Review Letters, Physica, and a host of other
publications. He has also participated in observations on the summit of
Mauna Kea, looking for evidence of extra-solar planets.

Jim Walker likes to work with students at all levels, from judging
elementary school science fairs to writing research papers with graduate
students, and has taught introductory physics for many years. His enjoyment
of this course and his empathy for students have earned him a reputation as
an innovative, enthusiastic, and effective teacher. Jim’s educational
publications include “Reappearing Phases” (Scientific American, May 1987)
as well as articles in the American Journal of Physics and The
Physics Teacher. In recognition of his contributions to the
teaching of physics at Washington State University, Jim was
named the Boeing Distinguished Professor of Science and
Mathematics Education for 2001–2003. He currently teaches
at Western Washington University.

When he is not writing, conducting research, teaching, or
developing new classroom demonstrations and pedagogical materials, Jim enjoys
amateur astronomy, eclipse chasing, bird and dragonfly watching, photography,
juggling, unicycling, boogie boarding, and kayaking. Jim is also an avid jazz pianist
and organist. He has served as ballpark organist for a number of Class A minor
league baseball teams, including the Bellingham Mariners, an affiliate of the Seattle
Mariners, and the Salem-Keizer Volcanoes, an affiliate of the San Francisco Giants.
He can play “Take Me Out to the Ball Game” in his sleep.

About the Author

About the Cover

The photographs on the cover of this book are a reminder of the wide
“spectrum” of physics applications that are a part of our everyday lives.

Wind Turbines and Lightning Bolt: Wind turbines convert the mechanical
energy of moving air into electrical energy to power our homes and cities.
Electrical energy is also produced by nature, and occasionally unleashed in
impressive bolts of lightning.

Scanning Electron Micrograph: Though electrons are usually thought of as
“particles,” they also have wave-like properties similar to light. The image of a
fly’s eye was taken with a beam of electrons.

Iceberg in the Errera Channel: A floating iceberg is a visual demonstration
that ice has a lower density than liquid water.

Solar Coronal Loops: Magnetic storms often rage on the surface of the Sun.
These glowing loops of ionized gas follow the curved lines of the magnetic field.

Surfer in the “Tube” on the North Shore of Oahu: The laws of physics
determine the motion of the wave this surfer is riding.

As you study the material in this book, your understanding of physics will
deepen, and your appreciation for the world around you will increase as you come
to recognize the fundamental physical principles on which all of our lives are based. v
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CON C E P T U A L C H E C K P O I N T 1 5 – 3 H O W I S T H E S C A L E  R E A D I N G A F F E C T E D ?

A flask of water rests on a scale. If you dip your finger into the water, without touching
the flask, does the reading on the scale (a) increase, (b) decrease, or (c) stay the same?

R E A S O N I N G A N D D I S C U S S I O N

Your finger experiences an upward buoyant force when it is dipped into the water. By
Newton’s third law, the water experiences an equal and opposite reaction force acting
downward. This downward force is transmitted to the scale, which in turn gives a
higher reading.

Another way to look at this result is to note that when you dip your finger into the water,
its depth increases. This results in a greater pressure at the bottom of the flask, and hence
a greater downward force on the flask. The scale reads this increased downward force.

A N S W E R

(a) The reading on the scale increases.

?

Foundations for Student Success
Walker’s Physics has always been known for its integrated, coherent
approach to teaching students the skills to solve problems successfully.

CONCEPTUAL CHECKPOINTS ➤
help students to master key ideas
and relationships in a nonquantitative
setting.

The end-of-chapter Conceptual
Questions, Conceptual Exercises,
and Predict/Explain problems
further develop students’ conceptual
understanding.

EXERCISES ➤

present brief calculations
which illustrate the
application of important
new relationships.

EXAMPLES ➤

model and explain how
to solve a particular type
of problem.

All Examples use
a consistent strategy:

Picture the Problem
Strategy
Solution
Insight

ACTIVE EXAMPLES ➤

provide a skeleton
solution that the
student must flesh out,
helping to bridge the
gap from the Examples
to the end-of-chapter
problems.

Examples end
with a related
Practice Problem.

Unique two-column
layout helps the
students relate the
strategy to the math.

In response to user
feedback, selected
examples throughout
the Fourth Edition
are now more
challenging.

AC T I V E E X AM P L E 1 5 – 1 F I N D T H E T E N S I O N I N T H E S T R I N G

A piece of wood with a density of is tied with a string to the bottom of a water-filled flask. The wood is completely
immersed, and has a volume of What is the tension in the string?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Apply Newton’s second law
to the wood:

2. Solve for the tension, T:

3. Calculate the weight of the wood:

4. Calculate the buoyant force:

5. Subtract to obtain the tension:

I N S I G H T

Since the wood floats in water, its buoyant force when completely
immersed is greater than its weight.

YO U R T U R N

What is the tension in the string if the piece of wood has a density of

(Answers to Your Turn problems can be found in the back of the book.)

822 kg>m3?

T = 0.0231 N

Fb = 0.0785 N

mg = 0.0554 N

T = Fb - mg

Fb - T - mg = 0

8.00 * 10-6 m3.
706 kg>m3

Fb

T
mg

E X AM P L E 1 6 – 6 W H A T A P A N E !

One of the windows in a house has the shape of a square 1.0 m on a side. The glass in the window is 0.50 cm thick. (a) How much
heat is lost through this window in one day if the temperature in the house is 21 °C and the temperature outside is 0.0 °C?
(b) Suppose all the dimensions of the window—height, width, thickness—are doubled. If everything else remains the same, by
what factor does the heat flow change?

P I C T U R E T H E P R O B L E M

The glass from the window is shown in our sketch, along with its relevant dimen-
sions. Heat flows from the 21 °C side of the window to the 0.0 °C side.

S T R AT E G Y

a. The heat flow is given by (Equation 16–16). Note that the area
is and that the length over which heat is conducted is, in this
case, the thickness of the glass. Thus, . The temperature difference
is , and the thermal conductivity of glass (from Table 16–3)
is . Also, recall from Section 7–4 that .

b. Doubling all dimensions increases the thickness by a factor of 2 and increases the
.dna,sitaht;4forotcafaybaera

Use these results in .

S O L U T I O N

Part (a)

1. Calculate the heat flow for a given time, t:

2. Substitute the number of seconds in a day, 86,400 s,
for the time t in the expression for Q:

Part (b)

3. Replace L with 2L and A with 4A in Step 1.
The result is a doubling of the heat flow, Q:

I N S I G H T

Q is a sizable amount of heat, roughly equivalent to the energy released in burning a gallon of gasoline. A considerable reduc-
tion in heat loss can be obtained by using a double-paned window, which has an insulating layer of air (actually argon or
krypton) sandwiched between the two panes of glass. This is discussed in more detail later in this section, and is explored in
Homework Problems 53 and 91.

P R A C T I C E P R O B L E M

Suppose the window is replaced with a plate of solid silver. How thick must this plate be to have the same heat flow in a day as
the glass? [Answer: The silver must have a thickness of .]

Some related homework problems: Problem 49, Problem 50

L = 2.5 m

Q = kAa¢T
L
b t : k(4A) c ¢T

(2L)
d t : 2 ckAa¢T

L
b t d = 2Q

Q = (3500 W)t = (3500 W)(86,400 s) = 3.0 * 108 J

= [0.84 W>(m # K)](1.0 m)2a 21 K
0.0050 m

b t = (3500 W)t

Q = kAa¢T
L
b t

Q = kA(¢T>L)t
A : (2 * height) * (2 * width) = 4AL : 2L

1 W = 1 J>s0.84 W>(m # K)
¢T = 21 C° = 21 K

L = 0.0050 m
A = (1.0 m)2

Q = kA(¢T>L)t 0.0 °C

1.0 m

1.0 m

0.50 cm

21 °C

Q

E X E R C I S E 7 – 1
One species of Darwin’s finch, Geospiza magnirostris, can exert a force of 205 N with its
beak as it cracks open a Tribulus seed case. If its beak moves through a distance of 0.40 cm
during this operation, how much work does the finch do to get the seed?

S O L U T I O N

W = Fd = 1205 N210.0040 m2 = 0.82 J

vii



P H Y S I C S I N

P E R S P E C T I V E

Entropy and
Thermo-
dynamics
The behavior of
heat engines may
seem unrelated
to the fate of the
universe. How-
ever, it led physi-
cists to discover
a new physical
quantity: entropy.
The future of the
universe is shaped
by the fact that
the total entropy
can only increase.
Our fate is sealed.

1 Spontaneous processes cannot cause a decrease in entropy
Fundamentally, entropy (S) is randomness or disorder. A process that occurs spontaneously—
without a driving input of energy— cannot result in a net increase in order (decrease in entropy).

Irreversible processes:
An irreversible process runs spontaneously in just one direction—for instance, ice melts in warm
water; warm water doesn’t spontaneously form ice cubes. Irreversible processes always cause a net
increase in entropy.

≤S>0

Ice melts in warm water Air leaves a popped balloon Cooling embers heat their
surroundings

S > 0S > 0S > 0

3 The second law puts entropy in thermodynamic terms
The second law of thermodynamics—that heat moves from hot-
ter to colder objects—actually implies all that we’ve said about
entropy. In fact, the change in entropy can be defined in terms
of the thermodynamic quantities heat Q and temperature T:

¢S Sh =
Q
Th

=
–100 J
400 K

= – 0.25 J/K

Loss of heat → entropy decrease.

Th = 400 K
Hot reservoir

Q = 100 J

Tc = 300 K
Cold reservoir

ΔSc =
Q
Tc

=
100 J
300 K

= 0.33 J/K

Gain of heat → entropy increase.

2 Entropy can decrease locally but must increase overall 

Universe

Ein Eout
Local

system

Reversible processes:
If a process can run spontaneously in either direction—so that a
movie of it would look equally realistic run forward or
backward—it is reversible and causes zero entropy change.

In practice, reversibility is an idealization—real processes are
never completely reversible.

≤S 0
The to-and-fro

swinging of an
ideal frictionless

pendulum is a
reversible

process

S = 0

An input of energy can be
used to drive nonspontaneous
processes that reduce disor-
der (entropy). That is what
your body does with the
energy it gains from food.

However, the universe as a
whole cannot gain or lose
energy, so its total entropy
cannot decrease. This means
that every process that
decreases entropy locally
must cause a larger entropy
increase elsewhere.

Local system:
Input of energy can
drive a decrease in
entropy: .¢S 6 0

Universe:
(energy is conserved),

so
(total entropy can only
change by increasing)

¢S 7 0

¢E = 0

Change in system’s
entropy

Heat entering or leaving system
(positive if heat enters system)

System’s temperature

As the example at right shows, the fact that temperature T is in
the denominator means that the transfer of a given amount of
heat Q causes a greater magnitude of entropy change for a
colder object than for a hotter one.

Therefore, a flow of heat from a hotter to a colder object causes a
net increase in entropy—as we would predict from the fact that
this process is spontaneous and irreversible.

¢S =
Q

T

New to the Fourth Edition

ANNOTATED FIGURES �

Blue explanatory annotations help
students to read complex figures
and to integrate verbal and visual
knowledge.

PHYSICS IN PERSPECTIVE �

Located at key junctures in the book, Physics
in Perspective two-page spreads focus on
the core ideas developed in the preceding
several chapters.

Looking back over several chapters, the
spreads show unifying perspectives that
the students are only now equipped to see.

For instance, the Physics in Perspective
spread illustrated here, located after the
final thermodynamics chapter, uses the
second law to unify and explain ideas
that initially had to be presented from
a different perspective.

The Big Picture feature at the end of each
chapter (not shown here) performs a similar
function on a chapter level.

PHYSICS DEMONSTRATION PHOTOS �

use high-speed time-lapse photography to illustrate phenomena that
illuminate physical principles.

Annotated equations help students to see
the meaning in the math.

A wave pulse that
reflects from a
fixed end ...

... has the same shape as
before but is inverted.

v

v
FIGURE 14–7 A reflected wave pulse:

fixed end
A wave pulse on a string is inverted when
it reflects from an end that is tied down.

viii



PASSAGE PROBL EMS

Navigating in Space: The Gravitational Slingshot
Many spacecraft navigate through space these days by using
the “gravitational slingshot” effect, in which a close encounter
with a planet results in a significant increase in magnitude and
change in direction of the spacecraft’s velocity. In fact, a space-

15. • CE Predict/Explain A small car collides with a large truck.
(a) Is the acceleration experienced by the car greater than, less
than, or equal to the acceleration experienced by the truck?
(b) Choose the best explanation from among the following:

I. The truck exerts a larger force on the car, giving it the
greater acceleration.

II. Both vehicles experience the same magnitude of force,
therefore the lightweight car experiences the greater
acceleration.

III. The greater force exerted on the truck gives it the greater
acceleration.

PASSAGE

P
H
Y
S
IC
S
IN
P
E
R
S
P
E
C
T
IV
E

5 … but entropy sets the limit of efficiency for a heat engine
A heat engine is a device that converts part of a heat flow
into work. Entropy sets an absolute limit on the efficiency of
this process.

To see why, we start with the fact that a heat engine operates
on a thermodynamic cycle—it starts in a particular state, goes
through a series of proc esses involving heat and work, and
returns to its original state. (Think of the cyclic operation of a
cylinder in a
car engine.)

Because entropy S is a state function, the engine’s entropy re-
turns to it s original value at the end of each cycle—so over the
course of a cycle, the entropy change of a heat engine
is zero. Therefore, the entropy of the engine’s environment—
specifically, of the hot and cold reservoir ( )—must
increase or stay the same ( ).

The engine will have the highest efficiency when
, because higher values of entail more waste

heat ( ) and thus yield less work W. To be more efficient than
this, an engine would have to cause a net decrease in entropy,
which is impossible. Actual engines all have .¢Sh+c Ú 0

Q c

¢Sh+c= 0¢Sh+c

e = W>Qh

¢Sh+c Ú 0
Sh+c

¢Sengine

4 A temperature difference can be exploited to do work …
The tendency of hotter and colder objects to come to the same temperature can be tapped
to do work, as in this example:

v
FP

Hot gas exerts pressure
on locked piston.

Hot gas expands
and cools, pushing
piston down.

Piston does work on
wheel and cold gas.

Same
tempera-
ture; no
pressure
on piston.

Cold
gas

Insulation

Insulating,
frictionless

piston

Wheel

Locking
pin

Hot gas

FP

Th

Qh

Tc

Hot reservoir

Engine

Cold reservoir

Qc

W

1−

= 1−
Qc

Qh

W = Qh

Tc

Th

⎛

⎝⎜
⎞

⎠⎟

ΔSengine = 0
over cycle.

Thermodynamic
cycle

Efficiency e of engine is work
W divided by input heat Qh:

Efficiency is maximal when
waste heat Qc is minimal,
which occurs when ΔSh+c = 0:

Maximum possible
efficiency

Engine always
returns to same state,
so state functions
(including S) do not
change over
a cycle.

e =
W
Qh

=
Qh−Qc

Qh

Initial state: Gases at different temperatures are
separated by a locked piston.

Piston unlocked: Pressure difference causes
piston to move, doing work on wheel.

Final state: Gases at same temperature; no
more work can be done.

The expansion shown above is a single process, not a cycle, so this piston-cylinder does not constitute
a heat engine.

6 Entropy spells the death of the universe
The night sky shows us a universe of
stars and galaxies separated by cold,
nearly empty space. Over time, the
inexorable growth of entropy will erase
these differences, leaving a universe that
is uniform in temperature and density—
unable ever again to create stars or give
rise to life.

Nevertheless, the energy content of the
universe will remain the same as at its
birth.

Current
universe

Universe in
old ageΔS > 0

ΔE = 0

vi

u

vf

FIGURE 9–31 Problems 97, 98, 99, and 100

Building on strong pedagogic foundations, the Fourth Edition adds features that help
students see beyond the mathematical details to the underlying ideas of physics.

NEW END-OF-CHAPTER PROBLEM TYPES

PREDICT/EXPLAIN PROBLEMS �

consist of two linked multiple choice
questions — the first asking the student
to predict the outcome of a situation
and the second asking for its physical
explanation.

PASSAGE PROBLEMS �

offer a reading passage followed by a set of multiple-choice questions (the format
used by most MCAT questions), testing students’ ability to apply what they’ve
learned to a real-world situation.

Blue explanatory annotations guide
the student through the diagrams.

The Physics in Perspective spreads
blend words, equations, and
pictures into an integrated and
highly visual presentation.

ix
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Preface: To the Instructor

Teaching introductory algebra-based physics can be a most challenging—and
rewarding—experience. Students enter the course with a wide range of backgrounds,
interests, and skills and we, the instructors, strive not only to convey the basic
concepts and fundamental laws of physics but also to give students an appreciation
of its relevance and appeal.

I wrote this book to help with that task. It incorporates a number of unique
and innovative pedagogical features that evolved from years of teaching experi-
ence. The materials have been tested extensively in the classroom and in focus
groups, and refined based on comments from students and teachers who used the
earlier editions of the text. The enthusiastic response I received from users of the
first three editions was both flattering and motivating. The fourth edition has
been improved in response to this feedback.

Learning Tools in the Text
A key goal of this text is to help students make the connection between a
conceptual understanding of physics and the various skills necessary to solve
quantitative problems. One of the chief means to that end is the replacement of
traditional “textbook” Examples with an integrated system of learning tools: fully
worked Examples with Solutions in Two-Column Format, Active Examples,
Conceptual Checkpoints, and Exercises. Each of these tools is specialized to meet
the needs of students at a particular point in the development of a chapter.

These needs are not always the same. Sometimes students require a detailed ex-
planation of how to tackle a particular problem; at other times, they must be allowed
to take an active role and work out the details for themselves. Sometimes it is im-
portant for them to perform calculations and concentrate on numerical precision; at
other times it is more fruitful for them to explore a key idea in a conceptual context.
And sometimes, all that is required is practice using a new equation or definition.

This text attempts to emulate the teaching style of successful instructors by
providing the right tool at the right place and the right time.

Perspective Across Chapters
It’s easy for students to miss the forest for the trees—to overlook the unifying
concepts that are central to physics and that will make the details easier to learn and
retain. To address this difficulty, the fourth edition adds two features. At key
junctures in the text are six Physics in Perspective features, two-page spreads that
take a highly visual look at core ideas whose significance students are now
prepared to understand. For instance, after working through the energy chapters,
do students really understand how conservation of energy relates to conservation of
mechanical energy, and the role of work done by dissipative and nondissipative
forces? And after working through the chapters on electricity and magnetism, do
they have a clear view of how electric and magnetic forces relate to each other?
These are two of the topics on which the Physics in Perspective pages focus. Each
chapter now ends with a Big Picture box that links ideas covered in the chapter to
related material from earlier and later chapters in the text.

WORKED E XAMPLES WITH SOLUTIONS IN T WO-COLUMN FORMAT

Examples model the most complete and detailed method of solving a particular
type of problem. The Examples in this text are presented in a format that focuses
on the basic strategies and thought processes involved in problem solving. This
focus on the intimate relationship between conceptual insights and problem-
solving techniques encourages students to view the ability to solve problems as a
logical outgrowth of conceptual understanding rather than a kind of parlor trick.

NEW

NEW
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Each Example has the same basic structure:

• Picture the Problem This first step discusses how the physical situation
can be represented visually and what such a representation can tell us
about how to analyze and solve the problem. At this step, always
accompanied by a figure, we set up a coordinate system where appropriate,
label important quantities, and indicate which values are known.

• Strategy The Strategy addresses the commonly asked question, “How do I
get started?” by providing a clear overview of the problem and helping
students to identify the relevant physical principles. It then guides the student
in using known relationships to map a step-by-step path to the solution.

• Solution in Two-Column Format In the step-by-step Solution of the
problem, each of the steps is presented with a prose statement in the left-
hand column and the corresponding mathematical implementation in the
right-hand column. Each step clearly translates the idea described in
words into the appropriate equations.

• Insight Each Example wraps up with an Insight—a comment regarding
the solution just obtained. Some Insights deal with possible alternative
solution techniques, others with new ideas suggested by the results.

• Practice Problem Following the Insight is a Practice Problem, which
gives the student a chance to practice the type of calculation just presented.
The Practice Problems, always accompanied by their answers, provide
students with a valuable check on their understanding of the material.
Finally, each Example ends with a reference to some related end-of-chapter
Problems to allow students to test their skills further.

ACTIVE E XAMPLES

Active Examples serve as a bridge between the fully worked Examples, in which
every detail is fully discussed and every step is given, and the homework Problems,
where no help is given at all. In an Active Example, students take an active role in
solving the problem by thinking through the logic of the steps described on the left
and checking their answers on the right. Students often find it useful to practice
problem solving by covering one column of an Active Example with a sheet of
paper and filling in the covered steps as they refer to the other column. Follow-up
questions, called Your Turns, ask students to look at the problem in a slightly
different way. Answers to Your Turns are provided at the end of the book.

CONCEPTUAL CHECKPOINTS

Conceptual Checkpoints help students sharpen their insight into key physical
principles. A typical Conceptual Checkpoint presents a thought-provoking question
that can be answered by logical reasoning based on physical concepts rather than by
numerical calculations. The statement of the question is followed by a detailed
discussion and analysis in the section titled Reasoning and Discussion, and the
Answer is given at the end of the checkpoint for quick and easy reference.

E XERCISES

Exercises present brief calculations designed to illustrate the application of
important new relationships, without the expenditure of time and space required
by a fully worked Example. Exercises generally give students an opportunity to
practice the use of a new equation, become familiar with the units of a new
physical quantity, and get a feeling for typical magnitudes.

PROBLEM-SOLVING NOTES

Each chapter includes a number of Problem-Solving Notes in the margin. These
practical hints are designed to highlight useful problem-solving methods while
helping students avoid common pitfalls and misconceptions.
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End-of-Chapter Learning Tools
The end-of-chapter material in this text also includes a number of innovations,
along with refinements of more familiar elements.

• Each chapter concludes with a Chapter Summary presented in an easy-to-
use outline style. Key concepts, equations, and important figures are
organized by topic for convenient reference.

• A unique feature of this text is the Problem-Solving Summary at the end of
the chapter. This summary addresses common sources of misconceptions in
problem solving, and gives specific references to Examples and Active
Examples illustrating the correct procedures.

• The homework for each chapter begins with a section of Conceptual
Questions. Answers to the odd-numbered Questions can be found in the
back of the book. Answers to even-numbered Conceptual Questions are
available in the online Instructor Solutions Manual.

• Conceptual Exercises (CE) have been integrated into the homework
section at the end of the chapter and consist of multiple-choice and ranking
questions. These questions have been carefully selected and written for
maximum effectiveness when used with classroom-response systems
(clickers). Answers to the odd-numbered Exercises can be found in the
back of the book. Answers to even-numbered Conceptual Exercises are
available in the online Instructor Solutions Manual.

• Predict/Explain problems are new to this edition. These problems ask the
student to predict what will happen in a given physical situation and then
to choose an explanation for their prediction.

• Also new to this edition, Passage Problems are similar to those found on
MCAT exams, with associated multiple-choice questions.

• Interactive Problems are based on the animations and simulations associated
with the Interactive Figures and are found within MasteringPhysics.

• A popular feature within the homework section is the Integrated
Problems (IP). These problems, labeled with the symbol IP , integrate a
conceptual question with a numerical problem. Problems of this type,
which stress the importance of reasoning from basic principles, show how
conceptual insight and numerical calculation go hand in hand in physics.

• In addition, a section titled General Problems presents a variety of problems
that use material from two or more sections within the chapter, or refer to
material covered in earlier chapters.

• Problems of special biological or medical relevance are indicated with
the symbol BIO .

Scope and Organization
TABLE OF CONTENTS

The presentation of physics in this text follows the standard practice for
introductory courses, with only a few well-motivated refinements.

• First, note that Chapter 3 is devoted to vectors and their application to
physics. My experience has been that students benefit greatly from a full
discussion of vectors early in the course. Most students have seen vectors and
trigonometric functions before, but rarely from the point of view of physics.
Thus, including vectors in the text sends a message that this is important
material, and it gives students an opportunity to brush up on their math skills.

• Note also that additional time is given to some of the more fundamental
aspects of physics, such as Newton’s laws and energy. Presenting such

NEW

NEW
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material in two chapters gives the student a better opportunity to
assimilate and master these crucial topics. Sections considered optional are
marked with an asterisk.

RE AL-WORLD PHYSICS

Since physics applies to everything in nature, it is only reasonable to point out
applications of physics that students may encounter in the real world. Each
chapter presents a number of discussions focusing on “Real-World Physics.”
Those of general interest are designated by a globe icon in the margin.
Applications that pertain more specifically to biology and medicine are indicated
by a green frog icon in the margin.

The Illustration Program
DRAWINGS

Many physics concepts are best conveyed by graphic means. Figures do far more
than illustrate a physics text—often, they bear the main burden of the exposition.
Accordingly, great attention has been paid to the figures in this book, with the
primary emphasis always on the clarity of the analysis. Color has been used
consistently throughout the text to reinforce concepts and make the diagrams
easier for students to understand. New to this edition, helpful annotations in
blue are included on select figures to help guide students in “reading” graphs
and other figures. This technique emulates what instructors do at the chalkboard
when explaining figures.

PHOTOGRAPHS

One of the most fundamental ways in which we learn is by comparing and
contrasting. Many companion photos are presented in groups of two or three that
contrast opposing physical principles or illustrate a single concept in a variety of
contexts. Grouping carefully chosen photographs in this way helps students to
see the universality of physics. In this edition, we have added new demonstration
photos that use high-speed time-lapse photography to dramatically illustrate
topics, such as standing waves, static versus kinetic friction, and the motion of
center of mass, in a way that reveals physical principles in the world around us.

Resources
The fourth edition is supplemented by an ancillary package developed to address
the needs of both students and instructors.

FOR THE INSTRUCTOR

Instructor Solutions Manual by Kenneth L. Menningen (University of Wisconsin–
Stevens Point) is available online at the Instructor Resource Center:
www.pearsonhighered.com/educator
You will find detailed, worked solutions to every Problem and Conceptual Exercise
in the text, all solved using the step-by-step problem-solving strategy of the in-
chapter Examples (Picture the Problem, Strategy, two-column Solutions, and Insight).
The solutions also contain answers to the even-numbered Conceptual Questions.

Instructor Resource Manual with Notes on ConcepTest Questions
Available at the Instructor Resource Center: www.pearsonhighered.com/educator,
this online manual consists of two parts. The first part, prepared by Katherine
Whatley and Judith Beck (both of University of North Carolina, Asheville),
contains sample syllabi, lecture outlines, notes, demonstration suggestions,
readings, and additional references and resources. The second part, prepared
by Cornelius Bennhold and Gerald Feldman (both of George Washington Uni-
versity) contains an overview of the development and implementation of Con-
cepTests, as well as instructor notes for each ConcepTest found in the Instruc-
tor Resource Center and available on the Instructor Resource DVD.

R E A L - W O R L D  P H Y S I C S :  B I O

R E A L - W O R L D  P H Y S I C S
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Test Bank Available at the Instructor Resource Center:
www.pearsonhighered.com/educator
Written by Delena Bell Gatch (Georgia Southern University), this online, cross-
platform test bank contains approximately 3000 multiple-choice, short-answer,
and true/false questions, many conceptual in nature. All are referenced to the
corresponding text section and ranked by level of difficulty.

Instructor Resource DVD (ISBN 0-321-60193-9)
This cross-platform DVD provides virtually every electronic asset you’ll need in
and out of the classroom. The DVD is organized by chapter and includes all text
illustrations and tables from Physics, Fourth Edition, in jpeg and PowerPoint
formats. The IRDVD also contains the Interactive Figures, chapter-by-chapter
lecture outlines in PowerPoint, ConcepTest “Clicker” Questions in PowerPoint,
editable Word files of all numbered equations, the eleven “Physics You Can See”
demonstration videos, and pdf files of the Instructor Resource Manual with Notes on
ConcepTest Questions.

MasteringPhysics™ www.masteringphysics.com
This homework, tutorial, and assessment system is designed to assign, assess, and
track each student’s progress using a wide diversity of tutorials and extensively pre-
tested problems. All the end-of-chapter problems from the text and the Interactive
Figures are available in MasteringPhysics. MasteringPhysics provides instructors
with a fast and effective way to assign uncompromising, wide-ranging online
homework assignments of just the right difficulty and duration. The tutorials coach
90% of students to the correct answer with specific wrong-answer feedback. The
powerful post-assignment diagnostics allow instructors to assess the progress of
their class as a whole or to quickly identify individual student’s areas of difficulty.

myeBook is available through MasteringPhysics either automatically when Mastering-
Physics is packaged with new books, or available as a purchased upgrade online.
Allowing students access to the text wherever they have access to the Internet,
myeBook comprises the full text, including figures that can be enlarged for better
viewing. Within myeBook, students are also able to pop up definitions and terms to
help with vocabulary and the reading of the material. Students can also  take notes in
myeBook using the annotation feature at the top of each page.

ActivPhysics OnLine™ (accessed through the Self Study area within www
.masteringphysics.com) provides a comprehensive library of more than 420 tried
and tested ActivPhysics applets. In addition, it provides a suite of applet-based
tutorials developed by education pioneers Alan Van Heuvelen and Paul
D’Alessandris. The online exercises are designed to encourage students to confront
misconceptions, reason qualitatively about physical processes, experiment quantita-
tively, and learn to think critically. They cover all topics from mechanics to electricity
and magnetism and from optics to modern physics. The ActivPhysics OnLine
companion workbooks help students work through complex concepts and under-
stand them more clearly.

FOR THE STUDENT

Student Study Guide with Selected Solutions by David Reid (University of
Chicago) Volume 1: ISBN 0-321-60200-5; Volume 2: ISBN 0-321-60199-8
The print study guide provides the following for each chapter:

Objectives; Warm-Up Questions from the Just-in-Time Teaching (JiTT) method by
Gregor Novak and Andrew Gavrin (Indiana University–Purdue University,
Indianapolis); Chapter Review with two-column Examples and integrated
quizzes; Reference Tools & Resources (equation summaries, important tips, and
tools); Puzzle Questions (also from Novak & Gavrin’s JiTT method); Selected
Solutions for several end-of-chapter questions and problems.
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MasteringPhysics™ (www.masteringphysics.com)
This homework, tutorial, and assessment system is based on years of research into
how students work physics problems and precisely where they need help. Studies
show that students who use MasteringPhysics significantly increase their final
scores compared to hand-written homework. MasteringPhysics achieves this
improvement by providing students with instantaneous feedback specific to their
wrong answers, simpler sub-problems upon request when they get stuck, and
partial credit for their method(s) used. This individualized, 24/7 Socratic tutoring
is recommended by nine out of ten students to their peers as the most effective
and time-efficient way to study.

myeBook is available through MasteringPhysics either automatically when Mastering-
Physics is packaged with new books, or available as a purchased upgrade online.
Allowing students access to the text wherever they have access to the Internet,
myeBook comprises the full text, including figures that can be enlarged for better
viewing. Within myeBook, students are also able to pop up definitions and terms to
help with vocabulary and the reading of the material. Students can also  take notes in
myeBook using the annotation feature at the top of each page.

ActivPhysics OnLine™ (accessed via www.masteringphysics.com) provides
students with a suite of highly regarded applet-based self-study tutorials (see
description on previous page). The following workbooks provide a range of
tutorial problems designed to use the ActivPhysics OnLine simulations, helping
students work through complex concepts and understand them more clearly:

• ActivPhysics OnLine Workbook Volume 1: Mechanics • Thermal Physics
• Oscillations & Waves (ISBN 0-8053-9060-X)

• ActivPhysics OnLine Workbook Volume 2: Electricity & Magnetism •
Optics • Modern Physics (ISBN 0-8053-9061-8)

Pearson Tutor Services (www.pearsontutorservices.com) Each student’s subscrip-
tion to MasteringPhysics also contains complimentary access to Pearson Tutor
Services, powered by Smarthinking, Inc. By logging in with their Mastering-
Physics ID and password, they will be connected to highly qualified e-structors™
who provide additional, interactive online tutoring on the major concepts of
physics. Some restrictions apply; offer subject to change.
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Preface: To the Student

xxiii

As a student preparing to take an algebra-based physics course, you are probably
aware that physics applies to absolutely everything in the natural world, from
raindrops and people to galaxies and atoms. Because physics is so wide-ranging
and comprehensive, it can sometimes seem a bit overwhelming. This text, which
reflects nearly two decades of classroom experience, is designed to help you deal
with a large body of information and develop a working understanding of the
basic concepts in physics. Now in its fourth edition, it incorporates many
refinements that have come directly from interacting with students using the first
three editions. As a result of these interactions, I am confident that as you develop
a deeper understanding of physics, you will also enrich your experience of the
world in which you live.

Now, I must admit that I like physics, and so I may be a bit biased in this re-
spect. Still, the reason I teach and continue to study physics is that I enjoy the in-
sight it gives into the physical world. I can’t help but notice—and enjoy—aspects
of physics all around me each and every day. As I always tell my students on the
first day of class, I would like to share some of this enjoyment and delight in the
natural world with you. It is for this reason that I undertook the task of writing
this book.

To assist you in the process of studying physics, this text incorporates a number
of learning aids, including Two-Column Examples, Active Examples, and Concep-
tual Checkpoints. These and other elements work together in a unified way to en-
hance your understanding of physics on both a conceptual and a quantitative
level—they have been developed to give you the benefit of what we know about
how students learn physics, and to incorporate strategies that have proven success-
ful to students over the years. The pages that follow will introduce these elements to
you, describe the purpose of each, and explain how they can help you.

As you progress through the text, you will encounter many interesting and in-
triguing applications of physics drawn from the world around you. Some of
these, such as magnetically levitated trains or the satellite-based Global Position-
ing System that enables you to determine your position anywhere on Earth to
within a few feet, are primarily technological in nature. Others focus on explain-
ing familiar or not-so-familiar phenomena, such as why the Moon has no atmos-
phere, how sweating cools the body, or why flying saucer shaped clouds often
hover over mountain peaks even when the sky is clear. Still others, such as coun-
tercurrent heat exchange in animals and humans or the use of sound waves to de-
stroy kidney stones, are of particular relevance to students of biology and the
other life sciences.

In many cases, you may find the applications to be a bit surprising. Did you
know, for example, that you are shorter at the end of the day than when you first
get up in the morning? (This is discussed in Chapter 5.) That an instrument called
the ballistocardiograph can detect the presence of a person hiding in a truck, just
by registering the minute recoil from the beating of the stowaway’s heart? (This is
discussed in Chapter 9.) That if you hum next to a spider’s web at just the right
pitch you can cause a resonance effect that sends the spider into a tizzy? (This is
discussed in Chapter 13.) That powerful magnets can exploit the phenomenon of
diamagnetism to levitate living creatures? (This is discussed in Chapter 22.)

Writing this textbook was a rewarding experience for me. I hope using it will
prove equally rewarding to you, and that it will inspire an interest in and appre-
ciation of physics that will last a lifetime.

James S. Walker
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underlies everything to follow. One of
the most fundamental of these is the
system of units we use when we measure
such things as the mass of an object, its
length, and the time between two
events. Other equally important issues
include methods for handling numerical
calculations and basic conventions of
mathematical notation. By the end of the
chapter we will have developed a
common “language” of physics that will
be used throughout this book and
probably in any science that you study.
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and Time 2

1–3 Dimensional Analysis 4
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1–5 Converting Units 8

1–6 Order-of-Magnitude
Calculations 10

1–7 Scalars and Vectors 11

1–8 Problem Solving in Physics 12

Introduction to Physics

Physics is a quantitative science, based on careful measurements
of quantities such as mass, length, and time. In the measurement

shown here, a baby elephant is found to have a mass of approximately
425 kilograms, corresponding to a weight of about 935 pounds. Measure-

ments of length and time indicate that the elephant’s height is 1.25 meters,
and its age is eleven months.

The goal of physics is to gain a
deeper understanding of the
world in which we live. For

example, the laws of physics allow us to
predict the behavior of everything from
rockets sent to the Moon, to integrated
chips in computers, to lasers used to
perform eye surgery. In short, everything
in nature—from atoms and subatomic
particles to solar systems and galaxies—
obeys the laws of physics.

As we begin our study of physics, it is
useful to consider a range of issues that
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▲ The size of these viruses, seen here
attacking a bacterial cell, is about 10-7 m.

1–1 Physics and the Laws of Nature
Physics is the study of the fundamental laws of nature, which, simply put, are the
laws that underlie all physical phenomena in the universe. Remarkably, we have
found that these laws can be expressed in terms of mathematical equations. As a
result, it is possible to make precise, quantitative comparisons between the pre-
dictions of theory—derived from the mathematical form of the laws—and the
observations of experiments. Physics, then, is a science rooted equally firmly in
theory and experiment, and, as physicists make new observations, they con-
stantly test and—if necessary—refine the present theories.

What makes physics particularly fascinating is the fact that it relates to every-
thing in the universe. There is a great beauty in the vision that physics brings to
our view of the universe; namely, that all the complexity and variety that we see
in the world around us, and in the universe as a whole, are manifestations of a few
fundamental laws and principles. That we can discover and apply these basic
laws of nature is both astounding and exhilarating.

For those not familiar with the subject, physics may seem to be little more than
a confusing mass of formulas. Sometimes, in fact, these formulas can be the trees
that block the view of the forest. For a physicist, however, the many formulas of
physics are simply different ways of expressing a few fundamental ideas. It is the
forest—the basic laws and principles of physical phenomena in nature—that is
the focus of this text.

1–2 Units of Length, Mass, and Time
To make quantitative comparisons between the laws of physics and our experi-
ence of the natural world, certain basic physical quantities must be measured. The
most common of these quantities are length (L), mass (M), and time (T). In fact, in
the next several chapters these are the only quantities that arise. Later in the text,
additional quantities, such as temperature and electric current, will be introduced
as needed.

We begin by defining the units in which each of these quantities is measured.
Once the units are defined, the values obtained in specific measurements can be
expressed as multiples of them. For example, our unit of length is the meter (m).
It follows, then, that a person who is 1.94 m tall has a height 1.94 times this unit of
length. Similar comments apply to the unit of mass, the kilogram, and the unit of
time, the second.

The detailed system of units used in this book was established in 1960 at the
Eleventh General Conference of Weights and Measures in Paris, France, and goes
by the name Système International d’Unités, or SI for short. Thus, when we refer
to SI units, we mean units of meters (m), kilograms (kg), and seconds (s). Taking
the first letter from each of these units leads to an alternate name that is often
used—the mks system.

In the remainder of this section we define each of the SI units.

Length
Early units of length were often associated with the human body. For example,
the Egyptians defined the cubit to be the distance from the elbow to the tip of the
middle finger. Similarly, the foot was at one time defined to be the length of the
royal foot of King Louis XIV. As colorful as these units may be, they are not par-
ticularly reproducible—at least not to great precision.

In 1793 the French Academy of Sciences, seeking a more objective and repro-
ducible standard, decided to define a unit of length equal to one ten-millionth the
distance from the North Pole to the equator. This new unit was named the metre
(from the Greek metron for “measure”). The preferred spelling in the United States
is meter. This definition was widely accepted, and in 1799 a “standard” meter was
produced. It consisted of a platinum-iridium alloy rod with two marks on it one
meter apart.

▲ The diameter of this typical galaxy is
about (How many viruses would it
take to span the galaxy?)

1021 m.
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▲ The standard kilogram, a cylinder of
platinum and iridium 0.039 m in height
and diameter, is kept under carefully
controlled conditions in Sèvres, France.
Exact replicas are maintained in other
laboratories around the world.

TABLE 1–1 Typical Distances

Distance from Earth to the nearest large galaxy 
(the Andromeda galaxy, M31)

Diameter of our galaxy (the Milky Way)
Distance from Earth to the nearest star (other than the Sun)
One light-year
Average radius of Pluto’s orbit
Distance from Earth to the Sun
Radius of Earth
Length of a football field
Height of a person 2 m
Diameter of a CD 0.12 m
Diameter of the aorta 0.018 m
Diameter of a period in a sentence
Diameter of a red blood cell
Diameter of the hydrogen atom
Diameter of a proton 2 * 10-15 m

10-10 m
8 * 10-6 m
5 * 10-4 m

102 m
6.37 * 106 m
1.5 * 1011 m

6 * 1012 m
9.46 * 1015 m

4 * 1016 m
8 * 1020 m
2 * 1022 m

Since 1983 we have used an even more precise definition of the meter, based
on the speed of light in a vacuum. In particular:

One meter is defined to be the distance traveled by light in a vacuum in
1/299,792,458 of a second.

No matter how its definition is refined, however, a meter is still about 3.28 feet,
which is roughly 10 percent longer than a yard. A list of typical lengths is given in
Table 1–1.

Mass
In SI units, mass is measured in kilograms. Unlike the meter, the kilogram is not
based on any natural physical quantity. By convention, the kilogram has been de-
fined as follows:

The kilogram, by definition, is the mass of a particular platinum-iridium alloy
cylinder at the International Bureau of Weights and Standards in Sèvres,
France.

To put the kilogram in everyday terms, a quart of milk has a mass slightly less
than 1 kilogram. Additional masses, in kilograms, are given in Table 1–2.

Note that we do not define the kilogram to be the weight of the platinum-
iridium cylinder. In fact, weight and mass are quite different quantities, even though
they are often confused in everyday language. Mass is an intrinsic, unchanging
property of an object. Weight, in contrast, is a measure of the gravitational force
acting on an object, which can vary depending on the object’s location. For exam-
ple, if you are fortunate enough to travel to Mars someday, you will find that your
weight is less than on Earth, though your mass is unchanged. The force of gravity
will be discussed in detail in Chapter 12.

Time
Nature has provided us with a fairly accurate timepiece in the revolving Earth. In fact,
prior to 1956 the mean solar day was defined to consist of 24 hours, with 60 minutes
per hour, and 60 seconds per minute, for a total of 
Even the rotation of the Earth is not completely regular, however.

Today, the most accurate timekeepers known are “atomic clocks,” which are
based on characteristic frequencies of radiation emitted by certain atoms. These

(24)(60)(60) = 84,400 seconds.

TABLE 1–2 Typical Masses

Galaxy
(Milky Way) 4 * 1041 kg

Sun 2 * 1030 kg
Earth 5.97 * 1024 kg
Space shuttle 2 * 106 kg
Elephant 5400 kg

Automobile 1200 kg

Human 70 kg

Baseball 0.15 kg

Honeybee 1.5 * 10-4 kg
Red blood cell 10-13 kg
Bacterium 10-15 kg
Hydrogen atom 1.67 * 10-27 kg
Electron 9.11 * 10-31 kg



4 C H A P T E R  1 I N T R O D U C T I O N  T O  P H Y S I C S

▲ This atomic clock, which keeps time on
the basis of radiation from cesium atoms, is
accurate to about three millionths of a sec-
ond per year. (How long would it take for it
to gain or lose an hour?)

TABLE 1–3 Typical Times

Age of the universe
Age of the Earth
Existence of human
species

Human lifetime
One year
One day
Time between
heartbeats 0.8 s

Human reaction time 0.1 s
One cycle of a high-
pitched sound wave

One cycle of an
AM radio wave

One cycle of a
visible light wave 2 * 10-15 s

10-6 s

5 * 10-5 s

8.6 * 104 s
3 * 107 s
2 * 109 s

6 * 1013 s

1.3 * 1017 s
5 * 1017 s

clocks have typical accuracies of about 1 second in 300,000 years. The atomic clock
used for defining the second operates with cesium-133 atoms. In particular, the
second is defined as follows:

One second is defined to be the time it takes for radiation from a cesium-133
atom to complete 9,192,631,770 cycles of oscillation.

A range of characteristic time intervals is given in Table 1–3.
The nation’s time and frequency standard is determined by a cesium fountain

atomic clock developed at the National Institute of Standards and Technology
(NIST) in Boulder, Colorado. The fountain atomic clock, designated NIST-F1, pro-
duces a “fountain” of cesium atoms that are projected upward in a vacuum to a
height of about a meter. It takes roughly a second for the atoms to rise and fall
through this height (as we shall see in the next chapter), and during this relatively
long period of time the frequency of their oscillation can be measured with great
precision. In fact, the NIST-F1 will gain or lose no more than one second in every
20 million years of operation.

Atomic clocks are almost commonplace these days. For example, the satellites
that participate in the Global Positioning System (GPS) actually carry atomic
clocks with them in orbit. This allows them to make the precision time measure-
ments that are needed for an equally precise determination of position and speed.
Similarly, the “atomic clocks” that are advertised for use in the home, while not
atomic in their operation, nonetheless get their time from radio signals sent out
from the atomic clocks at NIST in Boulder. You can access the official U.S. time on
your computer by going to http://time.gov on the Web.

Other Systems of Units and Standard Prefixes
Although SI units are used throughout most of this book and are used almost ex-
clusively in scientific research and in industry, we will occasionally refer to other
systems that you may encounter from time to time.

For example, a system of units similar to the mks system, though comprised
of smaller units, is the cgs system, which stands for centimeter (cm), gram (g), and
second (s). In addition, the British engineering system is often encountered in
everyday usage in the United States. Its basic units are the slug for mass, the foot
(ft) for length, and the second (s) for time.

Finally, multiples of the basic units are common no matter which system is
used. Standard prefixes are used to designate common multiples in powers of
ten. For example, the prefix kilo means one thousand, or, equivalently, Thus,
1 kilogram is and 1 kilometer is Similarly, milli is the prefix 
for one thousandth, or Thus, a millimeter is and so on. The most
common prefixes are listed in Table 1–4.

10-3 meter,10-3.
103 meters.103 grams,

103.

E X E R C I S E  1 – 1

a. A minivan sells for 33,200 dollars. Express the price of the minivan in kilodol-
lars and megadollars.

b. A typical E. coli bacterium is about 5 micrometers (or microns) in length. Give
this length in millimeters and kilometers.

S O L U T I O N

a. 33.2 kilodollars, 0.0332 megadollars

b. 0.005 mm, 0.000000005 km

1–3 Dimensional Analysis
In physics, when we speak of the dimension of a physical quantity, we refer to
the type of quantity in question, regardless of the units used in the measurement.
For example, a distance measured in cubits and another distance measured in
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TABLE 1–4 Common Prefixes

Power Prefix Abbreviation

peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro
nano n
pico p
femto f10-15

10-12
10-9

m10-6
10-3
10-2
10-1
101
102
103
106
109
1012
1015

TABLE 1–5 Dimensions of Some
Common Physical Quantities

Quantity Dimension

Distance [L]
Area
Volume
Velocity [L]/[T]
Acceleration
Energy [M][L2]>[T2]

[L]>[T2]

[L3]
[L2]

light-years both have the same dimension—length. The same is true of compound
units such as velocity, which has the dimensions of length per unit time (length/
time). A velocity measured in miles per hour has the same dimensions—length/
time—as one measured in inches per century.

Now, any valid formula in physics must be dimensionally consistent; that is,
each term in the equation must have the same dimensions. It simply doesn’t make
sense to add a distance to a time, for example, any more than it makes sense to
add apples and oranges. They are different things.

To check the dimensional consistency of an equation, it is convenient to in-
troduce a special notation for the dimension of a quantity. We will use square
brackets, [ ], for this purpose. Thus, if x represents a distance, which has
dimensions of length [L], we write this as Similarly, a velocity, v, has
dimensions of length per time [T]; thus we write to indicate its dimen-
sions. Acceleration, a, which is the change in velocity per time, has the dimensions

The dimensions of some common physical quanti-
ties are summarized in Table 1–5.

Let’s use this notation to check the dimensional consistency of a simple equa-
tion. Consider the following formula:

In this equation, x and represent distances, v is a velocity, and t is time. Writing
out the dimensions of each term, we have

It might seem at first that the last term has different dimensions than the other
two. However, dimensions obey the same rules of algebra as other quantities.
Thus the dimensions of time cancel in the last term:

As a result, we see that each term in this formula has the same dimensions. This
type of calculation with dimensions is referred to as dimensional analysis.

[L] = [L] +
[L]
[T]

[T] = [L] + [L]

[L] = [L] +
[L]
[T]

[T]

x0

x = x0 + vt

a = 1[L]>[T]2>[T] = [L]>[T2].

v = [L]>[T]
x = [L].

E X E R C I S E  1 – 2

Show that is dimensionally consistent. The quantities x and are
distances, is a velocity, and a is an acceleration.

S O L U T I O N

Using the dimensions given in Table 1–5, we have

Note that is ignored in this analysis because it has no dimensions.1
2

[L] = [L] +
[L]
[T]

[T] +
[L]

[T]2
[T2] = [L] + [L] + [L]

v0

x0x = x0 + v0t + 1
2 at2

Later in this text you will derive your own formulas from time to time. As you
do so, it is helpful to check dimensional consistency at each step of the derivation.
If at any time the dimensions don’t agree, you will know that a mistake has been
made, and you can go back and look for it. If the dimensions check, however, it’s
not a guarantee the formula is correct—after all, dimensionless factors, like 1/2 or
2, don’t show up in a dimensional check.

1–4 Significant Figures
When a mass, a length, or a time is measured in a scientific experiment, the result
is known only to within a certain accuracy. The inaccuracy or uncertainty can be
caused by a number of factors, ranging from limitations of the measuring device
itself to limitations associated with the senses and the skill of the person perform-
ing the experiment. In any case, the fact that observed values of experimental
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▲ Every measurement has some degree of
uncertainty associated with it. How precise
would you expect this measurement to be?

quantities have inherent uncertainties should always be kept in mind when per-
forming calculations with those values.

Suppose, for example, that you want to determine the walking speed of your
pet tortoise. To do so, you measure the time, t, it takes for the tortoise to walk a
distance, d, and then you calculate the quotient, When you measure the dis-
tance with a ruler, which has one tick mark per millimeter, you find that

with the precise value of the digit in the second decimal place un-
certain. Defining the number of significant figures in a physical quantity to be
equal to the number of digits in it that are known with certainty, we say that d is
known to three significant figures.

Similarly, you measure the time with an old pocket watch, and as best you can
determine it, with the second decimal place uncertain. Note that t is
known to only two significant figures. If we were to make this measurement with
a digital watch, with a readout giving the time to 1/100 of a second, the accuracy
of the result would still be limited by the finite reaction time of the experimenter.
The reaction time would have to be predetermined in a separate experiment. (See
Problem 77 in Chapter 2 for a simple way to determine your reaction time.)

Returning to the problem at hand, we would now like to calculate the speed
of the tortoise. Using the above values for d and t and a calculator with eight dig-
its in its display, we find Clearly, such an
accurate value for the speed is unjustified, considering the limitations of our
measurements. After all, we can’t expect to measure quantities to two and three
significant figures and from them obtain results with eight significant figures. In
general, the number of significant figures that result when we multiply or divide
physical quantities is given by the following rule of thumb:

The number of significant figures after multiplication or division is
equal to the number of significant figures in the least accurately
known quantity.

In our speed calculation, for example, we know the distance to three significant
figures, but the time to only two significant figures. As a result, the speed should
be given with just two significant figures, 
Note that we didn’t just keep the first two digits in 2.4941176 cm/s and drop the
rest. Instead, we “rounded up”; that is, because the first digit to be dropped (9 in
this case) is greater than or equal to 5, we increase the previous digit (4 in this
case) by 1. Thus, 2.5 cm/s is our best estimate for the tortoise’s speed.

d>t = 121.2 cm2/18.5 s2 = 2.5 cm/s.

121.2 cm2>18.5 s2 = 2.4941176 cm/s.

t = 8.5 s,

d = 21.2 cm,

d>t.

E X A M P L E  1 – 1 I T ’ S  T H E  T O R T O I S E  B Y  A  H A R E

A tortoise races a rabbit by walking with a constant speed of 2.51 cm/s for 12.23 s. How much distance does the tortoise cover?

P I C T U R E  T H E  P R O B L E M

The race between the rabbit and the tortoise is shown in our
sketch. The rabbit pauses to eat a carrot while the tortoise
walks with a constant speed.

S T R A T E G Y

The distance covered by the tortoise is the speed of the tortoise
multiplied by the time during which it walks.

S O L U T I O N

1. Multiply the speed by the time to find the distance d:

I N S I G H T

Notice that if we simply multiply 2.51 cm/s by 12.23 s, we obtain 30.6973 cm. We don’t give all of these digits in our answer,
however. In particular, because the quantity that is known with the least accuracy (the speed) has only three significant 

 = 12.51 cm/s2112.23 s2 = 30.7 cm

 d = 1speed21time2

2.51 cm/s
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▲ The finish of the 100-meter race at
the 1996 Atlanta Olympics. This official
timing photo shows Donovan Bailey
setting a new world record of 9.84 s. 
(If the timing had been accurate to only
tenths of a second—as would probably
have been the case before electronic
devices came into use—how many
runners would have shared the winning
time? How many would have shared
the second-place and third-place times?)

Note that the distance of 17 cm in the Practice Problem has only two signifi-
cant figures because we don’t know the digits to the right of the decimal place. If
the distance were given as 17.0 cm, on the other hand, it would have three signif-
icant figures.

When physical quantities are added or subtracted, we use a slightly different
rule of thumb. In this case, the rule involves the number of decimal places in each
of the terms:

The number of decimal places after addition or subtraction is equal
to the smallest number of decimal places in any of the individual
terms.

Thus, if you make a time measurement of 16.74 s, and then a subsequent time
measurement of 5.1 s, the total time of the two measurements should be given as
21.8 s, rather than 21.84 s.

E X E R C I S E  1 – 3
You and a friend pick some raspberries. Your flat weighs 12.7 lb, and your friend’s
weighs 7.25 lb. What is the combined weight of the raspberries?

S O L U T I O N

Just adding the two numbers gives 19.95 lb. According to our rule of thumb, however,
the final result must have only a single decimal place (corresponding to the term with
the smallest number of decimal places). Rounding off to one place, then, gives 20.0 lb
as the acceptable result.

Scientific Notation
The number of significant figures in a given quantity may be ambiguous due to
the presence of zeros at the beginning or end of the number. For example, if a dis-
tance is stated to be 2500 m, the two zeros could be significant figures, or they
could be zeros that simply show where the decimal point is located. If the two
zeros are significant figures, the uncertainty in the distance is roughly a meter; if
they are not significant figures, however, the uncertainty is about 100 m.

To remove this type of ambiguity, we can write the distance in scientific
notation—that is, as a number of order unity times an appropriate power of ten.
Thus, in this example, we would express the distance as if there are
only two significant figures, or as to indicate four significant fig-
ures. Likewise, a time given as 0.000036 s has only two significant figures—the
preceding zeros only serve to fix the decimal point. If this quantity were known
to three significant figures, we would write it as to remove any am-
biguity. See Appendix A for a more detailed discussion of scientific notation.

3.60 * 10-5 s

2.500 * 103 m
2.5 * 103 m

E X E R C I S E  1 – 4

How many significant figures are there in (a) 21.00, (b) 21, (c) , (d) ?

S O L U T I O N

(a) 4, (b) 2, (c) 2, (d) 3

2.10 * 10-32.1 * 10-2

figures, we give a result with three significant figures. Note, in addition, that the third digit in our answer has been rounded
up from 6 to 7.

P R A C T I C E  P R O B L E M

How long does it take for the tortoise to walk 17 cm? [Answer: ]

Some related homework problems: Problem 14, Problem 18

t = 117 cm2>12.51 cm/s2 = 6.8 s
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▲ From this sign, you can calculate 
factors for converting miles to kilometers
and vice versa. (Why do you think the
conversion factors seem to vary for
different destinations?)

Round-Off Error
Finally, even if you perform all your calculations to the same number of signif-
icant figures as in the text, you may occasionally obtain an answer that differs
in its last digit from that given in the book. In most cases this is not an issue as
far as understanding the physics is concerned—usually it is due to round-off
error.

Round-off error occurs when numerical results are rounded off at different
times during a calculation. To see how this works, let’s consider a simple exam-
ple. Suppose you are shopping for knickknacks, and you buy one item for $2.21,
plus 8 percent sales tax. The total price is $2.3868, or, rounded off to the nearest
penny, $2.39. Later, you buy another item for $1.35. With tax this becomes $1.458
or, again to the nearest penny, $1.46. The total expenditure for these two items is

Now, let’s do the rounding off in a different way. Suppose you buy both items
at the same time for a total before-tax price of Adding in
the 8% tax gives $3.8448, which rounds off to $3.84, one penny different from the
previous amount. This same type of discrepancy can occur in physics problems.
In general, it’s a good idea to keep one extra digit throughout your calculations
whenever possible, rounding off only the final result. But while this practice can
help to reduce the likelihood of round-off error, there is no way to avoid it in
every situation.

1–5 Converting Units
It is often convenient to convert from one set of units to another. For example,
suppose you would like to convert 316 ft to its equivalent in meters. Looking at
the conversion factors on the inside front cover of the text, we see that

1–1

Equivalently,

1–2

Now, to make the conversion, we simply multiply 316 ft by this expression, which
is equivalent to multiplying by 1:

Note that the conversion factor is written in this particular way, as 1 m divided by
3.281 ft, so that the units of feet cancel out, leaving the final result in the desired
units of meters.

Of course, we can just as easily convert from meters to feet if we use the reci-
procal of this conversion factor—which is also equal to 1:

For example, a distance of 26.4 m is converted to feet by canceling out the units of
meters, as follows:

Thus, we see that converting units is as easy as multiplying by 1—because that’s
really what you’re doing.

126.4 m2a3.281 ft
1 m

b = 86.6 ft

1 =
3.281 ft

1 m

1316 ft2a 1 m
3.281 ft

b = 96.3 m

1 m
3.281 ft

= 1

1 m = 3.281 ft

$2.21 + $1.35 = $3.56.

$2.39 + $1.46 = $3.85.
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E X A M P L E  1 – 2 A  H I G H - V O L U M E  W A R E H O U S E

A warehouse is 20.0 yards long, 10.0 yards wide, and 15.0 ft high. What is its volume in SI units?

P I C T U R E  T H E  P R O B L E M

In our sketch we picture the warehouse, and indicate the relevant
lengths for each of its dimensions.

S T R A T E G Y

We begin by converting the length, width, and height of the ware-
house to meters. Once this is done, the volume in SI units is simply
the product of the three dimensions.

S O L U T I O N

1. Convert the length of the warehouse to meters: 

2. Convert the width to meters: 

3. Convert the height to meters: 

4. Calculate the volume of the warehouse: 

I N S I G H T

We would say, then, that the warehouse has a volume of 764 cubic meters—the same as 764 cubical boxes that are 1 m on a side.

P R A C T I C E  P R O B L E M

What is the volume of the warehouse if its length is one-hundredth of a mile, and the other dimensions are unchanged?
[Answer: ]

Some related homework problems: Problem 20, Problem 21

V = 672 m3

V = L * W * H = 118.3 m219.14 m214.57 m2 = 764 m3

H = 115.0 ft2a 1 m
3.281 ft

b = 4.57 m

W = 110.0 yard2a 3 ft
1 yard

b a 1 m
3.281 ft

b = 9.14 m

L = 120.0 yard2a 3 ft
1 yard

b a 1 m
3.281 ft

b = 18.3 m

L W

H

Finally, the same procedure can be applied to conversions involving any num-
ber of units. For instance, if you walk at 3.00 mi/h, how fast is that in m/s? In this
case we need the following additional conversion factors:

With these factors at hand, we carry out the conversion as follows:

13.00  mi/ h2a 5280  ft
1  mi

b a 1 m
3.281  ft

b a 1  h
3600 s

b = 1.34 m/s

1 mi = 5280 ft  1 h = 3600 s

Note that in each conversion factor the numerator is equal to the denominator. In
addition, each conversion factor is written in such a way that the unwanted units
cancel, leaving just meters per second in our final result.

A C T I V E  E X A M P L E  1 – 1 F I N D  T H E  S P E E D  O F  B L O O D

Blood in the human aorta can attain speeds of 35.0 cm/s. How fast is this in
(a) ft/s and (b) mi/h?

S O L U T I O N

(Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Convert centimeters to meters and then to feet: 1.15 ft/s

CONTINUED ON NEXT PAGE

▲ Major blood vessels branch from the
aorta (bottom), the artery that receives
blood directly from the heart.
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▲ Enrico Fermi (1901–1954) was
renowned for his ability to pose and
solve interesting order-of-magnitude
problems. A winner of the 1938
Nobel Prize in physics, Fermi 
would ask his classes to obtain
order-of-magnitude estimates for
questions such as “How many piano
tuners are there in Chicago?” or
“How much is a tire worn down
during one revolution?” Estimation
questions like these are known to
physicists today as “Fermi
Problems.”

CONTINUED FROM PREVIOUS PAGE

Part (b)

2. First, convert centimeters to miles: 

3. Next, convert seconds to hours: 0.783 mi/h

I N S I G H T

Of course, the conversions in part (b) can be carried out in a single calculation 
if desired.

Y O U R  T U R N

Find the speed of blood in units of km/h. (Answers to Your Turn problems are given
in the back of the book.)

2.17 * 10-4 mi/s

1–6 Order-of-Magnitude Calculations
An order-of-magnitude calculation is a rough “ballpark” estimate designed to
be accurate to within a factor of about 10. One purpose of such a calculation is
to give a quick idea of what order of magnitude should be expected from a com-
plete, detailed calculation. If an order-of-magnitude calculation indicates that a
distance should be on the order of for example, and your calculator gives
an answer on the order of then there is an error somewhere that needs to
be resolved.

For example, suppose you would like to estimate the speed of a cliff diver on
entering the water. First, the cliff may be 20 or 30 feet high; thus in SI units we
would say that the order of magnitude of the cliff’s height is 10 m—certainly not
1 m or Next, the diver hits the water something like a second later—
certainly not 0.1 s later nor 10 s later. Thus, a reasonable order-of-magnitude esti-
mate of the diver’s speed is or roughly 20 mi/h. If you do a
detailed calculation and your answer is on the order of you probably en-
tered one of your numbers incorrectly.

Another reason for doing an order-of-magnitude calculation is to get a feeling
for what size numbers we are talking about in situations where a precise count is
not possible. This is illustrated in the following Example.

104 m/s,
10 m/1 s = 10 m/s,

102 m.

107 m,
104 m,

E X A M P L E  1 – 3 E S T I M A T I O N :  H O W  M A N Y  R A I N D R O P S  I N  A  S T O R M

A thunderstorm drops half an inch of rain on Washington D.C., which covers an area of about 70 square miles
Estimate the number of raindrops that fell during the storm.

P I C T U R E  T H E  P R O B L E M

Our sketch shows an area covered to a depth
by rainwater from the storm. Each drop of rain is

approximated by a small sphere with a diameter of 4 mm.

S T R A T E G Y

To find the number of raindrops, we first calculate the volume 
of water required to cover to a depth of 0.01 m. Next, we
calculate the volume of an individual drop of rain, recalling that
the volume of a sphere of radius r is We estimate the
diameter of a raindrop to be about 4 mm. Finally, dividing 
the volume of a drop into the volume of water that fell during the
storm gives the number of drops.

4pr3>3.

108 m2

d = 0.01 m
A = 108 m2

1'108 m22.
1'0.01 m2

4 mm
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I N S I G H T

Thus the number of raindrops in this one small storm is roughly 100,000 times greater than the current population of the Earth.

P R A C T I C E  P R O B L E M

If a storm pelts Washington D.C. with raindrops, how many inches of rain fall on the city? [Answer: About 5 inches]

Some related homework problems: Problem 36, Problem 38

1015

Appendix B provides a number of interesting “typical values” for length,
mass, speed, acceleration, and many other quantities. You may find these to be of
use in making your own order-of-magnitude estimates.

1–7 Scalars and Vectors
Physical quantities are sometimes defined solely in terms of a number and the
corresponding unit, like the volume of a room or the temperature of the air it con-
tains. Other quantities require both a numerical value and a direction. For exam-
ple, suppose a car is traveling at a rate of 25 m/s in a direction that is due north.
Both pieces of information—the rate of travel (25 m/s) and the direction (north)—
are required to fully specify the motion of the car. The rate of travel is given the
name speed; the rate of travel combined with the direction is referred to as the
velocity.

In general, quantities that are specified by a numerical value only are referred
to as scalars; quantities that require both a numerical value and a direction are
called vectors:

• A scalar is a numerical value, expressed in terms of appropriate units. An
example would be the temperature of a room or the speed of a car.

• A vector is a mathematical quantity with both a numerical value and a di-
rection. An example would be the velocity of a car.

All the physical quantities discussed in this text are either vectors or scalars. The
properties of numbers (scalars) are well known, but the properties of vectors are
sometimes less well known—though no less important. For this reason, you will
find that Chapter 3 is devoted entirely to a discussion of vectors in two and three
dimensions and, more specifically, to how they are used in physics.

The rather straightforward special case of vectors in one dimension is dis-
cussed in Chapter 2. There, we see that the direction of a velocity vector, for ex-
ample, can only be to the left or to the right, up or down, and so on. That is, only
two choices are available for the direction of a vector in one dimension. This is
illustrated in Figure 1–1, where we see two cars, each traveling with a speed of
25 m/s. We also see that the cars are traveling in opposite directions, with car 1
moving to the right and car 2 moving to the left. We indicate the direction of travel
with a plus sign for motion to the right, and a negative sign for motion to the left.
Thus, the velocity of car 1 is written and the velocity of car 2 is

The speed of each car is the absolute value, or magnitude, of the
velocity; that is, 

Whenever we deal with one-dimensional vectors, we shall indicate their
direction with the appropriate sign. Many examples are found in Chapter 2
and, again, in later chapters where the simplicity of one dimension can again be
applied.

speed = ƒ v1 ƒ = ƒ v2 ƒ = 25 m/s.
v2 = -25 m/s.

v1 = +25 m/s,

S O L U T I O N

1. Calculate the order of magnitude of the volume of water,
that fell during the storm:Vwater,

Vwater = Ad = 1108 m2210.01 m2 L 106 m3

2. Calculate the order of magnitude of the volume of a drop
of rain, Note that if the diameter of a drop is 4 mm,
its radius is r = 2 mm = 0.002 m:

Vdrop.
Vdrop =

4
3

 pr3 L
4
3

 p10.002 m23 L 10-8 m3

3. Divide into to find the order of magnitude of
the number of drops that fell during the storm: 

VwaterVdrop number of raindrops L
Vwater

Vdrop
L

106 m3

10-8 m3
= 1014

▲ FIGURE 1–1 Velocity vectors in 
one dimension
The two cars shown in this figure have
equal speeds of 25 m/s, but are traveling
in opposite directions. To indicate the
direction of travel, we first choose a posi-
tive direction (to the right in this case),
and then give appropriate signs to the
velocity of each car. For example, car 1
moves to the right, and hence its velocity
is positive, the velocity of
car 2 is negative, because
it moves to the left.

v2 = -25 m>s,
v1 = +25 m>s;

v2 = –25 m/s v1 = +25 m/s

Positive direction

Car 1Car 2

Minus sign indicates
motion in the
negative direction.

Plus sign indicates
motion in the
positive direction.
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1–8 Problem Solving in Physics
Physics is a lot like swimming—you have to learn by doing. You could read a
book on swimming and memorize every word in it, but when you jump into a
pool the first time you are going to have problems. Similarly, you could read this
book carefully, memorizing every formula in it, but when you finish, you still
haven’t learned physics. To learn physics, you have to go beyond passive reading;
you have to interact with physics and experience it by doing problems.

In this section we present a general overview of problem solving in physics.
The suggestions given below, which apply to problems in all areas of physics,
should help to develop a systematic approach.

We should emphasize at the outset that there is no recipe for solving problems in
physics—it is a creative activity. In fact, the opportunity to be creative is one of the at-
tractions of physics. The following suggestions, then, are not intended as a rigid set
of steps that must be followed like the steps in a computer program. Rather, they
provide a general guideline that experienced problem solvers find to be effective.

• Read the problem carefully Before you can solve a problem, you need to
know exactly what information it gives and what it asks you to determine.
Some information is given explicitly, as when a problem states that a per-
son has a mass of 70 kg. Other information is implicit; for example, saying
that a ball is dropped from rest means that its initial speed is zero. Clearly,
a careful reading is the essential first step in problem solving.

• Sketch the system This may seem like a step you can skip—but don’t. A
sketch helps you to acquire a physical feeling for the system. It also pro-
vides an opportunity to label those quantities that are known and those
that are to be determined. All Examples in this text begin with a sketch of
the system, accompanied by a brief description in a section labeled “Pic-
ture the Problem.”

• Visualize the physical process Try to visualize what is happening in the
system as if you were watching it in a movie. Your sketch should help. This
step ties in closely with the next step.

• Strategize This may be the most difficult, but at the same time the most
creative, part of the problem-solving process. From your sketch and visu-
alization, try to identify the physical processes at work in the system. Ask
yourself what concepts or principles are involved in this situation. Then,
develop a strategy—a game plan—for solving the problem. All Examples
in this book have a “Strategy” spelled out before the solution begins.

• Identify appropriate equations Once a strategy has been developed, find
the specific equations that are needed to carry it out.

• Solve the equations Use basic algebra to solve the equations identified in
the previous step. Work with symbols such as x or y for the most part, sub-
stituting numerical values near the end of the calculations. Working with
symbols will make it easier to go back over a problem to locate and iden-
tify mistakes, if there are any, and to explore limits and special cases.

• Check your answer Once you have an answer, check to see if it makes
sense: (i) Does it have the correct dimensions? (ii) Is the numerical value
reasonable?

• Explore limits/special cases Getting the correct answer is nice, but it’s not
all there is to physics. You can learn a great deal about physics and about
the connection between physics and mathematics by checking various lim-
its of your answer. For example, if you have two masses in your system, 
and what happens in the special case that or Check to
see whether your answer and your physical intuition agree.

The Examples in this text are designed to deepen your understanding of
physics and at the same time develop your problem-solving skills. They all have

m1 = m2?m1 = 0m2,
m1
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T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The three physical dimensions
introduced in this chapter—mass,
length, time—are the only ones we’ll
use until Chapter 19, when we
introduce electric charge. Other
quantities found in the next several
chapters, like force, momentum, and
energy, are combinations of these
three basic dimensions.

Dimensional analysis is used
frequently in the coming chapters to
verify that each term in an equation
has the correct dimensions. See, for
example, the discussion following
Equation 2–7, where we show that
each term has the dimensions of
velocity. We also use dimensional
analysis to help derive some results,
such as the speed of waves on a string
in Section 14–2.

In this chapter we discussed the idea
of a vector in one spatial dimension
and showed how the direction of the
vector can be indicated by its sign.
These concepts are developed in more
detail in Chapter 2.

Vectors are extended to two and
three spatial dimensions in Chapter 3.
After that, they are a standard tool
throughout mechanics, and they
appear again in electricity and
magnetism.

the same basic structure: Problem Statement; Picture the Problem; Strategy; Solution,
presenting the flow of ideas and the mathematics side-by-side in a two-column
format; Insight; and a Practice Problem related to the one just solved. As you work
through the Examples in the chapters to come, notice how the basic problem-solving
guidelines outlined above are implemented in a consistent way.

In addition to the Examples, this text contains a new and innovative type of
worked-out problem called the Active Example, the first one of which appears on
page 9. The purpose of Active Examples is to encourage active participation in the
solution of a problem and, in so doing, to act as a “bridge” between Examples—
where each and every detail is worked out—and homework problems—where
you are completely on your own. An analogy would be to think of Examples as
like a tricycle, with no balancing required; homework problems as like a bicycle,
where balancing is initially difficult to master; and Active Examples as like a bi-
cycle with training wheels that give just enough help to prevent a fall. When you
work through an Active Example, keep in mind that the work you are doing as
you progress step-by-step through the problem is just the kind of work you’ll be
doing later in your homework assignments.

Finally, it is tempting to look for shortcuts when doing a problem—to look for
a formula that seems to fit and some numbers to plug into it. It may seem harder
to think ahead, to be systematic as you solve the problem, and then to think back
over what you have done at the end of the problem. The extra effort is worth it,
however, because by doing these things you will develop powerful problem-solv-
ing skills that can be applied to unexpected problems you may encounter on
exams—and in life in general.

C H A P T E R  S U M M A RY

1 – 1 P H YS I C S  A N D  T H E  L AW S  O F  N AT U R E

Physics is based on a small number of fundamental laws and principles.

1 – 2 U N I T S  O F  L E N G T H ,  M A S S ,  A N D  T I M E

Length
One meter is defined as the distance traveled by light in a vacuum in
1/299,792,458 second.
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Mass
One kilogram is the mass of a metal cylinder kept at the International Bureau of
Weights and Standards.

Time
One second is the time required for a particular type of radiation from 
cesium-133 to undergo 9,192,631,770 oscillations.

1 – 3 D I M E N S I O N A L  A N A LYS I S

Dimension
The dimension of a quantity is the type of quantity it is, for example, length [L],
mass [M], or time [T].

Dimensional Consistency
An equation is dimensionally consistent if each term in it has the same dimen-
sions. All valid physical equations are dimensionally consistent.

Dimensional Analysis
A calculation based on the dimensional consistency of an equation.

1 – 4 S I G N I F I C A N T  F I G U R E S

Significant Figures
The number of digits reliably known, excluding digits that simply indicate 
the decimal place. For example, 3.45 and 0.0000345 both have three 
significant figures.

Round-off Error
Discrepancies caused by rounding off numbers in intermediate results.

1 – 5 C O N V E RT I N G  U N I T S

Multiply by the ratio of two units to convert from one to another. As an exam-
ple, to convert 3.5 m to feet, you multiply by the factor (1 ft/0.3048 m).

1 – 6 O R D E R- O F - M A G N I T U D E  C A L C U L AT I O N S

A ballpark estimate designed to be accurate to within the nearest power of ten.

1 – 7 S C A L A R S  A N D  V E C T O R S

A physical quantity that can be represented by a numerical value only is called a
scalar. Quantities that require a direction in addition to the numerical value are
called vectors.

1 – 8 P R O B L E M  S O LV I N G  I N  P H YS I C S

A good general approach to problem solving is as follows: read; sketch; visual-
ize; strategize; identify equations; solve; check; explore limits.

v2 = –25 m/s v1 = +25 m/s

Positive direction

Car 1Car 2

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. Can dimensional analysis determine whether the area of a cir-
cle is or ? Explain.2pr2pr2

2. If a distance d has units of meters, and a time T has units of sec-
onds, does the quantity make sense physically? What
about the quantity d/T? Explain in both cases.

T + d

For instructor-assigned homework, go to www.masteringphysics.com
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P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. On all problems, red bullets (•, ••,
•••) are used to indicate the level of difficulty.

S E C T I O N  1 – 2 U N I T S  O F  L E N G T H ,  M A S S ,  
A N D  T I M E

1. • Spiderman The movie Spiderman brought in $114,000,000 in
its opening weekend. Express this amount in (a) gigadollars
and (b) teradollars.

2. • BIO The Thickness of Hair A human hair has a thickness of
about What is this in (a) meters and (b) kilometers?

3. • The speed of light in a vacuum is approximately 0.3 Gm/s.
Express the speed of light in meters per second.

4. • A Fast Computer IBM has a computer it calls the Blue
Gene/L that can do 136.8 teracalculations per second. How
many calculations can it do in a microsecond?

S E C T I O N  1 – 3 D I M E N S I O N A L  A N A LYS I S

5. • CE Which of the following equations are dimensionally con-
sistent? (a) , (b) , (c) .

6. • CE Which of the following quantities have the dimensions of
a distance? (a) vt, (b) , (c) , (d)

7. • CE Which of the following quantities have the dimensions of
a speed? (a) , (b) at, (c) , (d) .

8. • Velocity is related to acceleration and distance by the follow-
ing expression: . Find the power p that makes this
equation dimensionally consistent.

9. • Acceleration is related to distance and time by the following
expression: . Find the power p that makes this equation
dimensionally consistent.

10. • Show that the equation is dimensionally consis-
tent. Note that v and are velocities and that a is an acceleration.

11. •• Newton’s second law (to be discussed in Chapter 5) states
that acceleration is proportional to the force acting on an object
and is inversely proportional to the object’s mass. What are the
dimensions of force?

12. •• The time T required for one complete oscillation of a mass m
on a spring of force constant k is

Find the dimensions k must have for this equation to be dimen-
sionally correct.

S E C T I O N  1 – 4 S I G N I F I C A N T  F I G U R E S

13. • The first several digits of are known to be
What is to (a) three significantpp = 3.14159265358979 Á .

p

T = 2pAm

k

v0

v = v0 + at

a = 2xtp

v2 = 2axp

12ax21>212x>a21>21
2at2

v2>a.2at1
2at2

t = 12x>a21>2x = 1
2at2x = vt

70 mm.

figures, (b) five significant figures, and (c) seven significant
figures?

14. • The speed of light to five significant figures is 
What is the speed of light to three significant figures?

15. • A parking lot is 144.3 m long and 47.66 m wide. What is the
perimeter of the lot?

16. • On a fishing trip you catch a 2.35-lb bass, a 12.1-lb rock cod,
and a 12.13-lb salmon. What is the total weight of your catch?

17. •• How many significant figures are there in (a) 0.000054 and
(b)

18. •• What is the area of a circle of radius (a) 14.37 m and (b) 3.8 m?

S E C T I O N  1 – 5 C O N V E RT I N G  U N I T S

19. • BIO Mantis Shrimp Peacock mantis shrimps (Odontodactylus
scyllarus) feed largely on snails. They shatter the shells of their
prey by delivering a sharp blow with their front legs, which
have been observed to reach peak speeds of 23 m/s. What is
this speed in (a) feet per second and (b) miles per hour?

20. • (a) The largest building in the world by volume is the Boe-
ing 747 plant in Everett, Washington. It measures approxi-
mately 631 m long, 707 yards wide, and 110 ft high. What is its
volume in cubic feet? (b) Convert your result from part (a) to
cubic meters.

21. • The Ark of the Covenant is described as a chest of acacia
wood 2.5 cubits in length and 1.5 cubits in width and height.
Given that a cubit is equivalent to 17.7 in., find the volume of
the ark in cubic feet.

22. • How long does it take for radiation from a cesium-133 atom
to complete 1.5 million cycles?

23. • Angel Falls Water going over Angel Falls, in Venezuela, the
world’s highest waterfall, drops through a distance of 3212 ft.
What is this distance in km?

24. • An electronic advertising sign repeats a message every 7 sec-
onds, day and night, for a week. How many times did the mes-
sage appear on the sign?

25. • BIO Blue Whales The blue whale (Balaenoptera musculus) is
thought to be the largest animal ever to inhabit the Earth. The
longest recorded blue whale had a length of 108 ft. What is this
length in meters?

26. • The Star of Africa The Star of Africa, a diamond in the royal
scepter of the British crown jewels, has a mass of 530.2 carats,
where . Given that 1 kg has an approximate
weight of 2.21 lb, what is the weight of this diamond in
pounds?

1 carat = 0.20 g

3.001 * 105?

2.9979 * 108 m/s.

3. Is it possible for two quantities to (a) have the same units but
different dimensions or (b) have the same dimensions but dif-
ferent units? Explain.

4. Give an order-of-magnitude estimate for the time in seconds of
the following: (a) a year; (b) a baseball game; (c) a heartbeat;
(d) the age of the Earth; (e) the age of a person.

5. Give an order-of-magnitude estimate for the length in meters of
the following: (a) a person; (b) a fly; (c) a car; (d) a 747 airplane;
(e) an interstate freeway stretching coast-to-coast.
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Shea Stadium, in New York. How many fans can it hold? 
(Problem 36)

27. • IP Many highways have a speed limit of 55 mi/h. (a) Is this
speed greater than, less than, or equal to 55 km/h? Explain. 
(b) Find the speed limit in km/h that corresponds to 55 mi/h.

28. • What is the speed in miles per hour of a beam of light travel-
ing at 

29. • BIO Woodpecker Impact When red-headed woodpeckers
(Melanerpes erythrocephalus) strike the trunk of a tree, they can
experience an acceleration ten times greater than the accelera-
tion of gravity, or about . What is this acceleration in

30. •• A Jiffy The American physical chemist Gilbert Newton Lewis
(1875–1946) proposed a unit of time called the “jiffy.” According
to Lewis, 1 jiffy � the time it takes light to travel one centimeter.
(a) If you perform a task in a jiffy, how long has it taken in
seconds? (b) How many jiffys are in one minute? (Use the fact that
the speed of light is approximately .)

31. •• The Mutchkin and the Noggin (a) A mutchkin is a Scot-
tish unit of liquid measure equal to 0.42 L. How many
mutchkins are required to fill a container that measures one
foot on a side? (b) A noggin is a volume equal to 0.28 mutchkin.
What is the conversion factor between noggins and gallons?

32. •• Suppose 1.0 cubic meter of oil is spilled into the ocean. Find
the area of the resulting slick, assuming that it is one molecule
thick, and that each molecule occupies a cube on a side.

33. •• IP (a) A standard sheet of paper measures 8 1/2 by 11 inches.
Find the area of one such sheet of paper in . (b) A second
sheet of paper is half as long and half as wide as the one de-
scribed in part (a). By what factor is its area less than the area
found in part (a)?

34. •• BIO Squid Nerve Impulses Nerve impulses in giant
axons of the squid can travel with a speed of 20.0 m/s. How fast
is this in (a) ft/s and (b) mi/h?

35. •• The acceleration of gravity is approximately (de-
pending on your location). What is the acceleration of gravity in
feet per second squared?

S E C T I O N  1 – 6 O R D E R- O F - M A G N I T U D E
C A L C U L AT I O N S

36. • Give a ballpark estimate of the number of seats in a typical
major league ballpark.

9.81 m/s2

m2

0.50 mm

2.9979 * 108 m/s

ft/s2?
98.1 m/s2

3.00 * 108 m/s?

38. •• New York is roughly 3000 miles from Seattle. When it is
10:00 A.M. in Seattle, it is 1:00 P.M. in New York. Using this infor-
mation, estimate (a) the rotational speed of the surface of Earth,
(b) the circumference of Earth, and (c) the radius of Earth.

39. •• You’ve just won the $12 million cash lottery, and you go to
pick up the prize. What is the approximate weight of the cash if
you request payment in (a) quarters or (b) dollar bills?

G E N E R A L  P R O B L E M S

40. • CE Which of the following equations are dimensionally con-
sistent? (a) , (b) , (c) , (d) .

41. • CE Which of the following quantities have the dimensions of
an acceleration? (a) , (b) , (c) , (d) v/t.

42. • BIO Photosynthesis The light that plants absorb to per-
form photosynthesis has a wavelength that peaks near 675 nm.
Express this distance in (a) millimeters and (b) inches.

43. • Glacial Speed On June 9, 1983, the lower part of the Varie-
gated Glacier in Alaska was observed to be moving at a rate of
210 feet per day. What is this speed in meters per second?

x>t2v2>xxt2

v2 = 2axt = a>vv = 1
2at2v = at

Alaska’s Variegated Glacier
(Problem 43)

37. • Milk is often sold by the gallon in plastic containers. (a) Esti-
mate the number of gallons of milk that are purchased in the
United States each year. (b) What approximate weight of plas-
tic does this represent?

44. •• BIO Mosquito Courtship Male mosquitoes in the mood
for mating find female mosquitoes of their own species by
listening for the characteristic “buzzing” frequency of the
female’s wing beats. This frequency is about 605 wing beats
per second. (a) How many wing beats occur in one minute? 
(b) How many cycles of oscillation does the radiation from a
cesium-133 atom complete during one mosquito wing beat?

45. •• Ten and Ten When Coast Guard pararescue jumpers leap
from a helicopter to save a person in the water, they like to
jump when the helicopter is flying “ten and ten,” which means
it is 10 feet above the water and moving forward with a speed
of 10 knots. What is “ten and ten” in SI units? (A knot is one
nautical mile per hour, where a nautical mile is 1.852 km.)

46. •• I P A Porsche sports car can accelerate at (a) Is
this acceleration greater than, less than, or equal to 
Explain. (b) Determine the acceleration of a Porsche in 
(c) Determine its acceleration in km/h2.

ft/s2.
14 ft/s2?

14 m/s2.
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▲ FIGURE 1–2 Problem 53
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48. •• BIO Brain Growth The mass of a newborn baby’s brain
has been found to increase by about 1.6 mg per minute. (a) How
much does the brain’s mass increase in one day? (b) How long
does it take for the brain’s mass to increase by 0.0075 kg?

49. •• The Huygens Probe NASA’s Cassini mission to Saturn
released a probe on December 25, 2004, that landed on the
Saturnian moon Titan on January 14, 2005. The probe, which
was named Huygens, was released with a gentle relative speed
of 31 cm/s. As Huygens moved away from the main spacecraft,
it rotated at a rate of seven revolutions per minute. (a) How
many revolutions had Huygens completed when it was 150
yards from the mother ship? (b) How far did Huygens move
away from the mother ship during each revolution? Give your
answer in feet.

50. ••• Acceleration is related to velocity and time by the follow-
ing expression: . Find the powers p and q that make 
this equation dimensionally consistent.

51. ••• The period T of a simple pendulum is the amount of time
required for it to undergo one complete oscillation. If the length
of the pendulum is L and the acceleration of gravity is g, then T
is given by

Find the powers p and q required for dimensional consistency.

52. ••• Driving along a crowded freeway, you notice that it takes a
time t to go from one mile marker to the next. When you in-
crease your speed by 7.9 mi/h, the time to go one mile de-
creases by 13 s. What was your original speed?

T = 2pLpgq

a = vptq

PA S S A G E  P R O B L E M S

BIO Using a Cricket as a Thermometer
All chemical reactions, whether organic or inorganic, proceed
at a rate that depends on temperature—the higher the temper-
ature, the higher the rate of reaction. This can be understood in
terms of molecules moving with increased energy as the tem-
perature is increased, and colliding with other molecules more
frequently. In the case of organic reactions, the result is that
metabolic processes speed up with increasing temperature.

An increased or decreased metabolic rate can manifest it-
self in a number of ways. For example, a cricket trying to attract
a mate chirps at a rate that depends on its overall rate of me-
tabolism. As a result, the chirping rate of crickets depends di-
rectly on temperature. In fact, some people even use a pet
cricket as a thermometer.

The cricket that is most accurate as a thermometer is the
snowy tree cricket (Oecanthus fultoni Walker). Its rate of chirp-
ing is described by the following formula:

In this expression, T is the temperature in degrees Fahrenheit.

= T - 40.0
N = number of chirps per 13.0 seconds

The impulses in these nerve axons, which carry commands to
the skeletal muscle fibers in the background, travel at speeds

of up to 140 m/s. (Problem 47)

53. • Which plot in Figure 1–2 represents the chirping rate of the
snowy tree cricket?

A B C D E

54. • If the temperature is 43 degrees Fahrenheit, how long does it
take for the cricket to chirp 12 times?

A. 12 s B. 24 s C. 43 s D. 52 s

55. •• Your pet cricket chirps 112 times in one minute (60.0 s).
What is the temperature in degrees Fahrenheit?

A. 41.9 B. 47.0 C. 64.3 D. 74.7

56. •• Suppose a snowy cricket is chirping when the temperature
is 65.0 degrees Fahrenheit. How many oscillations does the ra-
diation from a cesium-133 atom complete between successive
chirps?

A. 7.98 � 107 B. 3.68 � 108

C. 4.78 � 109 D. 9.58 � 109

47. •• BIO Human Nerve Fibers Type A nerve fibers in humans
can conduct nerve impulses at speeds up to 140 m/s. (a) How
fast are the nerve impulses in miles per hour? (b) How far (in
meters) can the impulses travel in 5.0 ms?
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2

We begin our study 
of physics with
mechanics, the area of

physics perhaps most apparent to us in
our everyday lives. Every time you raise
an arm, stand up or sit down, throw a
ball, or open a door, your actions are
governed by the laws of mechanics.
Basically, mechanics is the study of how
objects move, how they respond to
external forces, and how other factors,
such as size, mass, and mass distribution,
affect their motion. This is a lot to cover,
and we certainly won’t try to tackle it all
in one chapter.

Furthermore, in this chapter we treat
all physical objects as point particles;
that is, we consider all the mass of the
object to be concentrated at a single
point. This is a common practice in
physics. For example, if you are
interested in calculating the time it takes
the Earth to complete a revolution about
the Sun, it is reasonable to consider the
Earth and the Sun as simple particles. In
later chapters, we extend our studies to
increasingly realistic situations, involving
motion in more than one dimension and
physical objects with shape and size.

2–1 Position, Distance, and 
Displacement 19

2–2 Average Speed and Velocity 20

2–3 Instantaneous Velocity 24

2–4 Acceleration 26

2–5 Motion with Constant 
Acceleration 30

2–6 Applications of the 
Equations of Motion 36

2–7 Freely Falling Objects 39

One-Dimensional Kinematics

These sprinters, crossing the finish line of the 100-m dash, 
illustrate one-dimensional motion. At the moment shown 
in the photograph the runners are moving with constant velocity 
at a speed of approximately 10 m/s.
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x = 0

x

xi xf
Origin
(where x = 0)

Initial (xi) and final (xf)
positions of person

Arrowhead indicates
positive direction.

FIGURE 2–1 A one-dimensional 
coordinate system
You are free to choose the origin and pos-
itive direction as you like, but once your
choice is made, stick with it.

▲

2.1 mi

4.3 mi

Friend’s house Your house

x = 0

x

FIGURE 2–2 One-dimensional 
coordinates
The locations of your house, your
friend’s house, and the grocery store 
in terms of a one-dimensional 
coordinate system.

▲

2–1 Position, Distance, and Displacement
The first step in describing the motion of a particle is to set up a coordinate sys-
tem that defines its position. An example of a coordinate system in one dimension
is shown in Figure 2–1. This is simply an x axis, with an origin (where ) and
an arrow indicating the positive direction—the direction in which x increases. In
setting up a coordinate system, we are free to choose the origin and the positive
direction as we like, but once we make a choice we must be consistent with it
throughout any calculations that follow.

x = 0

The particle in Figure 2–1 is a person who has moved to the right from an ini-
tial position, to a final position, Because the positive direction is to the right,
it follows that is greater than that is, 

Now that we’ve seen how to set up a coordinate system, let’s use one to in-
vestigate the situation sketched in Figure 2–2. Suppose that you leave your house,
drive to the grocery store, and then return home. The distance you’ve covered in
your trip is 8.6 mi. In general, distance is defined as follows:

Definition: Distance

SI unit: meter, m

Using SI units, the distance in this case is

8.6 mi = 18.6 mi2a 1609 m
1 mi

b = 1.4 * 104 m

distance = total length of travel

xf 7 xi.xi;xf

xf.xi,

In a car, the distance traveled is indicated by the odometer. Note that distance is
always positive and, because it has no direction associated with it, it is a scalar, as
discussed in Chapter 1.

Another useful way to characterize a particle’s motion is in terms of the
displacement, which is simply the change in position.

Definition: Displacement, 

2–1

SI unit: meter, m

displacement = ¢x = xf - xi

displacement = change in position = final position - initial position

¢x

¢x,
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Notice that we use the delta notation, as a convenient shorthand for the
quantity (See Appendix A for a complete discussion of delta notation.)
Also, note that can be positive (if the final position is to the right of the
initial position, ), negative (if the final position is to the left of the ini-
tial position, ), or zero (if the final and initial positions are the same,

). In fact, the displacement is a one-dimensional vector, as defined in
Chapter 1, and its direction (right or left) is given by its sign (positive or nega-
tive, respectively).

The SI units of displacement are meters—the same as for distance—but dis-
placement and distance are really quite different. For example, in the round trip
from your house to the grocery store and back the distance traveled is 8.6 mi,
whereas the displacement is zero because Suppose, instead, that
you go from your house to the grocery store and then to your friend’s house. On
this trip the distance is 10.7 mi, but the displacement is

As mentioned in the previous paragraph, the minus sign means your displace-
ment is in the negative direction, that is, to the left.

¢x = xf - xi = 102 - 12.1 mi2 = -2.1 mi

xf = 2.1 mi = xi.

xf = xi

xf 6 xi

xf 7 xi

¢x
xf - xi.

¢x,

2–2 Average Speed and Velocity
The next step in describing motion is to consider how rapidly an object moves.
For example, how long does it take for a Randy Johnson fastball to reach home
plate? How far does an orbiting space shuttle travel in one hour? How fast do
your eyelids move when you blink? These are examples of some of the most
basic questions regarding motion, and in this section we learn how to answer
them.

The simplest way to characterize the rate of motion is with the average speed:

2–2

The dimensions of average speed are distance per time or, in SI units, meters per
second, m/s. Both distance and elapsed time are positive; thus average speed is
always positive.

average speed =
distance

elapsed time

A C T I V E  E X A M P L E  2 – 1 F I N D  T H E  D I S T A N C E  A N D  D I S P L A C E M E N T

Calculate (a) the distance and (b) the displacement for a trip from your friend’s house to the grocery store and then to 
your house.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Add the distances for the various parts of the total trip:

Part (b)

2. Determine the initial position for the trip, using Figure 2–2:

3. Determine the final position for the trip, using Figure 2–2:

4. Subtract from to find the displacement:

Y O U R  T U R N

Suppose we choose the origin in Figure 2–2 to be at your house, rather than at your friend’s house. In this case, find (a) the 
distance and (b) the displacement for the trip from your friend’s house to the grocery store and then to your house.
(Answers to Your Turn problems are given in the back of the book.)

¢x = 2.1 mixfxi

xf = 2.1 mi

xi = 0

2.1 mi + 4.3 mi + 4.3 mi = 10.7 mi



4.00 mi 4.00 mi

t1

30.0 mi/h 50.0 mi/h

t2

E X A M P L E  2 – 1 T H E  K I N G F I S H E R  T A K E S  A  P L U N G E

A kingfisher is a bird that catches fish by plunging into water from a height of several meters. If a kingfisher dives from a height
of 7.0 m with an average speed of 4.00 m/s, how long does it take for it to reach the water?

P I C T U R E  T H E  P R O B L E M

As shown in the sketch, the kingfisher moves in a straight line
through a vertical distance of 7.0 m. The average speed of the bird
is 4.00 m/s.

S T R A T E G Y

By rearranging Equation 2–2 we can solve for the elapsed time.

S O L U T I O N

1. Rearrange Equation 2–2 to solve for elapsed time:

2. Substitute numerical values to find the time:

I N S I G H T

Note that Equation 2–2 is not just a formula for calculating the average speed. It relates speed, time, and distance. Given any two
of these quantities, Equation 2–2 can be used to find the third.

P R A C T I C E  P R O B L E M

A kingfisher dives with an average speed of 4.6 m/s for 1.4 s. What was the height of the dive?
[Answer: ]

Some related homework problems: Problem 13, Problem 15

distance = (average speed) (elapsed time) = (4.6 m >  s) (1.4 s) = 6.4 m

elapsed time =
7.0 m

4.00 m/s
=

7.0
4.00

 s = 1.8 s

elapsed time =
distance

average speed

Next, we calculate the average speed for a trip consisting of two parts of equal
length, each traveled with a different speed.

C O N C E P T U A L  C H E C K P O I N T  2 – 1 A V E R A G E  S P E E D

You drive 4.00 mi at 30.0 mi/h and then another 4.00 mi at 50.0 mi/h. Is your average
speed for the 8.00-mi trip (a) greater than 40.0 mi/h, (b) equal to 40.0 mi/h, or (c) less
than 40.0 mi/h?

To confirm the conclusion of the Conceptual Checkpoint, we simply apply the
definition of average speed to find its value for this trip. We already know that the
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7.0 m

R E A S O N I N G  A N D  D I S C U S S I O N

At first glance it might seem that the average speed is definitely 40.0 mi/h. On further re-
flection, however, it is clear that it takes more time to travel 4.00 mi at 30.0 mi/h than it
does to travel 4.00 mi at 50.0 mi/h. Therefore, you will be traveling at the lower speed for
a greater period of time, and hence your average speed will be less than 40.0 mi/h—that
is, closer to 30.0 mi/h than to 50.0 mi/h.

A N S W E R

(c) The average speed is less than 40.0 mi/h.
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distance traveled is 8.00 mi; what we need now is the elapsed time. On the first
4.00 mi the time is

The time required to cover the second 4.00 mi is

Therefore, the elapsed time for the entire trip is

This gives the following average speed:

Note that a “guess” will never give a detailed result like 37.6 mi/h; a system-
atic, step-by-step calculation is required.

In many situations, there is a quantity that is even more useful than the aver-
age speed. It is the average velocity, and it is defined as displacement per
time:

Definition: Average velocity, 

2–3

SI unit: meter per second, m/s

Not only does the average velocity tell us, on average, how fast something is
moving, it also tells us the direction the object is moving. For example, if an object
moves in the positive direction, then and On the other hand, if
an object moves in the negative direction, it follows that and As
with displacement, the average velocity is a one-dimensional vector, and its di-
rection is given by its sign. Average velocity gives more information than average
speed; hence it is used more frequently in physics.

In the next Example, pay close attention to the positive and negative signs.

vav 6 0.xf 6 xi,
vav 7 0.xf 7 xi,

 vav =
¢x
¢t

=
xf - xi

tf - ti

 average velocity =
displacement

elapsed time

vav

vav,

average speed =
8.00 mi
0.213 h

= 37.6 mi/h 6 40.0 mi/h

t1 + t2 = 14.00>30.02 h + 14.00>50.02 h = 0.213 h

t2 =
4.00 mi

50.0 mi/h
= 14.00>50.02 h

t1 =
4.00 mi

30.0 mi/h
= 14.00>30.02 h

E X A M P L E  2 – 2 S P R I N T  T R A I N I N G

An athlete sprints 50.0 m in 8.00 s, stops, and then walks slowly back to the starting line in 40.0 s. If the “sprint direction” is taken
to be positive, what are (a) the average sprint velocity, (b) the average walking velocity, and (c) the average velocity for the com-
plete round trip?

P I C T U R E  T H E  P R O B L E M

In our sketch we set up a coordinate system with the
sprint going in the positive x direction, as described
in the problem. For convenience, we choose the origin
to be at the starting line. The finish line, then, is at

S T R A T E G Y

In each part of the problem we are asked for the aver-
age velocity and we are given information for times
and distances. All that is needed, then, is to determine

and in each case and apply
Equation 2–3.

¢t = tf - ti¢x = xf - xi

x = 50.0 m.

x = 0 50.0 m

x

Sprint

x = 0 50.0 m

x

Walk



S O L U T I O N

Part (a)

1. Apply Equation 2–3 to the sprint, with
and 

Part (b)

2. Apply Equation 2–3 to the walk. In this 
case, and 

Part (c)

3. For the round trip, thus 

I N S I G H T

Note that the sign of the velocities in parts (a) and (b) indicates the direction of motion; positive for motion to the right, negative
for motion to the left. Also, notice that the average speed for the entire 100.0-m trip is nonzero, even
though the average velocity vanishes.

P R A C T I C E  P R O B L E M

If the average velocity during the walk is how long does it take the athlete to walk back to the starting line?
[Answer: ]

Some related homework problems: Problem 9, Problem 17, Problem 18

¢t = ¢x>vav = 1-50.0 m2>1-1.50 m/s2 = 33.3 s
-1.50 m/s,

1100.0 m>48.0 s = 2.08 m/s2

vav =
¢x
¢t

=
0

48.0 s
= 0¢x = 0:xf = xi = 0;

vav =
xf - xi

tf - ti
=

0 - 50.0 m
48.0 s - 8.00 s

= -
50.0
40.0

  m/s = -1.25 m/s
ti = 8.00 s:xf = 0, xi = 50.0 m, tf = 48.0 s,

vav =
¢x
¢t

=
xf - xi

tf - ti
=

50.0 m - 0
8.00 s - 0

=
50.0
8.00

  m/s = 6.25 m/s
ti = 0:xf = 50.0 m, xi = 0, tf = 8.00 s,

Graphical Interpretation of Average Velocity
It is often useful to “visualize” a particle’s motion by sketching its position as a
function of time. For example, consider a particle moving back and forth along
the x axis, as shown in Figure 2–3 (a). In this plot, we have indicated the position of
a particle at a variety of times.

This way of keeping track of a particle’s position and the corresponding time
is a bit messy, though, so let’s replot the same information with a different type of
graph. In Figure 2–3 (b) we again plot the motion shown in Figure 2–3 (a), but this
time with the vertical axis representing the position, x, and the horizontal axis
representing time, t. An x-versus-t graph like this makes it considerably easier to
visualize a particle’s motion.

An x-versus-t plot also leads to a particularly useful interpretation of
average velocity. To see how, suppose you would like to know the average
velocity of the particle in Figures 2–3 (a) and 2–3 (b) from to .
From our definition of average velocity in Equation 2–3, we know that

. To relate this to the vav = ¢x >  ¢t =  (2 m -  1 m)>(3 s -  0) = +0.3 m >  s

t = 3 st = 0
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The particle moves in the positive x direction for 2 s,
then reverses direction.

The particle moves in the positive 
direction for two seconds ... 

... then moves
in the negative
direction.

x axis

4 mO
x

3 m 5 m1 m

1 s
2 s

t = 0

–3 m –2 m –1 m 2 m

3 s4 s

Po
si

ti
on

, x
 (m

)

Time, t (s)

(a) The particle’s path shown on a coordinate axis (b) The same path as a graph of position x versus time t

1

–1

–2

2

3

4

5

4O 31 2

▲ FIGURE 2–3 Two ways to visualize one-dimensional motion
Although the path in (a) is shown as a “U” for clarity, the particle actually moves straight back and forth along the x axis.
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▲ FIGURE 2–4 Average velocity on an 
x-versus-t graph
The slope of a straight line between any
two points on an x-versus-t graph equals
the average velocity between those
points. Positive slopes indicate net
motion to the right; negative slopes
indicate net motion to the left.
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x-versus-t plot, draw a straight line connecting the position at (call this
point A) and the position at (point B). The result is shown in Figure 2–4 (a).

The slope of the straight line from A to B is equal to the rise over the run,
which in this case is . But is the average velocity. Thus we see that:

• The slope of a line connecting two points on an x-versus-t plot is equal to
the average velocity during that time interval.

As an additional example, let’s calculate the average velocity between times
and in Figure 2–3 (b). A line connecting the corresponding points is

shown in Figure 2–4 (b).
The first thing we notice about this line is that it has a negative slope; thus

and the particle is moving to the left. We also note that it is inclined more
steeply than the line in Figure 2–4 (a), hence the magnitude of its slope is greater.
In fact, if we calculate the slope of this line we find that for this time
interval.

Thus, connecting points on an x-versus-t plot gives an immediate “feeling” for
the average velocity over a given time interval. This type of graphical analysis
will be particularly useful in the next section.

2–3 Instantaneous Velocity
Though average velocity is a useful way to characterize motion, it can miss a lot. For
example, suppose you travel by car on a long, straight highway, covering 92 mi in
2.0 hours. Your average velocity is 46 mi/h. Even so, there may have been only a
few times during the trip when you were actually driving at 46 mi/h. You may have
sped along at 65 mi/h during most of the time, except when you stopped to have a
bite to eat at a roadside diner, during which time your average velocity was zero.

To have a more accurate representation of your trip, you should average your
velocity over shorter periods of time. If you calculate your average velocity every
15 minutes, you have a better picture of what the trip was like. An even better,
more realistic picture of the trip is obtained if you calculate the average velocity
every minute or every second. Ideally, when dealing with the motion of any par-
ticle, it is desirable to know the velocity of the particle at each instant of time.

This idea of a velocity corresponding to an instant of time is just what is meant
by the instantaneous velocity. Mathematically, we define the instantaneous ve-
locity as follows:

Definition: Instantaneous Velocity, v

2–4

SI unit: meter per second, m/s

In this expression the notation means “evaluate the average velocity,
over shorter and shorter time intervals, approaching zero in the limit.”

Note that the instantaneous velocity can be positive, negative, or zero, just like the
average velocity—and just like the average velocity, the instantaneous velocity is
a one-dimensional vector. The magnitude of the instantaneous velocity is called
the instantaneous speed. In a car, the speedometer gives a reading of the vehicle’s
instantaneous speed.

As becomes smaller, becomes smaller as well, but the ratio ap-
proaches a constant value. To see how this works, consider first the simple case of
a particle moving with a constant velocity of . If the particle starts at 
at , then its position at is , its position at is ,
and so on. Plotting this motion in an x-versus-t plot gives a straight line, as shown
in Figure 2–5.

Now, suppose we want to find the instantaneous velocity at To do so,
we calculate the average velocity over small intervals of time centered at 3 s, and let
the time intervals become arbitrarily small, as shown in the Figure. Since x-versus-t
is a straight line, it is clear that no matter how small the time¢x>¢t = ¢x1>¢t1,

t = 3 s.

x = 2 mt = 2 sx = 1 mt = 1 st = 0
x = 0+1 m/s

¢x>¢t¢x¢t

¢x>¢t,
lim¢t:0

v = lim
¢t:0

¢x
¢t

vav = -2 m/s

vav 6 0

t = 3 st = 2 s

¢x>¢t¢x>¢t

t = 3 s
t = 0

▲ A speedometer indicates the
instantaneous speed of a car. Note that 
the speedometer gives no information
about the direction of motion. Thus, the
speedometer is truly a “speed meter,” 
not a velocity meter.



Motion begins
at x = 0 at time
t = 0.

Constant velocity
results in constant slope.

x (m)

1

2

3

4

5

4O
t

31 2

Δt1

Δx1

Δt

Δx

(s)

▲ FIGURE 2–5 Constant velocity
corresponds to constant slope on an 
x-versus-t graph
The slope is equal to 
(4 m � 2 m)/(4 s � 2 s) � (2 m)/(2 s) �
1 m/s. Because x-versus-t is a straight
line, the slope is also equal to 
1 m/s for any value of .¢t

¢x>¢t

¢x1>¢t1
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interval As becomes smaller, so does but the ratio is simply the
slope of the line, 1 m/s. Thus, the instantaneous velocity at is 1 m/s.

Of course, in this example the instantaneous velocity is 1 m/s for any instant
of time, not just Therefore:

• When velocity is constant, the average velocity over any time interval is
equal to the instantaneous velocity at any time.

In general, a particle’s velocity varies with time, and the x-versus-t plot is not
a straight line. An example is shown in Figure 2–6, with the corresponding numer-
ical values of x and t given in Table 2–1.

t = 3 s.

t = 3 s
¢x>¢t¢x,¢t¢t.

O 0.5 1 1.5
Time, t (s)

Po
si

ti
on

,x
 (m

)

2 2.5 3

30

25

20

15

10

5

v = 10.0 m/s

vav = 12.1 m/s

vav = 13.7 m/s

▲ FIGURE 2–6 Instantaneous velocity
An x-versus-t plot for motion with variable velocity. The
instantaneous velocity at is equal to the slope of the
tangent line at that time. The average velocity for a small time
interval centered on approaches the instantaneous
velocity at as the time interval goes to zero.t = 1 s

t = 1 s

t = 1 s

TABLE 2–1
x-versus-t Values for Figure 2–6

t (s) x (m)

0 0
0.25 9.85
0.50 17.2
0.75 22.3
1.00 25.6
1.25 27.4
1.50 28.1
1.75 28.0
2.00 27.4

TABLE 2–2 Calculating the Instantaneous Velocity at t 1 s

ti (s) tf (s) Δt (s) xi (m) xf (m) Δx (m) vav Δx Δt(m/s)

0 2.00 2.00 0 27.4 27.4 13.7
0.250 1.75 1.50 9.85 28.0 18.2 12.1
0.500 1.50 1.00 17.2 28.1 10.9 10.9
0.750 1.25 0.50 22.3 27.4 5.10 10.2
0.900 1.10 0.20 24.5 26.5 2.00 10.0
0.950 1.05 0.10 25.1 26.1 1.00 10.0

/=

=

In this case, what is the instantaneous velocity at, say, ? As a first ap-
proximation, let’s calculate the average velocity for the time interval from to

. Note that this time interval is centered at . From Table 2–1 we
see that and , thus . The corresponding straight
line connecting these two points is the lowest straight line in Figure 2–6.

The next three lines, in upward progression, refer to time intervals from 0.250
s to 1.75 s, 0.500 s to 1.50 s, and 0.750 s to 1.25 s, respectively. The corresponding
average velocities, given in Table 2–2, are 12.1 m/s, 10.9 m/s, and 10.2 m/s. Table
2–2 also gives results for even smaller time intervals. In particular, for the interval
from 0.900 s to 1.10 s the average velocity is 10.0 m/s. Smaller intervals also give
10.0 m/s. Thus, we can conclude that the instantaneous velocity at is

The uppermost straight line in Figure 2–6 is the tangent line to the x-versus-t
curve at the time ; that is, it is the line that touches the curve at just a sin-
gle point. Its slope is 10.0 m/s. Clearly, the average-velocity lines have slopes that

t = 1.00 s

v = 10.0 m/s.
t = 1.00 s

vav = 13.7 m>sxf = 27.4 mxi = 0
t = 1.00 stf = 2.00 s

ti = 0
t = 1.00 s
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C O N C E P T U A L  C H E C K P O I N T  2 – 2 I N S T A N T A N E O U S  V E L O C I T Y

Referring to Figure 2–6, is the instantaneous velocity at (a) greater than,
(b) less than, or (c) the same as the instantaneous velocity at ?

R E A S O N I N G  A N D  D I S C U S S I O N

From the x-versus-t graph in Figure 2–6 it is clear that the slope of a tangent line drawn
at is greater than the slope of the tangent line at . It follows that the
particle’s velocity at 0.500 s is greater than its velocity at 1.00 s.

A N S W E R

(a) The instantaneous velocity is greater at t = 0.500 s.

t = 1.00 st = 0.500 s

t = 1.00 s
t = 0.500 s

In the remainder of the book, when we say velocity it is to be understood that we
mean instantaneous velocity. If we want to refer to the average velocity, we will
specifically say average velocity.

Graphical Interpretation of Average and Instantaneous Velocity
Let’s summarize the graphical interpretations of average and instantaneous ve-
locity on an x-versus-t graph:

• Average velocity is the slope of the straight line connecting two points cor-
responding to a given time interval.

• Instantaneous velocity is the slope of the tangent line at a given instant of
time.

These relations are illustrated in Figure 2–7.

2–4 Acceleration
Just as velocity is the rate of change of displacement with time, acceleration is the
rate of change of velocity with time. Thus, an object accelerates whenever its ve-
locity changes, no matter what the change—it accelerates when its velocity in-
creases, it accelerates when its velocity decreases. Of all the concepts discussed in
this chapter, perhaps none is more central to physics than acceleration. Galileo, for
example, showed that falling bodies move with constant acceleration. Newton
showed that acceleration and force are directly related, as we shall see in Chapter 5.
Thus, it is particularly important to have a clear, complete understanding of ac-
celeration before leaving this chapter.

We begin, then, with the definition of average acceleration:

Definition: Average Acceleration, a

2–5

SI unit: meter per second per second, 

Note that the dimensions of average acceleration are the dimensions of velocity
per time, or (meters per second) per second:

This is generally expressed as meters per second squared. For example, the accel-
eration of gravity on the Earth’s surface is approximately which means
that the velocity of a falling object changes by 9.81 meters per second (m/s) every

9.81 m/s2,

meters per second

second
=

m/s
s

=
m
s2

m/s2

aav =
¢v
¢t

=
vf - vi

tf - ti

av

x

O
t

t3t1 t2

Slope  = average velocity
between times t1 and t2

Slope  = average velocity
between times t2 and t3

Slope of tangent
line = instantaneous
velocity at time t3

▲ FIGURE 2–7 Graphical interpretation of
average and instantaneous velocity
Average velocities correspond to the 
slope of straight-line segments connecting
different points on an x-versus-t graph.
Instantaneous velocities are given by the
slope of the tangent line at a given time.

▲ The space shuttle Discovery acceler-
ates upward on the initial phase of its
journey into orbit. During this time the
astronauts on board the shuttle experi-
ence an approximately linear accelera-
tion that may be as great as .20 m>s2

approach the slope of the tangent line as the time intervals become smaller. This
is an example of the following general result:

• The instantaneous velocity at a given time is equal to the slope of the tan-
gent line at that point on an x-versus-t graph.

Thus, a visual inspection of an x-versus-t graph gives information not only
about the location of a particle, but also about its velocity.
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E X E R C I S E  2 – 1

a. Saab advertises a car that goes from 0 to 60.0 mi/h in 6.2 s. What is the average
acceleration of this car?

b. An airplane has an average acceleration of during takeoff. How long
does it take for the plane to reach a speed of 150 mi/h?

S O L U T I O N

a.

b.

Next, just as we considered the limit of smaller and smaller time intervals to
find an instantaneous velocity, we can do the same to define an instantaneous
acceleration:

Definition: Instantaneous Acceleration, a

2–6

SI unit: meter per second per second, 

As you might expect, the instantaneous acceleration is a one-dimensional vector,
just like the average acceleration, and its direction is given by its sign. For sim-
plicity, when we say acceleration in the future we are referring to the instanta-
neous acceleration.

One final note before we go on to some examples. If the acceleration is con-
stant, it has the same value at all times. Therefore:

• When acceleration is constant, the instantaneous and average accelera-
tions are the same.

We shall make use of this fact when we return to the special case of constant ac-
celeration in the next section.

Graphical Interpretation of Acceleration
To see how acceleration can be interpreted graphically, suppose that a particle has
a constant acceleration of . This means that the velocity of the particle
decreases by 0.50 m/s each second. Thus, if its velocity is 1.0 m/s at , then at

its velocity is 0.50 m/s, at its velocity is 0, at its velocity is
, and so on. This is illustrated by curve I in Figure 2–8, where we see

that a plot of v-versus-t results in a straight line with a negative slope. Curve II
in Figure 2–8 has a positive slope, corresponding to a constant acceleration of

. Thus, in terms of a v-versus-t plot, a constant acceleration results in a
straight line with a slope equal to the acceleration.
+0.25 m>s2

-0.50 m>s
t = 3 st = 2 st = 1 s

t = 0
-0.50 m>s2

m/s2

a = lim
¢t:0

¢v
¢t

¢t = ¢v>aav = 1150 mi/h2>15.6 m/s22 = 167.0 m/s2>15.6 m/s22 = 12 s

= 126.8 m/s2>16.2 s2 = 4.3 m/s2

average acceleration = aav = 160.0 mi/h2>16.2 s2

5.6 m/s2

TABLE 2–3 Typical Accelerations

Ultracentrifuge
Bullet fired from a rifle
Batted baseball
Click beetle righting 
itself 400

Acceleration required 
to deploy airbags 60

Bungee jump 30
High jump 15
Acceleration of gravity 
on Earth 9.81

Emergency stop in a car 8
Airplane during takeoff 5
An elevator 3
Acceleration of gravity 

on the Moon 1.62

3 * 104
4.4 * 105
3 * 106

(m/s2)

1

–1

2

4
O t (s)

II

I

V
el
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y,
 v

 (m
/

s)
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a = –0.50 m/s2

2

Δt

Δt

Δv

Δv

a = +0.25 m/s2

▲ FIGURE 2–8 v-versus-t plots for 
motion with constant acceleration
Curve I represents the movement of a
particle with constant acceleration

. Curve II represents the
motion of a particle with constant accel-
eration .a = +0.25 m>s2

a = -0.50 m>s2

C O N C E P T U A L  C H E C K P O I N T  2 – 3 S P E E D  A S  A  F U N C T I O N  O F  T I M E

The speed of a particle with the v-versus-t graph shown by curve II in Figure 2–8 in-
creases steadily with time. Consider, instead, a particle whose v-versus-t graph is given
by curve I in Figure 2–8. As a function of time, does the speed of this particle (a) increase,
(b) decrease, or (c) decrease and then increase?

R E A S O N I N G  A N D  D I S C U S S I O N

Recall that speed is the magnitude of velocity. In curve I of Figure 2–8 the speed starts out
at 1.0 m/s, then decreases to 0 at . After the speed increases again. For ex-
ample, at the speed is 0.50 m/s, and at the speed is 1 m/s.

CONTINUED ON NEXT PAGE

t = 4 st = 3 s
t = 2 st = 2 s

second (s). In addition, we see that the average acceleration can be positive, nega-
tive, or zero. In fact, it is a one-dimensional vector, just like displacement, average
velocity, and instantaneous velocity. Typical magnitudes of acceleration are given
in Table 2–3.



28 C H A P T E R  2 O N E - D I M E N S I O N A L  K I N E M A T I C S

CONTINUED FROM PREVIOUS PAGE

Did you realize that the particle represented by curve I in Figure 2–8 changes direction at
? It certainly does. Before the particle moves in the positive direction; after
it moves in the negative direction. At precisely the particle is momentarily

at rest. However, regardless of whether the particle is moving in the positive direction,
moving in the negative direction, or instantaneously at rest, it still has the same constant
acceleration. Acceleration has to do only with the way the velocity is changing at a given
moment.

A N S W E R

(c) The speed decreases and then increases.

t = 2 st = 2 s
t = 2 st = 2 s

The graphical interpretations for velocity presented in Figure 2–7 apply
equally well to acceleration, with just one small change: Instead of an x-versus-t
graph, we use a v-versus-t graph, as in Figure 2–9. Thus, the average acceleration
in a v-versus-t plot is the slope of a straight line connecting points corresponding
to two different times. Similarly, the instantaneous acceleration is the slope of the
tangent line at a particular time.

v

O
t

t3t1 t2

Slope = average acceleration
between times t1 and t2

Slope = average acceleration
between times t2 and t3

Slope of tangent line =
instantaneous acceleration at t3

▲ FIGURE 2–9 Graphical interpretation of
average and instantaneous acceleration
Average accelerations correspond to the
slope of straight-line segments connecting
different points on a v-versus-t graph. In-
stantaneous accelerations are given by the
slope of the tangent line at a given time.

E X A M P L E  2 – 3 A N  A C C E L E R A T I N G  T R A I N

A train moving in a straight line with an initial velocity of 0.50 m/s accelerates at for 2.0 seconds, coasts with zero
acceleration for 3.0 seconds, and then accelerates at for 1.0 second. (a) What is the final velocity of the train? (b) What
is the average acceleration of the train?

P I C T U R E  T H E  P R O B L E M

We begin by sketching a v-versus-t plot for the train. The basic
idea is that each interval of constant acceleration is repre-
sented by a straight line of the appropriate slope. Therefore,
we draw a straight line with the slope from to

a line with zero slope from to and
a line with the slope from to 
The line connecting the initial and final points determines the
average acceleration.

S T R A T E G Y

During each period of constant acceleration the change in
velocity is 

a. Adding the individual changes in velocity gives the total
change, Since is known, this expression
can be solved for the final velocity, 

b. The average acceleration can be calculated using Equation 2–5, Note that has been obtained in part (a),
and that the total time interval is as is clear from the graph.

S O L U T I O N

Part (a)

1. Find the change in velocity during each of the 
three periods of constant acceleration:

2. Sum the change in velocity for each period to 
obtain the total 

3. Use to find , recalling that :
vf = ¢v + vi = 2.5 m >  s + 0.50 m >  s = 3.0 m >  s
¢v = vf - vivi = 0.50 m >  svf¢v

 = 4.0 m/s + 0 - 1.5 m/s = 2.5 m/s¢v:
¢v = ¢v1 + ¢v2 + ¢v3

¢v3 = a3¢t3 = 1-1.5 m/s2211.0 s2 = -1.5 m/s
¢v2 = a2¢t2 = 10213.0 s2 = 0
¢v1 = a1¢t1 = 12.0 m/s2212.0 s2 = 4.0 m/s

¢t = 6.0 s,
¢vaav = ¢v>¢t.

vf.
vi¢v = vf - vi.

¢v = aav¢t = a¢t.

t = 6.0 s.t = 5.0 s-1.5 m/s2
t = 5.0 s,t = 2.0 st = 2.0 s,

t = 02.0 m/s2

-1.5 m/s2
2.0 m/s2

1

2

3

4

4O 31 2

Instantaneous and average acceleration
are equal on straight-line segments.

765
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Slope = average acceleration
from t = 0 to t = 6 s

1
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Part (b)
4. The average acceleration is 

I N S I G H T

Note that the average acceleration for these six seconds is not simply the average of the individual accelerations,
and The reason is that different amounts of time are spent with each acceleration. In addition, the

average acceleration can be found graphically, as indicated in the v-versus-t sketch on the previous page. Specifically, the graph
shows that is 2.5 m/s for the time interval from to 

P R A C T I C E  P R O B L E M

What is the average acceleration of the train between and 
[Answer: ]

Some related homework problems: Problem 36, Problem 38

16.0 s - 2.0 s2 = -0.38 m/s2aav = ¢v>¢t = (3.0 m/s - 4.5 m/s)>
t = 6.0 s?t = 2.0 s

t = 6.0 s.t = 0¢v

-1.5 m/s2.2.0 m/s2, 0 m/s2,

aav =
¢v
¢t

=
2.5 m/s

6.0 s
= 0.42 m/s2¢v>¢t:

v

a

(a) Speed increases

x

v

a

(b) Speed decreases

x

v

a

(d) Speed increases

x

v

a

x

(c) Speed decreases

FIGURE 2–10 Cars accelerating 
or decelerating
A car’s speed increases when its velocity
and acceleration point in the same direc-
tion, as in cases (a) and (d). When the ve-
locity and acceleration point in opposite
directions, as in cases (b) and (c), the
car’s speed decreases.

▲

In one dimension, nonzero velocities and accelerations are either positive or
negative, depending on whether they point in the positive or negative direction of
the coordinate system chosen. Thus, the velocity and acceleration of an object may
have the same or opposite signs. (Of course, in two or three dimensions the rela-
tionship between velocity and acceleration can be much more varied, as we shall
see in the next several chapters.) This leads to the following two possibilities:

• When the velocity and acceleration of an object have the same sign, the
speed of the object increases. In this case, the velocity and acceleration
point in the same direction.

• When the velocity and acceleration of an object have opposite signs, the
speed of the object decreases. In this case, the velocity and acceleration
point in opposite directions.

These two possibilities are illustrated in Figure 2–10. Notice that when a particle’s
speed increases, it means either that its velocity becomes more positive, as in
Figure 2–10 (a), or more negative, as in Figure 2–10 (d). In either case, it is the magni-
tude of the velocity—the speed—that increases.

The winner of this race was traveling at
a speed of 313.91 mi/h at the end of the
quarter-mile course. Since the winning 
time was just 4.607 s, the average accelera-
tion during this race was approximately
three times the acceleration of gravity 
(Section 2–7).

▲
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When a particle’s speed decreases, it is often said to be decelerating. A common
misconception is that deceleration implies a negative acceleration. This is not true.
Deceleration can be caused by a positive or a negative acceleration, depending on
the direction of the initial velocity. For example, the car in Figure 2–10 (b) has a pos-
itive velocity and a negative acceleration, while the car in Figure 2–10 (c) has a neg-
ative velocity and a positive acceleration. In both cases, the speed of the car de-
creases. Again, all that is required for deceleration in one dimension is that the
velocity and acceleration have opposite signs; that is, they must point in opposite di-
rections, as in parts (b) and (c) of Figure 2–10.

Velocity-versus-time plots for the four situations shown in Figure 2–10 are
presented in Figure 2–11. In each of the four plots in Figure 2–11 we assume con-
stant acceleration. Be sure to understand clearly the connection between the 
v-versus-t plots in Figure 2–11 and the corresponding physical motions indicated
in Figure 2–10.

E X A M P L E  2 – 4 T H E  F E R R Y  D O C K S

A ferry makes a short run between two docks; one in Anacortes, Washington, the other on Guemes Island. As the ferry ap-
proaches Guemes Island (traveling in the positive x direction), its speed is 7.4 m/s. (a) If the ferry slows to a stop in 12.3 s, what
is its average acceleration? (b) As the ferry returns to the Anacortes dock, its speed is 7.3 m/s. If it comes to rest in 13.1 s, what
is its average acceleration?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the locations of the two docks and the
positive direction indicated in the problem. Note that the
distance between docks is not given, nor is it needed.

S T R A T E G Y

We are given the initial and final velocities (the ferry
comes to a stop in each case, so its final speed is zero) and
the relevant times. Therefore, we can find the average
acceleration using being careful to get the
signs right.

S O L U T I O N

Part (a)

1. Calculate the average acceleration, noting that
and 

Part (b)

2. In this case, and 

I N S I G H T

In each case, the acceleration of the ferry is opposite in sign to its velocity; therefore the ferry decelerates.

P R A C T I C E  P R O B L E M

When the ferry leaves Guemes Island, its speed increases from 0 to 5.8 m/s in 9.25 s. What is its average acceleration?
[Answer: ]

Some related homework problems: Problem 34, Problem 35

aav = -0.63 m/s2

aav =
¢v
¢t

=
vf - vi

¢t
=

0 - 1-7.3 m/s2
13.1 s

= 0.56 m/s2vf = 0:vi = -7.3 m/s

aav =
¢v
¢t

=
vf - vi

¢t
=

0 - 7.4 m/s
12.3 s

= -0.60 m/s2

vf = 0:vi = 7.4 m/s

aav = ¢v>¢t,

x

Guemes
Island

Anacortes

2–5 Motion with Constant Acceleration
In this section, we derive equations describing the motion of particles moving
with constant acceleration. These “equations of motion” can be used to describe
a wide range of everyday phenomena. For example, in an idealized world with no
air resistance, falling bodies have constant acceleration.

As mentioned in the previous section, if a particle has constant acceleration—
that is, the same acceleration at every instant of time—then its instantaneous ac-

O t

v
(a)

(b)
(c)

(d)

▲ FIGURE 2–11 v-versus-t plots with
constant acceleration
Four plots of v versus t corresponding to
the four situations shown in Figure 2–10.
Note that the speed increases in cases (a)
and (d), but decreases in cases (b) and (c).
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celeration, a, is equal to its average acceleration, Recalling the definition of
average acceleration, Equation 2–5, we have

where the initial and final times may be chosen arbitrarily. For example, let 
for the initial time, and let denote the velocity at time zero. For the final
time and velocity we drop the subscripts to simplify notation; thus we let 
and With these identifications we have

Therefore,

or

Constant-Acceleration Equation of Motion: Velocity as a Function of Time

2–7

Note that Equation 2–7 describes a straight line on a v-versus-t plot. The line
crosses the velocity axis at the value and has a slope a, in agreement with the
graphical interpretations discussed in the previous section. For example, in curve I
of Figure 2–8, the equation of motion is .
Also, note that has the units ; thus each term in
Equation 2–7 has the same dimensions (as it must to be a valid physical equation).

E X E R C I S E  2 – 2
A ball is thrown straight upward with an initial velocity of If the acceleration
of the ball is what is its velocity after

a. 0.50 s, and b. 1.0 s?

S O L U T I O N

a. Substituting in Equation 2–7 yields

b. Similarly, using in Equation 2–7 gives

Next, how far does a particle move in a given time if its acceleration is con-
stant? To answer this question, recall the definition of average velocity:

Using the same identifications given previously for initial and final times, and let-
ting and we have

Thus,

or

2–8

Now, Equation 2–8 is fine as it is. In fact, it applies whether the acceleration is
constant or not. A more useful expression, for the case of constant acceleration, 
is obtained by writing in terms of the initial and final velocities. This can be
done by referring to Figure 2–12 (a). Here the velocity changes linearly (since a is

vav

x = x0 + vavt

x - x0 = vav1t - 02 = vavt

vav =
x - x0

t - 0

xf = x,xi = x0

vav =
¢x
¢t

=
xf - xi

tf - ti

v = 8.2 m/s + (-9.81 m/s2211.0 s) = -1.6 m/s

t = 1.0 s

v = 8.2 m/s + (-9.81 m/s2)10.50 s2 = 3.3 m/s

t = 0.50 s

-9.81 m/s2,
+8.2 m/s.

(m>s2) (s) = m>s(-0.5 m>s2)t
v = v0 + at = (1 m>s) + (-0.5 m>s2)t

v0

v = v0 + at

v - v0 = a1t - 02 = at

aav =
v - v0

t - 0
= a

vf = v.
tf = t

vi = v0

ti = 0

aav =
vf - vi

tf - ti
= a

aav.

v

vav= (v0 + v)

v

v0

O
t

t

t

1
2

v

vav

v

v0

O
t

(a)

(b)

▲ FIGURE 2–12 The average velocity
(a) When acceleration is constant, the 
velocity varies linearly with time. As a
result, the average velocity, , is simply
the average of the initial velocity, , and
the final velocity, v. (b) The velocity
curve for nonconstant acceleration is
nonlinear. In this case, the average
velocity is no longer midway between
the initial and final velocities.

v0

vav
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constant) from at to v at some later time t. The average velocity during
this period of time is simply the average of the initial and final velocities; that is,
the sum of the two velocities divided by two:

Constant-Acceleration Equation of Motion: Average Velocity

2–9

The average velocity is indicated in the figure. Note that if the acceleration is not
constant, as in Figure 2–12 (b), this simple averaging of initial and final velocities is
no longer valid.

Substituting the expression for from Equation 2–9 into Equation 2–8 yields

Constant-Acceleration Equation of Motion: Position as a Function of Time

2–10

This equation, like Equation 2–7, is valid only for constant acceleration. The utility
of Equations 2–7 and 2–10 is illustrated in the next Example.

x = x0 + 1
21v0 + v2t

vav

vav = 1
21v0 + v2

t = 0v0

E X A M P L E  2 – 5 F U L L  S P E E D  A H E A D

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the break-
water, leaving the marina, it throttles up and accelerates at (a) How fast is the boat moving after accelerating for 5.00 s?
(b) How far has the boat traveled in this time?

P I C T U R E  T H E  P R O B L E M

In our sketch we choose the origin to be at the breakwater,
and the positive x direction to be the direction of motion.
With this choice the initial position is and the initial
velocity is 

S T R A T E G Y

The acceleration is constant, so we can use Equations 2–7 to
2–10. In part (a) we want to relate velocity to time, so we use
Equation 2–7, In part (b) our knowledge of the
initial and final velocities allows us to relate position to time
using Equation 2–10, 

S O L U T I O N

Part (a)
1. Use Equation 2–7 with and 

Part (b)
2. Apply Equation 2–10, using the result for v obtained in part (a): 

I N S I G H T

Since the boat has a constant acceleration between and its velocity-versus-time curve is linear during this
time interval. As a result, the average velocity for these 5.00 seconds is the average of the initial and final velocities,

Multiplying the average velocity by the time, 5.00 s, gives the distance traveled—
which is exactly what Equation 2–10 does in Step 2.

P R A C T I C E  P R O B L E M

At what time is the boat’s speed equal to 10.0 m/s? [Answer: ]

Some related homework problems: Problem 47, Problem 48

t = 3.54 s

vav = 1
211.50 m/s + 13.5 m/s2 = 7.50 m/s.

t = 5.00 s,t = 0

 = 17.50 m/s215.00 s2 = 37.5 m

 = 0 + 1
211.50 m/s + 13.5 m/s215.00 s2

 x = x0 + 1
21v0 + v2t

 = 1.50 m/s + 12.0 m/s = 13.5 m/s

 v = v0 + at = 1.50 m/s + 12.40 m/s2215.00 s2a = 2.40 m>s2:v0 = 1.50 m>s

x = x0 + 1
21v0 + v2t.

v = v0 + at.

v0 = 1.50 m>s.
x0 = 0,

2.40 m>s2.

Breakwater
a = 2.40 m/s2

x

P R O B L E M - S O L V I N G  N O T E

“Coordinate” the Problem

The first step in solving a physics problem
is to produce a simple sketch of the system.
Your sketch should include a coordinate
system, along with an origin and a positive
direction. Next, you should identify quan-
tities that are given in the problem, such as
initial position, initial velocity, accelera-
tion, and so on. These preliminaries will
help in producing a mathematical repre-
sentation of the problem.
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The velocity of the boat in Example 2–5 is plotted as a function of time in
Figure 2–13, with the acceleration starting at time and ending at .
We will now show that the distance traveled by the boat from to is
equal to the corresponding area under the velocity-versus-time curve. This is a general
result, valid for any velocity curve and any time interval:

• The distance traveled by an object from a time to a time is equal to the
area under the velocity curve between those two times.

In this case, the area is the sum of the areas of a rectangle and a triangle. The
rectangle has a base of 5.00 s and a height of 1.50 m/s, which gives an area of

Similarly, the triangle has a base of 5.00 s and a
height of for an area of

Clearly, the total area is 37.5 m, just as found in Example 2–5.
Staying with Example 2–5 for a moment, let’s repeat the calculation of part (b),

only this time for the general case. First, we use the final velocity from part (a), cal-
culated with in the expression for the average velocity, 
Symbolically, this gives the following:

(constant acceleration)

Next, we substitute this result into Equation 2–10, which yields

Multiplying through by t gives the following result:

Constant-Acceleration Equation of Motion: Position as a Function of Time

2–11

Here we have an expression for position versus time that is explicitly in terms of
the acceleration, a.

Note that each term in Equation 2–11 has the same dimensions, as they must.
For example, the velocity term, has the units Similarly, the 
acceleration term, has the units 

E X E R C I S E  2 – 3
Repeat part (b) of Example 2–5 using Equation 2–11.

S O L U T I O N

The next Example gives further insight into the physical meaning of Equation 2–11.

x = x0 + v0t + 1
2 at2 = 0 + 11.50 m/s215.00 s2 + 1

212.40 m/s2215.00 s22 = 37.5 m

1m/s221s22 = m.1
2 at2,

1m/s21s2 = m.v0t,

x = x0 + v0t + 1
2 at2

x = x0 + 1
21v0 + v2t = x0 + Av0 + 1

2 at B t

1
21v0 + v2 = 1

2 [v0 + 1v0 + at2] = v0 + 1
2 at

vav = 1
21v0 + v2.v = v0 + at,

30.0 m.

1
215.00 s2112.0 m/s2 =113.5 m/s - 1.50 m/s2 = 12.0 m/s,

15.00 s211.50 m/s2 = 7.50 m.

t2t1

t = 5.00 st = 0
t = 5.00 st = 0

O 5 s
t

t

Area of triangle
 = 1–

2
(�v)t

v = 13.5 m/s

v

v0 = 1.50 m/s

Total area = 30.0 m + 7.50 m = 37.5 m

�v

 = 1–
2

(13.5 m/s – 1.50 m/s) (5.00 s)
 = 30.0 m

Area of rectangle
 = v0t

= (1.50 m/s)(5.00 s)
 = 7.50 m

FIGURE 2–13 Velocity versus time 
for the boat in Example 2–5
The distance traveled by the boat 
between and is equal 
to the corresponding area under the 
velocity curve.

t = 5.00 st = 0

▲
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E X A M P L E  2 – 6 P U T  T H E  P E D A L  T O  T H E  M E T A L

A drag racer starts from rest and accelerates at How far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

P I C T U R E  T H E  P R O B L E M

We set up a coordinate system in which the drag racer starts
at the origin and accelerates in the positive x direction. With
this choice, it follows that and Also,
since the racer starts from rest, its initial velocity is zero,

Incidentally, the positions of the racer in the sketch
have been drawn to scale.

S T R A T E G Y

Since this problem gives the acceleration, which is constant,
and asks for a relationship between position and time, we use
Equation 2–11.

S O L U T I O N

Part (a)
1. Evaluate Equation 2–11 with and 

Part (b)
2. From the calculation in part (a), Equation 2–11 reduces to

in this situation. Evaluate at 

Part (c)
3. Repeat with 

I N S I G H T

This Example illustrates one of the key features of accelerated motion—position does not change uniformly with time when an
object accelerates. In this case, the distance traveled in the first two seconds is 4 times the distance traveled in the first second,
and the distance traveled in the first three seconds is 9 times the distance traveled in the first second. This kind of behavior is a
direct result of the fact that x depends on when the acceleration is nonzero.

P R A C T I C E  P R O B L E M

In one second the racer travels 3.70 m. How long does it take for the racer to travel 
[Answer: ]

Some related homework problems: Problem 49, Problem 64

t = 22 s = 1.41 s
213.70 m2 = 7.40 m?

t2

 = 1
217.40 m/s2213.00 s22 = 33.3 m = 913.70 m2

x = 1
2 at2t = 3.00 s:

 = 1
217.40 m/s2212.00 s22 = 14.8 m = 413.70 m2t = 2.00 s:x = 1

2 at2 x = 1
2 at2

x = 1
2 at2

x = 1
217.40 m/s2211.00 s22 = 3.70 m

x = x0 + v0t + 1
2 at2 = 0 + 0 + 1

2 at2 = 1
2 at2t = 1.00 s:a = 7.40 m/s2

v0 = 0.

a = +7.40 m/s2.x0 = 0

7.40 m/s2.

x

t = 0.00 t = 2.00 s t = 3.00 st = 1.00 s

O

Figure 2–14 shows a graph of x-versus-t for Example 2–6. Notice the parabolic
shape of the x-versus-t curve, which is due to the term, and is characteristic of
constant acceleration. In particular, if acceleration is positive , then a plot
of x-versus-t curves upward; if acceleration is negative , a plot of x-versus-t
curves downward. The greater the magnitude of a, the greater the curvature. In
contrast, if a particle moves with constant velocity the dependence van-
ishes, and the x-versus-t plot is a straight line.

Our final equation of motion with constant acceleration relates velocity to po-
sition. We start by solving for the time, t, in Equation 2–7:

Next, we substitute this result into Equation 2–10, thus eliminating t:

Noting that we have

x = x0 +
v2 - v0 

2

2a

1v0 + v21v - v02 = v0v - v0 

2 + v2 - vv0 = v2 - v0 

2,

x = x0 + 1
21v0 + v2t = x0 + 1

21v0 + v2av - v0

a
b

v = v0 + at or t =
v - v0

a

t2(a = 0)

(a 6 0)
(a 7 0)

1
2at2

10

20

30

Po
si

ti
on

, x
 (m

)

Time, t (s)

40

2O 1.50.5 1 32.5 3.5

▲ FIGURE 2–14 Position versus time for
Example 2–6
The upward-curving, parabolic shape of
this x-versus-t plot indicates a positive,
constant acceleration. The dots on the
curve show the position of the drag racer
in Example 2–6 at the times 1.00 s, 2.00 s,
and 3.00 s.
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Finally, a straightforward rearrangement of terms yields

Constant-Acceleration Equation of Motion: Velocity in Terms of Displacement

2–12

This equation allows us to relate the velocity at one position to the velocity at an-
other position, without knowing how much time is involved. The next Example
shows how Equation 2–12 can be used.

v2 = v0 

2 + 2a1x - x02 = v0 

2 + 2a¢x

E X A M P L E  2 – 7 T A K E O F F  D I S T A N C E  F O R  A N  A I R L I N E R

Jets at JFK International Airport accelerate from rest at one end of a runway, and must attain takeoff
speed before reaching the other end of the runway. (a) Plane A has acceleration a and takeoff speed 

What is the minimum length of runway, required for this plane? Give a symbolic answer. (b) Plane B has the same acceler-
ation as plane A, but requires twice the takeoff speed. Find and compare with (c) Find the minimum runway length
for plane A if and (These values are typical for a 747 jetliner.)vto = 95.0 m/s.a = 2.20 m/s2

¢xA.¢xB

¢xA,
vto.

P I C T U R E  T H E  P R O B L E M

In our sketch, we choose the positive x direction to be the di-
rection of motion. With this choice, it follows that the acceler-
ation of the plane is positive, Similarly, the
takeoff velocity is positive as well, 

S T R A T E G Y

From the sketch it is clear that we want to express the distance the plane travels in attaining takeoff speed, in terms of the ac-
celeration, a, and the takeoff speed, Equation 2–12, which relates distance to velocity, allows us to do this.

S O L U T I O N

Part (a)

1. Solve Equation 2–12 for To find set and 

Part (b)

2. To find simply change to in part (a):

Part (c)

3. Substitute numerical values into the result found in part (a):

I N S I G H T

For purposes of comparison, the shortest runway at JFK International Airport is 04R/22L, which has a length of 2560 m.

This Example illustrates the fact that there are many advantages to obtaining symbolic results before substituting numerical val-
ues. In this case, we find that the takeoff distance is proportional to hence, we conclude immediately that doubling v results
in a fourfold increase of 

P R A C T I C E  P R O B L E M

Find the minimum acceleration needed for a takeoff speed of on a runway of length 
[Answer: ]

Some related homework problems: Problem 55, Problem 57

a = vto 

2>2¢x = 2.20 m/s2¢x = 12050 m2>4 = 513 m.
vto = 195.0 m/s2>2 = 47.5 m/s

¢x.
v2;

¢xA =
vto 

2

2a
=
195.0 m/s22

212.20 m/s22 = 2050 m

¢xB =
12vto22

2a
=

4vto 

2

2a
= 4¢xA2vtovto¢xB,

 ¢xA =
vto 

2

2a
¢x =

v2 - v0 

2

2a
v = vto:v0 = 0¢xA,¢x.

vto.
¢x,

vto = +95.0 m/s.
a = +2.20 m/s2.

av0 = 0
v = vto

x
�x

R E A L - W O R L D
P H Y S I C S

Finally, all of our constant-acceleration equations of motion are collected for
easy reference in Table 2–4.

TABLE 2–4 Constant-Acceleration Equations of Motion

Variables Related Equation Number

velocity, time, acceleration 2–7

initial, final, and average velocity 2–9

position, time, velocity 2–10

position, time, acceleration 2–11

velocity, position, acceleration 2–12v2 = v0 

2 + 2a1x - x02 = v0 

2 + 2a¢x

x = x0 + v0t + 1
2 at2

x = x0 + 1
21v0 + v2t

vav = 1
21v0 + v2

v = v0 + at



In Example 2–8, we calculated the distance necessary for a vehicle to come to
a complete stop. But how does v vary with distance as the vehicle slows down?
The next Conceptual Checkpoint deals with this topic.
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E X A M P L E  2 – 8 H I T  T H E  B R A K E S !

A park ranger driving on a back country road suddenly sees a deer “frozen” in the headlights. The ranger, who is driving at
11.4 m/s, immediately applies the brakes and slows with an acceleration of (a) If the deer is 20.0 m from the ranger’s
vehicle when the brakes are applied, how close does the ranger come to hitting the deer? (b) How much time is needed for the
ranger’s vehicle to stop?

P I C T U R E  T H E  P R O B L E M

We choose the positive x direction to be the direction of motion.
With this choice it follows that . In addition, the
fact that the ranger’s vehicle is slowing down means its accel-
eration points in the opposite direction to that of the velocity [see
Figure 2–10 (b) and (c)]. Therefore, the vehicle’s acceleration is

. Finally, when the vehicle comes to rest its ve-
locity is zero, .

S T R A T E G Y

The acceleration is constant, so we can use the equations listed
in Table 2–4. In part (a) we want to find a distance when we
know the velocity and acceleration, so we use a rearranged ver-
sion of Equation 2–12. In part (b) we want to find a time when
we know the velocity and acceleration, so we use a rearranged
version of Equation 2–7.

S O L U T I O N

Part (a)
1. Solve Equation 2–12 for 

2. Set and substitute numerical values:

3. Subtract from 20.0 m to find the distance 
between the stopped vehicle and the deer:

Part (b)
4. Set in Equation 2–7 and solve for t:

I N S I G H T

Note the difference in the way t and depend on the initial speed. If the initial speed is doubled, for example, the time needed
to stop also doubles, but the distance needed to stop increases by a factor of four. This is one reason why speed on the highway
has such a great influence on safety.

P R A C T I C E  P R O B L E M

Show that using in Equation 2–11 results in the same distance needed to stop.
[Answer: as expected.]

Some related homework problems: Problem 57, Problem 58

0 + 111.4 m/s213.00 s2 + 1
21-3.80 m/s2213.00 s22 = 17.1 m,x = x0 + v0t + 1

2 at2 =
t = 3.00 s

¢x

t = -  

v0

a
= -  

11.4 m/s

1-3.80 m/s22 = 3.00 s

v = v0 + at = 0v = 0

20.0 m - 17.1 m = 2.9 m¢x

¢x = -  

v0  

2

2a
= -  

111.4 m/s22
21-3.80 m/s22 = 17.1 mv = 0,

¢x =
v2 - v0  

2

2a
¢x:

v = 0
a = -3.80 m>s2

v0 = +11.4 m>s

3.80 m/s2.

x

a
v0 v = 0

�x

2–6 Applications of the Equations of Motion
We devote this section to a variety of examples further illustrating the use of the
constant-acceleration equations of motion. In our first Example, we consider the
distance and time needed to brake a vehicle to a complete stop.



C O N C E P T U A L  C H E C K P O I N T  2 – 4 S T O P P I N G  D I S T A N C E

The ranger in Example 2–8 brakes for 17.1 m. After braking for only half that distance,
is the ranger’s speed (a) equal to (b) greater than or 

(c) less than 

R E A S O N I N G  A N D  D I S C U S S I O N

As pointed out in the Insight for Example 2–8, the fact that the stopping distance, 
depends on means that this distance increases by a factor of four when the speed is
doubled. For example, the stopping distance with an initial speed of is four times the
stopping distance when the initial speed is 

To apply this observation to the ranger, suppose that the stopping distance with an ini-
tial speed of is It follows that the stopping distance for an initial speed of is

This means that as the ranger slows from to 0, it takes a distance to slow
from to 0, and the remaining distance, to slow from to Thus, at the
halfway point the ranger has not yet slowed to half of the initial velocity—the speed at
this point is greater than 

A N S W E R

(b) The ranger’s speed is greater than 12 v0.

v0>2.

v0>2.v03¢x/4,v0/2
¢x/4v0¢x/4.

v0/2¢x.v0

v0>2.
v0

v0 

2
¢x,

1
2 v0?

1
2 v0,1

2 v0,8.55 m,1
2117.1 m2 =

Clearly, v does not decrease uniformly with distance. A plot showing v as a func-
tion of x for Example 2–8 is shown in Figure 2–15. As we can see from the graph, v
changes more in the second half of the braking distance than in the first half.
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FIGURE 2–15 Velocity as a function 
of position for the ranger in Example 2–8
The ranger’s vehicle in Example 2–8
comes to rest with constant acceleration,
which means that its velocity decreases
uniformly with time. The velocity does
not decrease uniformly with distance,
however. In particular, note how rapidly
the velocity decreases in the final one-
quarter of the stopping distance.

▲

P R O B L E M - S O L V I N G  N O T E

Strategize

Before attempting to solve a problem, it is a
good idea to have some sort of plan, or
“strategy,” for how to proceed. It may be as
simple as saying, “The problem asks me to
relate velocity and time, therefore I will use
Equation 2–7.” In other cases the strategy is
a bit more involved. Producing effective
strategies is one of the most challenging—
and creative—aspects of problem solving.

R E A L - W O R L D  P H Y S I C S

The stopping distance of a car

We close this section with a familiar, everyday example: a police car accelerat-
ing to overtake a speeder. This is the first time that we use two equations of mo-
tion for two different objects to solve a problem—but it won’t be the last. Prob-
lems of this type are often more interesting than problems involving only a single
object, and they relate to many types of situations in everyday life.

E X A M P L E  2 – 9 C A T C H I N G  A  S P E E D E R

A speeder doing 40.0 mi/h (about 17.9 m/s) in a 25 mi/h zone approaches a parked police car. The instant the speeder passes
the police car, the police begin their pursuit. If the speeder maintains a constant velocity, and the police car accelerates with a
constant acceleration of (a) how long does it take for the police car to catch the speeder, (b) how far have the two cars
traveled in this time, and (c) what is the velocity of the police car when it catches the speeder?

4.51 m/s2,
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P I C T U R E  T H E  P R O B L E M

Our sketch shows the two cars at the moment the speeder passes the resting police car. At this instant, which we take to be 
both the speeder and the police car are at the origin, In addition, we choose the positive x direction to be the direction of
motion; therefore, the speeder’s initial velocity is given by and the police car’s initial velocity is zero. The
speeder’s acceleration is zero, but the police car has an acceleration given by Finally, our plot shows the linear
x-versus-t plot for the speeder, and the parabolic x-versus-t plot for the police car.

S T R A T E G Y

To solve this problem, first write down a position-versus-time equation for the police car, and a separate equation for the
speeder, Next, we find the time it takes the police car to catch the speeder by setting and solving the resulting equation
for t. Once the catch time is determined, it is straightforward to calculate the distance traveled and the velocity of the police car.

S O L U T I O N

Part (a)

1. Write equations of motion for the two vehicles. For the
police car, and For the speeder, 

and 

2. Set and solve for the time:

3. Clearly, corresponds to the initial conditions, 
because both vehicles started at at that time. 
The time of interest is obtained by substituting 
numerical values into the other solution:

Part (b)

4. Substitute into the equations of motion 
for and Note that as expected:

Part (c)
5. To find the velocity of the police car use Equation 2–7,

which relates velocity to time:

I N S I G H T

When the police car catches up with the speeder, its velocity is 35.8 m/s, which is exactly twice the velocity of the speeder. A co-
incidence? Not at all. When the police car catches the speeder, both have traveled the same distance (142 m) in the same time
(7.94 s), therefore they have the same average velocity. Of course, the average velocity of the speeder is simply The average 
velocity of the police car is since its acceleration is constant, and thus Since for the police car, it
follows that Notice that this result is independent of the acceleration of the police car, as we show in the following Prac-
tice Problem.

P R A C T I C E  P R O B L E M

Repeat this Example for the case where the acceleration of the police car is [Answer: (a)
(b) (c) ]

Some related homework problems: Problem 54, Problem 65

vp = 35.8 m/sxp = xs = 197 m,
t = 11.0 s,a = 3.25 m/s2.

v = 2vs.
v0 = 01

21v0 + v2 = vs.
1
21v0 + v2,

vs.

vp = v0 + at = 0 + 14.51 m/s2217.94 s2 = 35.8 m/s

xs = vst = 117.9 m/s217.94 s2 = 142 mxp = xs,xs.xp

xp = 1
2 at2 = 1

214.51 m/s2217.94 s22 = 142 t = 7.94 s

x = 0
t =

2vs

a
=

2117.9 m/s2
4.51 m/s2

= 7.94 st = 0

two solutions: t = 0 or t =
2vs

a

1
2at2 = vst or 112at - vs2t = 0xp = xs

a = 0:v0 = 17.9 m/s = vs

a = 4.51 m/s2.v0 = 0
 xp = 1

2 at2

xp = xsxs.
xp,

a = +4.51 m/s2.
vs = +17.9 m/s,

x = 0.
t = 0,

v0 = 17.9 m/s

v0 = 0

O O

Speeder,
xs

Police car,
xpa = 4.51 m/s2

a = 0

x
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▲ In the absence of air resistance, all
bodies fall with the same acceleration,
regardless of their mass.

2–7 Freely Falling Objects
The most famous example of motion with constant acceleration is free fall—the
motion of an object falling freely under the influence of gravity. It was Galileo
(1564–1642) who first showed, with his own experiments, that falling bodies
move with constant acceleration. His conclusions were based on experiments
done by rolling balls down inclines of various steepness. By using an incline,
Galileo was able to reduce the acceleration of the balls, thus producing motion
slow enough to be timed with the rather crude instruments available.

Galileo also pointed out that objects of different weight fall with the same
constant acceleration—provided air resistance is small enough to be ignored.
Whether he dropped objects from the Leaning Tower of Pisa to demonstrate this
fact, as legend has it, will probably never be known for certain, but we do know
that he performed extensive experiments to support his claim.

Today it is easy to verify Galileo’s assertion by dropping objects in a vacuum
chamber, where the effects of air resistance are essentially removed. In a standard
classroom demonstration, a feather and a coin are dropped in a vacuum, and both
fall at the same rate. In 1971, a novel version of this experiment was carried out on
the Moon by astronaut David Scott. In the near-perfect vacuum on the Moon’s
surface he dropped a feather and a hammer and showed a worldwide television
audience that they fell to the ground in the same time.

To illustrate the effect of air resistance in everyday terms, consider dropping a
sheet of paper and a rubber ball (Figure 2–16). The paper drifts slowly to the ground,
taking much longer to fall than the ball. Now, wad the sheet of paper into a tight ball
and repeat the experiment. This time the ball of paper and the rubber ball reach the
ground in nearly the same time. What was different in the two experiments? Clearly,
when the sheet of paper was wadded into a ball, the effect of air resistance on it was
greatly reduced, so that both objects fell almost as they would in a vacuum.
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(a) Dropping a sheet of paper and
a rubber ball 

(b) Dropping a wadded-up sheet
of paper and a rubber ball

FIGURE 2–16 Free fall and air resistance▲

▲ Whether she is on the way up,
at the peak of her flight, or on the
way down, this girl is in free fall,
accelerating downward with the
acceleration of gravity. Only
when she is in contact with the
blanket does her acceleration
change.

Before considering a few examples, let’s first discuss exactly what is meant by
“free fall.” To begin, the word free in free fall means free from any effects other
than gravity. For example, in free fall we assume that an object’s motion is not in-
fluenced by any form of friction or air resistance.

• Free fall is the motion of an object subject only to the influence of gravity.

Though free fall is an idealization—which does not apply to many real-world
situations—it is still a useful approximation in many other cases. In the following
examples we assume that the motion may be considered as free fall.

Next, it should be realized that the word fall in free fall does not mean the ob-
ject is necessarily moving downward. By free fall, we mean any motion under the
influence of gravity alone. If you drop a ball, it is in free fall. If you throw a ball
upward or downward, it is in free fall as soon as it leaves your hand.

• An object is in free fall as soon as it is released, whether it is dropped from
rest, thrown downward, or thrown upward.

Finally, the acceleration produced by gravity on the Earth’s surface (sometimes
called the gravitational strength) is denoted with the symbol g. As a shorthand
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name, we will frequently refer to g simply as “the acceleration due to gravity.” In
fact, as we shall see in Chapter 12, the value of g varies according to one’s location
on the surface of the Earth, as well as one’s altitude above it. Table 2–5 shows how
g varies with latitude.

In all the calculations that follow in this book, we shall use 
for the acceleration due to gravity. Note, in particular, that g always stands for

never For example, if we choose a coordinate system
with the positive direction upward, the acceleration in free fall is If the
positive direction is downward, then free-fall acceleration is 

With these comments, we are ready to explore a variety of free-fall examples.
a = g.

a = -g.
-9.81 m/s2.+9.81 m/s2,

g = 9.81 m/s2

E X A M P L E  2 – 1 0 D O  T H E  C A N N O N B A L L !

A person steps off the end of a 3.00-m-high diving board and drops to the water below. (a) How long does it take for the person
to reach the water? (b) What is the person’s speed on entering the water?

P I C T U R E  T H E  P R O B L E M

In our sketch we choose the origin to be at the height of the diving board, and we let
the positive direction be downward. With these choices, and the
water is at Of course, since the person simply steps off the board.

S T R A T E G Y

We can neglect air resistance in this case and model the motion as free fall. This
means we can assume a constant acceleration equal to g and use the equations of
motion in Table 2–4. For part (a) we want to find the time of fall when we know the
distance and acceleration, so we use Equation 2–11. For part (b) we can relate veloc-
ity to time by using Equation 2–7, or we can relate velocity to position by using
Equation 2–12. We will implement both approaches and show that the results are
the same.

S O L U T I O N

Part (a)

1. Write Equation 2–11 with and 

2. Solve for the time, t, and set 

Part (b)

3. Use the time found in part (a) in Equation 2–7:

4. We can also find the velocity without knowing
the time by using Equation 2–12 with 

I N S I G H T

Let’s put these results in more common, everyday units. If you step off a diving board 9.84 ft (3.00 m) above the water, you enter
the water with a speed of 17.2 mi/h (7.67 m/s).

P R A C T I C E  P R O B L E M

What is your speed on entering the water if you step off a 10.0-m diving tower? [Answer:
]

Some related homework problems: Problem 71, Problem 83

14.0 m/s = 31.4 mi/h
v = 4219.81 m/s22110.0 m2 =

¢x = 3.00 m:
v2 = v0  

2 + 2a¢x = 0 + 2g¢x

v = v0 + gt = 0 + 19.81 m/s2210.782 s2 = 7.67 m/s

t = A2x
g

= C213.00 m2
9.81 m/s2

= 0.782 sx = 3.00 m:

x = x0 + v0t + 1
2 at2 = 0 + 0 + 1

2 gt2 = 1
2 gt2a = g:x0 = 0, v0 = 0,

v0 = 0x = 3.00 m.
x0 = 0, a = g,

3.00 m

O

x

The special case of free fall from rest occurs so frequently, and in so many
different contexts, that it deserves special attention. If we take to be zero,
and positive to be downward, then position as a function of time is

or

2–13

Similarly, velocity as a function of time is

2–14v = gt

x = 1
2 gt2

x = x0 + v0t + 1
2 gt2 = 0 + 0 + 1

2 gt2,

x0

v = 42g¢x = 4219.81 m/s2213.00 m2 = 7.67 m/s

TABLE 2–5 Values of g at Different
Locations on Earth 

Location Latitude g

North Pole 90° N 9.832
Oslo, Norway 60° N 9.819
Hong Kong 30° N 9.793
Quito, Ecuador 0° 9.780

1m>s22



v = 0 x = 0
x = 4.91 m

x = 19.6 m

x = 44.1 m

x = 78.5 m

v = 9.81 m/s

v = 19.6 m/s

v = 29.4 m/s

v = 39.2 m/s

t = 0
t = 1 s

t = 2 s

t = 3 s

t = 4 s

x

▲ FIGURE 2–17 Free fall from rest
Position and velocity are shown as func-
tions of time. It is apparent that velocity
depends linearly on t, whereas position
depends on .t2
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P R O B L E M - S O L V I N G  N O T E

Check Your Solution

Once you have a solution to a problem,
check to see whether it makes sense. First,
make sure the units are correct; m/s for
speed, for acceleration, and so on.
Second, check the numerical value of your
answer. If you are solving for the speed of
a diver dropping from a 3.0-m diving
board and you get an unreasonable value
like 200 m/s , chances are
good that you’ve made a mistake.

( L 450 mi >  h)

m >  s2

C O N C E P T U A L  C H E C K P O I N T  2 – 5
F R E E - F A L L  S E P A R A T I O N

You drop a rock from a bridge to the river below. When the rock has fallen 4 m, you drop
a second rock. As the rocks continue their free fall, does their separation (a) increase,
(b) decrease, or (c) stay the same?

4 m

O

x

R E A S O N I N G  A N D  D I S C U S S I O N

It might seem that since both rocks are in free fall, their separation remains the same.
This is not so. The rock that has a head start always has a greater velocity than the later
one; thus it covers a greater distance in any interval of time. As a result, the separation
between the rocks increases.

A N S W E R

(a) The separation between the rocks increases.

and velocity as a function of position is

2–15

The behavior of these functions is illustrated in Figure 2–17. Note that position in-
creases with time squared, whereas velocity increases linearly with time.

Next we consider two objects dropped from rest, one after the other, and dis-
cuss how their separation varies with time.

v = 22gx

E X A M P L E  2 – 1 1 B O M B S  A W AY :  C A L C U L A T I N G  T H E  S P E E D  O F  A  L A V A  B O M B

A volcano shoots out blobs of molten lava,
called lava bombs, from its summit. A geologist
observing the eruption uses a stopwatch to time

the flight of a particular lava bomb that is projected straight upward. If
the time for it to rise and fall back to its launch height is 4.75 s, and its
acceleration is downward, what is its initial speed?

P I C T U R E  T H E  P R O B L E M

Our sketch shows a coordinate system with upward as the positive x di-
rection. For clarity, we offset the upward and downward trajectories
slightly. In addition, we choose to be the time at which the lava
bomb is launched. With these choices it follows that and the accel-
eration is The initial speed to be determined is 

CONTINUED ON NEXT PAGE

v0.a = -g = -9.81 m>s2.
x0 = 0

t = 0

9.81 m/s2

An erupting volcano shooting out fountains of lava is an impressive sight. In
the next Example we show how a simple timing experiment can determine the
initial velocity of the erupting lava.

x

O

v0

a

R E A L - W O R L D
P H Y S I C S
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What is the speed of a lava bomb when it returns to Earth; that is, when it
returns to the same level from which it was launched? Physical intuition might
suggest that, in the absence of air resistance, it should be the same as the initial
speed. To show that this hypothesis is indeed correct, write out Equation 2–7 for
this case:

Substituting numerical values, we find

Thus, the velocity of the lava when it lands is just the negative of the velocity it
had when launched upward. Or put another way, when the lava lands, it has the
same speed as when it was launched; it’s just traveling in the opposite direction.

It is instructive to verify this result symbolically. Recall from Example 2–11
that where t is the time the bomb lands. Substituting this result into
Equation 2–7 we find

The advantage of the symbolic solution lies in showing that the result is not a
fluke—no matter what the initial velocity, no matter what the acceleration, the
bomb lands with the velocity 

These results hint at a symmetry relating the motion on the way up to the mo-
tion on the way down. To make this symmetry more apparent, we first solve for

-v0.

v = 1
2 gt - gt = -1

2 gt = -v0

v0 = 1
2 gt,

v = v0 - gt = 23.3 m/s - 19.81 m/s2214.75 s2 = -23.3 m/s

v = v0 - gt

▲ In the absence of air resistance, these
lava bombs from the Kilauea volcano on
the big island of Hawaii would strike the
water with the same speed they had when
they were blasted into the air.

CONTINUED FROM PREVIOUS PAGE

S T R A T E G Y

Once again, we can neglect air resistance and model the motion of the lava bomb as free fall—this time with an initial upward
velocity. We know that the lava bomb starts at at the time and returns to at the time This means that
we know the bomb’s position, time, and acceleration from which we would like to determine the initial velocity. A rea-
sonable approach is to use Equation 2–11 and solve it for the one unknown it contains, 

S O L U T I O N

1. Write out with and 
Factor out a time, t, from the two remaining terms:

2. Set x equal to zero, since this is the position of the lava two solutions:
bomb at and (i) 

(ii) 

3. The first solution is simply the initial condition; or
that is, at Solve the second solution 
for the initial speed:

4. Substitute numerical values for g and the time 
the lava bomb lands:

I N S I G H T

A geologist can determine a lava bomb’s initial speed by simply observing its flight time. Knowing the lava bomb’s initial speed
can help geologists determine how severe a volcanic eruption will be, and how dangerous it might be to people in the sur-
rounding area.

P R A C T I C E  P R O B L E M

A second lava bomb is projected straight upward with an initial speed of 25 m/s. How long is it in the air? [Answer: ]

Some related homework problems: Problem 73, Problem 86

t = 5.1 s

v0 = 1
2 gt = 1

219.81 m>s2214.75 s2 = 23.3 m>s

t = 0.x = 0
v0 = 1

2 gtv0 - 1
2 gt = 0

v0 - 1
2 gt = 0

t = 0t = 4.75 s:t = 0
x = Av0 - 1

2 gt B t = 0

x = x0 + v0t + 1
2 at2 = v0t - 1

2 gt2 = Av0 - 1
2 gt B ta = -g.x0 = 0x = x0 + v0t + 1

2 at2

v0.
1a = -g2,

t = 4.75 s.x = 0t = 0x = 0
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v = 29.4 m/s
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v = 0

v = –29.4 m/s
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▲ FIGURE 2–18 Position and velocity of a lava bomb
This lava bomb is in the air for 6 seconds. Note the symmetry about the mid-
point of the bomb’s flight.

the time when the lava bomb lands. Using the result from Example 2–11,
we find

(time of landing)

Next, we find the time when the velocity of the lava is zero, which is at its highest
point. Setting in Equation 2–7, we have or

(time when )

Note that this is exactly half the time required for the lava to make the round trip.
Thus, the velocity of the lava is zero and the height of the lava is greatest exactly
halfway between launch and landing.

This symmetry is illustrated in Figure 2–18. In this case we consider a lava
bomb that is in the air for 6.00 s, moving without air resistance. Note that at

the lava is at its highest point and its velocity is zero. At times equally
spaced before and after , the lava is at the same height, has the same
speed, but is moving in opposite directions. As a result of this symmetry, a
movie of the lava bomb’s flight would look the same whether run forward or in
reverse.

Figure 2–19 shows the time dependence of position, velocity, and acceleration
for an object in free fall without air resistance after being thrown upward. As soon
as the object is released, it begins to accelerate downward—as indicated by the
negative slope of the velocity-versus-time plot—though it isn’t necessarily mov-
ing downward. For example, if you throw a ball upward it begins to accelerate
downward the moment it leaves your hand. It continues moving upward, how-
ever, until its speed diminishes to zero. Since gravity is causing the downward
acceleration, and gravity doesn’t turn off just because the ball’s velocity goes
through zero, the ball continues to accelerate downward even when it is momen-
tarily at rest.

Similarly, in the next Example we consider a sandbag that falls from an as-
cending hot-air balloon. This means that before the bag is in free fall it was mov-
ing upward—just like a ball thrown upward. And just like the ball, the sandbag
continues moving upward for a brief time before momentarily stopping and then
moving downward.

t = 3.00 s
t = 3.00 s

v = 0t =
v0

g

v = v0 - gt = 0,v = 0

t =
2v0

g

v0 = 1
2 gt

t

v

O

t

a

O

▲ FIGURE 2–19 Position, velocity, and 
acceleration of a lava bomb as functions 
of time
The fact that x versus t is curved indicates
an acceleration; the downward curvature
shows that the acceleration is negative.
This is also clear from v versus t, which
has a negative slope. The constant slope
of the straight line in the v-versus-t plot
indicates a constant acceleration, as
shown in the a-versus-t plot.

t

x

O
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E X A M P L E  2 – 1 2 L O O K  O U T  B E L O W !  A  S A N D B A G  I N  F R E E  F A L L

A hot-air balloon is rising straight upward with a constant speed of 6.5 m/s. When the basket of the balloon is 20.0 m above the
ground, a bag of sand tied to the basket comes loose. (a) How long is the bag of sand in the air before it hits the ground? (b) What
is the greatest height of the bag of sand during its fall to the ground?

P I C T U R E  T H E  P R O B L E M

We choose the origin to be at ground level and positive to be upward. This
means that, for the bag, we have and Our
sketch also shows snapshots of the balloon and bag of sand at three different
times, starting at when the bag comes loose. Note that the bag is mov-
ing upward with the balloon at the time it comes loose. It therefore continues
to move upward for a short time after it separates from the basket, exactly as
if it had been thrown upward.

S T R A T E G Y

The effects of air resistance on the sandbag can be ignored. As a result, we can
use the equations in Table 2–4 with a constant acceleration 

In part (a) we want to relate position and time—knowing the initial position
and initial velocity—so we use Equation 2–11. To find the time the bag hits
the ground, we set and solve for t.

For part (b) we have no expression that gives the maximum height of a 
particle—so we will have to come up with something on our own. We can
start with the fact that at the greatest height, since it is there the bag 
momentarily stops as it changes direction. Therefore, we can find the time 
t when by using Equation 2–7, and then substitute t into Equation 2–11
to find 

S O L U T I O N

Part (a)

1. Apply Equation 2–11 to the bag of sand, where and 
have the values given. Set :

2. Note that we have a quadratic equation for t in the form 
where and 

Solve this equation for t. The positive solution, 2.78 s, 
applies to this problem: (Quadratic equations and their 
solutions are discussed in Appendix A. In general, one 
can expect two solutions to a quadratic equation.)

C = x0.B = v0,A = -1
2 g,vf = vi

x = 0
x = x0 + v0t - 1

2 gt2 = 0v0x0

xmax.
v = 0

v = 0

x = 0

a = -g.

t = 0

a = -g.v0 = 6.5 m>s,x0 = 20.0 m,

t

x

t = 0

20.0 m
O

Part (b)

3. Apply Equation 2–7 to the bag of sand, then find the
time when the velocity equals zero:

4. Use in Equation 2–11 to find the maximum 
height:

I N S I G H T

The positive solution to the quadratic equation is certainly the one that applies here, but the negative solution is not completely
without meaning. What physical meaning might it have? Well, if the balloon had been descending with a speed of 6.5 m/s, in-
stead of rising, then the time for the bag to reach the ground would have been 1.46 s. Try it! Let and repeat the
calculation given in part (a).

P R A C T I C E  P R O B L E M

What is the velocity of the bag of sand just before it hits the ground? [Answer:
the minus sign indicates the bag is moving downward.]

Some related homework problems: Problem 90, Problem 107

19.81 m/s2212.78 s2 = -20.8 m/s;
16.5 m/s2 -v = v0 - gt =

v0 = -6.5 m/s

= 22 m
xmax = 20.0 m + (6.5 m >  s) (0.66 s) - 1

2(9.81 m >  s2) (0.66 s)2t = 0.66 s

v0 - gt = 0 or t =
v0

g
=

6.5 m/s

9.81 m/s2
= 0.66 s

v = v0 + at = v0 - gt

 =
-16.5 m/s2 ; 20.8 m/s

1-9.81 m/s22 = 2.78 s, -1.46 s

 =
-16.5 m/s2 ; 416.5 m/s22 + 219.81 m/s22120.0 m2

1-9.81 m/s22

 t =
-v0 ; 4v0 

2 - 4 A -1
2 g B1x02

2 A -1
2 g B
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T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

In this chapter we have made
extensive use of the sign conventions
for one-dimensional vectors—positive
for one direction, negative for the
opposite direction—as introduced in
Chapter 1. See, for example, the
positive and negative velocities in
Figure 2–18.

The distinctions developed in this
chapter between velocity and
acceleration will play a key role in our
understanding of Newton’s laws of
motion in Chapters 5 and 6, and
everywhere else that Newton’s laws
are used throughout the text.

We have been careful to check the
dimensional consistency of our
equations in this chapter. For
example, the discussion following
Equation 2–11 shows that all the terms
in that equation have the dimensions
of length.

The equations developed for motion
with constant acceleration in this
chapter (Equations 2–7, 2–10, 2–11,
and 2–12) will be used again with
slightly different symbols when we
study rotational motion in Chapter 10.
See, in particular, Equations 10–8,
10–9, 10–10, and 10–11.

C H A P T E R  S U M M A RY

2 – 1 P O S I T I O N ,  D I STA N C E ,  A N D  D I S P L A C E M E N T

Distance
Total length of travel, from beginning to end. The distance is always positive.

Displacement
Displacement, is the change in position:

2–1

When calculating displacement, it is important to remember that it is always
final position minus initial position—never the other way. Displacement can be
positive, negative, or zero.

Positive and Negative Displacement
The sign of the displacement indicates the direction of motion. For example,
suppose we choose the positive direction to be to the right. Then means
motion to the right, and means motion to the left.

Units
The SI unit of distance and displacement is the meter, m.

2 – 2 AV E R A G E  S P E E D  A N D  V E L O C I T Y

Average Speed
Average speed is distance divided by elapsed time:

2–2

Average speed is never negative.

Average Velocity
Average velocity, is displacement divided by time:

2–3

Average velocity is positive if motion is in the positive direction, and negative if
motion is in the negative direction.

Graphical Interpretation of Velocity
In an x-versus-t plot, the average velocity is the slope of a line connecting 
two points.

Units
The SI unit of speed and velocity is meters per second, m/s.

vav =
¢x
¢t

=
xf - xi

tf - ti

vav,

average speed = distance>time

¢x 6 0
¢x 7 0

¢x = xf - xi

¢x,

When �x > 0,
the slope �x/�t
is positive.

x (m)

Δt

Δx > 0
1

–1

–2

2

3

4

B

A

5

4
O t (s)

31 2

Slope = = average velocity from A to B�x
�t
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2 – 3 I N STA N TA N E O U S  V E L O C I T Y

The velocity at an instant of time is the limit of the average velocity over shorter
and shorter time intervals:

2–4

Instantaneous velocity can be positive, negative, or zero, with the sign indicat-
ing the direction of motion.

Constant Velocity
When velocity is constant, the instantaneous velocity is equal to the average
velocity.

Graphical Interpretation
In an x-versus-t plot, the instantaneous velocity at a given time is equal to the
slope of the tangent line at that time.

2 – 4 A C C E L E R AT I O N

Average Acceleration
Average acceleration is the change in velocity divided by the change in time:

2–5

Average acceleration is positive if is negative if and is zero 
if

Instantaneous Acceleration
Instantaneous acceleration is the limit of the average acceleration as the time
interval goes to zero:

2–6

Instantaneous acceleration can be positive, negative, or zero, depending on
whether the velocity is becoming more positive, more negative, or is staying the
same. Knowing the sign of the acceleration does not tell you whether an object is
speeding up or slowing down, and it does not give the direction of motion.

Constant Acceleration
When acceleration is constant, the instantaneous acceleration is equal to the
average acceleration.

Deceleration
An object whose speed is decreasing is said to be decelerating. Deceleration
occurs whenever the velocity and acceleration have opposite signs.

Graphical Interpretation
In a v-versus-t plot, the instantaneous acceleration is equal to the slope of the
tangent line at a given time.

Units
The SI unit of acceleration is meters per second per second, or 

2 – 5 M O T I O N  W I T H  C O N STA N T  A C C E L E R AT I O N

Several different “equations of motion” describe particles moving with constant
acceleration. Each equation relates a different set of variables:

Velocity as a Function of Time

2–7

Initial, Final, and Average Velocity

2–9

Position as a Function of Time and Velocity

2–10

Position as a Function of Time and Acceleration

2–11

Velocity as a Function of Position

2–12v2 = v0
2 + 2a1x - x02 = v0

2 + 2a¢x

x = x0 + v0t + 1
2 at2

x = x0 + 1
21v0 + v2t

vav = 1
21v0 + v2

v = v0 + at

m/s2.

a = lim
¢t:0

¢v
¢t

vf = vi.
vf 6 vi,vf 7 vi,

aav =
¢v
¢t

=
vf - vi

tf - ti

v = lim
¢t:0

¢x
¢t

v

O
t

t3t1 t2

Slope = average acceleration
between times t1 and t2

Slope = average acceleration
between times t2 and t3

Slope of tangent line =
instantaneous acceleration at t3

x

O
t

t3t1 t2

Slope  = average velocity
between times t1 and t2

Slope  = average velocity
between times t2 and t3

Slope of tangent
line = instantaneous
velocity at time t3
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Objects in free fall move under the influence of gravity alone. An object is in free
fall as soon as it is released, whether it is thrown upward, thrown downward, or
released from rest.

Acceleration Due to Gravity
The acceleration due to gravity on the Earth’s surface varies slightly from place
to place. In this book we shall define the acceleration of gravity to have the fol-
lowing magnitude:

Note that g is always a positive quantity. If we choose the positive direction of
our coordinate system to be downward (in the direction of the acceleration of
gravity), it follows that the acceleration of an object in free fall is On the
other hand, if we choose our positive direction to be upward, the acceleration of
a freely falling object is in the negative direction; hence a = -g.

a = +g.

g = 9.81 m/s2
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v = 0 x = 0
x = 4.91 m

x = 19.6 m

x = 44.1 m

x = 78.5 m

v = 9.81 m/s

v = 19.6 m/s

v = 29.4 m/s

v = 39.2 m/s

t = 0
t = 1 s

t = 2 s

t = 3 s

t = 4 s

P R O B L E M - S O L V I N G  S U M M A RY

Type of Calculation Relevant Physical Concepts Related Examples

Relate velocity to time. In motion with uniform acceleration a, the Examples 2–5, 2–8, 2–9, 2–10, 2–11, 2–12
velocity changes with time as 
(Equation 2–7).

Relate velocity to position. If an object with an initial velocity accelerates Examples 2–7, 2–8, 2–10
with a uniform acceleration a for a distance 
the final velocity, v, is given by 
(Equation 2–12).

Relate position to time. The position of an object moving with constant Examples 2–5, 2–6, 2–9, 2–10, 2–11, 2–12
acceleration a varies with time as follows:

(Equation 2–10) or 
equivalently (Equation 2–11).x = x0 + v0t + 1

2 at2
x = x0 + 1

21v0 + v2t

v2 = v0
2 + 2a¢x

¢x,
v0

v = v0 + at

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)
(The effects of air resistance are to be ignored in this chapter.)

1. You and your dog go for a walk to a nearby park. On the way,
your dog takes many short side trips to chase squirrels, exam-
ine fire hydrants, and so on. When you arrive at the park, do
you and your dog have the same displacement? Have you trav-
eled the same distance? Explain.

2. Does an odometer in a car measure distance or displacement?
Explain.

3. Can you drive your car in such a way that the distance it covers
is (a) greater than, (b) equal to, or (c) less than the magnitude of
its displacement? In each case, give an example if your answer
is yes, explain why not if your answer is no.

4. An astronaut orbits Earth in the space shuttle. In one complete
orbit, is the magnitude of the displacement the same as the dis-
tance traveled? Explain.

5. After a tennis match the players dash to the net to congratulate
one another. If they both run with a speed of 3 m/s, are their ve-
locities equal? Explain.

6. Does a speedometer measure speed or velocity? Explain.
7. Is it possible for a car to circle a race track with constant veloc-

ity? Can it do so with constant speed? Explain.
8. Friends tell you that on a recent trip their average velocity

was . Is it possible that their instantaneous velocity
was negative at any time during the trip? Explain.

+20 m>s

9. For what kind of motion are the instantaneous and average ve-
locities equal?

10. If the position of an object is zero, does its speed have to be
zero? Explain.

11. Assume that the brakes in your car create a constant decelera-
tion, regardless of how fast you are going. If you double your
driving speed, how does this affect (a) the time required to
come to a stop, and (b) the distance needed to stop?

12. The velocity of an object is zero at a given instant of time. (a) Is
it possible for the object’s acceleration to be zero at this time?
Explain. (b) Is it possible for the object’s acceleration to be
nonzero at this time? Explain.

13. If the velocity of an object is nonzero, can its acceleration be
zero? Give an example if your answer is yes, explain why not if
your answer is no.

14. Is it possible for an object to have zero average velocity over 
a given interval of time, yet still be accelerating during the
interval? Give an example if your answer is yes, explain why
not if your answer is no.

15. A batter hits a pop fly straight up. (a) Is the acceleration of the
ball on the way up different from its acceleration on the way
down? (b) Is the acceleration of the ball at the top of its flight
different from its acceleration just before it lands?

For instructor-assigned homework, go to www.masteringphysics.com



10 m

First putt

Second putt

2.5 m

x

▲ FIGURE 2–22 Problem 3
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Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••)
are used to indicate the level of difficulty.
(The effects of air resistance are to be ignored in this chapter.)

S E C T I O N  2 – 1 P O S I T I O N ,  D I STA N C E ,  A N D
D I S P L A C E M E N T

1. • Referring to Figure 2–20, you walk from your home to the li-
brary, then to the park. (a) What is the distance traveled? (b)
What is your displacement?

2. • The two tennis players shown in Figure 2–21 walk to the net to
congratulate one another. (a) Find the distance traveled and the
displacement of player A. (b) Repeat for player B.

0.75 mi

0.60 mi

0.35 mi

Friend’s
house

x

Your house Park

Library

▲ FIGURE 2–20 Problems 1 and 4

x

BA

5 m 2 m

▲ FIGURE 2–21 Problem 2
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4. • In Figure 2–20, you walk from the park to your friend’s house,
then back to your house. What is your (a) distance traveled, and
(b) displacement?

5. • A jogger runs on the track shown in Figure 2–23. Neglecting the
curvature of the corners, (a) what is the distance traveled and
the displacement in running from point A to point B? (b) Find
the distance and displacement for a complete circuit of the track.

3. • The golfer in Figure 2–22 sinks the ball in two putts, as shown.
What are (a) the distance traveled by the ball, and (b) the dis-
placement of the ball?

x

A B
30 m

100 m

▲ FIGURE 2–23 Problem 5

16. A person on a trampoline bounces straight upward with an ini-
tial speed of 4.5 m/s. What is the person’s speed when she re-
turns to her initial height?

17. After winning a baseball game, one player drops a glove, while
another tosses a glove into the air. How do the accelerations of
the two gloves compare?

18. A volcano shoots a lava bomb straight upward. Does the dis-
placement of the lava bomb depend on (a) your choice of origin
for your coordinate system, or (b) your choice of a positive di-
rection? Explain in each case.

6. •• IP A child rides a pony on a circular track whose radius is
4.5 m. (a) Find the distance traveled and the displacement after
the child has gone halfway around the track. (b) Does the dis-
tance traveled increase, decrease, or stay the same when the
child completes one circuit of the track? Explain. (c) Does the
displacement increase, decrease, or stay the same when the child
completes one circuit of the track? Explain. (d) Find the distance
and displacement after a complete circuit of the track.

S E C T I O N  2 – 2 AV E R A G E  S P E E D  A N D  V E L O C I T Y
7. • CE Predict/Explain You drive your car in a straight line at

15 m/s for 10 kilometers, then at 25 m/s for another 10 kilome-
ters. (a) Is your average speed for the entire trip more than, less
than, or equal to 20 m/s? (b) Choose the best explanation from
among the following:

I. More time is spent at 15 m/s than at 25 m/s.
II. The average of 15 m/s and 25 m/s is 20 m/s.

III. Less time is spent at 15 m/s than at 25 m/s.

8. • CE Predict/Explain You drive your car in a straight line at
15 m/s for 10 minutes, then at 25 m/s for another 10 minutes.
(a) Is your average speed for the entire trip more than, less than,
or equal to 20 m/s? (b) Choose the best explanation from among
the following:

I. More time is required to drive at 15 m/s than at 25 m/s.
II. Less distance is covered at 25 m/s than at 15 m/s.

III. Equal time is spent at 15 m/s and 25 m/s.

9. • Joseph DeLoach of the United States set an Olympic record in
1988 for the 200-meter dash with a time of 19.75 seconds. What
was his average speed? Give your answer in meters per second
and miles per hour.

10. • In 1992 Zhuang Yong of China set a women’s Olympic record
in the 100-meter freestyle swim with a time of 54.64 seconds.
What was her average speed in m/s and mi/h?
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20. •• IP You drive in a straight line at 20.0 m/s for 10.0 minutes, then
at 30.0 m/s for another 10.0 minutes. (a) Is your average speed 25.0
m/s, more than 25.0 m/s, or less than 25.0 m/s? Explain. (b) Ver-
ify your answer to part (a) by calculating the average speed.

21. •• In heavy rush-hour traffic you drive in a straight line at 12 m/s
for 1.5 minutes, then you have to stop for 3.5 minutes, and finally
you drive at 15 m/s for another 2.5 minutes. (a) Plot a position-
versus-time graph for this motion. Your plot should extend from

to minutes. (b) Use your plot from part (a) to calcu-
late the average velocity between and minutes.

22. •• IP You drive in a straight line at 20.0 m/s for 10.0 miles, then
at 30.0 m/s for another 10.0 miles. (a) Is your average speed 
25.0 m/s, more than 25.0 m/s, or less than 25.0 m/s? Explain. (b)
Verify your answer to part (a) by calculating the average speed.

t = 7.5t = 0
t = 7.5t = 0

11. • BIO Kangaroos have been clocked at speeds of 65 km/h.
(a) How far can a kangaroo hop in 3.2 minutes at this speed?
(b) How long will it take a kangaroo to hop 0.25 km at this speed?

12. • Rubber Ducks A severe storm on January 10, 1992, caused a
cargo ship near the Aleutian Islands to spill 29,000 rubber
ducks and other bath toys into the ocean. Ten months later hun-
dreds of rubber ducks began to appear along the shoreline near
Sitka, Alaska, roughly 1600 miles away. What was the approxi-
mate average speed of the ocean current that carried the ducks
to shore in (a) m/s and (b) mi/h? (Rubber ducks from the same
spill began to appear on the coast of Maine in July 2003.)

13. • Radio waves travel at the speed of light, approximately
186,000 miles per second. How long does it take for a radio
message to travel from Earth to the Moon and back? (See the in-
side back cover for the necessary data.)

14. • It was a dark and stormy night, when suddenly you saw a
flash of lightning. Three-and-a-half seconds later you heard the
thunder. Given that the speed of sound in air is about 340 m/s,
how far away was the lightning bolt?

15. • BIO Nerve Impulses The human nervous system can prop-
agate nerve impulses at about . Estimate the time it
takes for a nerve impulse generated when your finger touches a
hot object to travel to your brain.

16. • Estimate how fast your hair grows in miles per hour.

17. •• A finch rides on the back of a Galapagos tortoise, which
walks at the stately pace of 0.060 m/s. After 1.2 minutes the
finch tires of the tortoise’s slow pace, and takes flight in the same
direction for another 1.2 minutes at 12 m/s. What was the aver-
age speed of the finch for this 2.4-minute interval?

18. •• You jog at 9.5 km/h for 8.0 km, then you jump into a car and
drive an additional 16 km. With what average speed must you
drive your car if your average speed for the entire 24 km is to be
22 km/h?

19. •• A dog runs back and forth between its two owners, who are
walking toward one another (Figure 2–24). The dog starts run-
ning when the owners are 10.0 m apart. If the dog runs with 
a speed of 3.0 m/s, and the owners each walk with a speed of
1.3 m/s, how far has the dog traveled when the owners meet?

102 m>s

1.3 m/s

3.0 m/s

1.3 m/s

10.0 m

▲ FIGURE 2–24 Problem 19

23. •• IP An expectant father paces back and forth, producing the po-
sition-versus-time graph shown in Figure 2–25. Without perform-
ing a calculation, indicate whether the father’s velocity is positive,
negative, or zero on each of the following segments of the graph:
(a) A, (b) B, (c) C, and (d) D. Calculate the numerical value of the
father’s velocity for the segments (e) A, (f) B, (g) C, and (h) D, and
show that your results verify your answers to parts (a)–(d).
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▲ FIGURE 2–25 Problem 23

24. •• The position of a particle as a function of time is given by
. (a) Plot x versus t for to

. (b) Find the average velocity of the particle from 
to . (c) Find the average speed from to .

25. •• The position of a particle as a function of time is given by
. (a) Plot x versus t for to

. (b) Find the average velocity of the particle from 
to . (c) Find the average speed from to .

26. •• IP A tennis player moves back and forth along the baseline
while waiting for her opponent to serve, producing the position-
versus-time graph shown in Figure 2–26. (a) Without performing
a calculation, indicate on which of the segments of the graph, A,
B, or C, the player has the greatest speed. Calculate the player’s
speed for (b) segment A, (c) segment B, and (d) segment C, and
show that your results verify your answers to part (a).

t = 1 st = 0t = 1 s
t = 0t = 2 s

t = 0x = (6 m>s)t + (-2 m>s2)t2

t = 1 st = 0t = 1 s
t = 0t = 2 s

t = 0x = (-5 m>s)t + (3 m>s2)t2
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▲ FIGURE 2–26 Problem 26

27. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first 15
minutes is only 5.0 mi/h. What average speed do you need for
the rest of the trip to get you to the church on time?



t

x

A

B

C E

F

D

▲ FIGURE 2–27 Problem 28
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S E C T I O N  2 – 3 I N STA N TA N E O U S  V E L O C I T Y

28. • CE The position-versus-time plot of a boat positioning itself
next to a dock is shown in Figure 2–27. Rank the six points indi-
cated in the plot in order of increasing value of the velocity v,
starting with the most negative. Indicate a tie with an equal
sign.

29. •• The position of a particle as a function of time is given by
. (a) Plot x versus t for time from

to . (b) Find the average velocity of the particle
from to . (c) Find the average velocity from

to . (d) Do you expect the instantaneous ve-
locity at to be closer to 0.54 m/s, 0.56 m/s, or 0.58
m/s? Explain.

30. •• The position of a particle as a function of time is given by
. (a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to . (c) Find the average ve-
locity from to . (d) Do you expect the in-
stantaneous velocity at to be closer to , or

? Explain.

S E C T I O N  2 – 4    A C C E L E R AT I O N

31. • CE Predict/Explain Two bows shoot identical arrows with
the same launch speed. To accomplish this, the string in bow 1
must be pulled back farther when shooting its arrow than the
string in bow 2. (a) Is the acceleration of the arrow shot by bow
1 greater than, less than, or equal to the acceleration of the
arrow shot by bow 2? (b) Choose the best explanation from
among the following:

I. The arrow in bow 2 accelerates for a greater time.
II. Both arrows start from rest.

III. The arrow in bow 1 accelerates for a greater time.

32. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.
What is the magnitude of its average acceleration?

33. • At the starting gun, a runner accelerates at for 5.2 s. The
runner’s acceleration is zero for the rest of the race. What is the
speed of the runner (a) at , and (b) at the end of the race?

34. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what are the magni-
tude and direction of its average acceleration?

35. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

36. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–28. Find the average acceleration of the
motorcycle during each of the following segments of the mo-
tion: (a) A, (b) B, and (c) C.

1.15 m>s2
1.30 m>s2

t = 2.0 s

1.9 m>s2

-1.66 m>s
-1.62 m>st = 0.200 s

t = 0.210 st = 0.190 s
t = 0.250 st = 0.150 s

t = 1.00 st = 0
x = (-2.00 m>s)t + (3.00 m>s3)t3

t = 0.40 s
t = 0.41 st = 0.39 s

t = 0.45 st = 0.35 s
t = 1.0 st = 0

x = (2.0 m>s)t + (-3.0 m>s3)t3

37. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–29. Find the displacement
of the person for each of the following segments of the motion:
(a) A, (b) B, and (c) C.
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▲ FIGURE 2–28 Problem 36
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▲ FIGURE 2–29 Problem 37

38. •• Running with an initial velocity of , a horse has an
average acceleration of . How long does it take for
the horse to decrease its velocity to ?

39. •• IP Assume that the brakes in your car create a constant decel-
eration of regardless of how fast you are driving. If you
double your driving speed from 16 m/s to 32 m/s, (a) does the
time required to come to a stop increase by a factor of two or a fac-
tor of four? Explain. Verify your answer to part (a) by calculating
the stopping times for initial speeds of (b) 16 m/s and (c) 32 m/s.

40. •• IP In the previous problem, (a) does the distance needed to
stop increase by a factor of two or a factor of four? Explain. Ver-
ify your answer to part (a) by calculating the stopping distances
for initial speeds of (b) 16 m/s and (c) 32 m/s.

41. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

42. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is . What
was the particle’s initial velocity?

S E C T I O N  2 – 5    M O T I O N  W I T H  C O N STA N T
A C C E L E R AT I O N

43. • Landing with a speed of 81.9 m/s, and traveling due south, a
jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

44. • When you see a traffic light turn red, you apply the brakes
until you come to a stop. If your initial speed was 12 m/s, and

+9.31 m>s
+6.24 m>s2

4.2 m>s2

+6.5 m>s
-1.81 m>s2

+11 m>s



you were heading due west, what was your average velocity
during braking? Assume constant deceleration.

45. CE •• A ball is released at the point on an inclined plane
with a nonzero initial velocity. After being released, the ball
moves with constant acceleration. The acceleration and initial ve-
locity of the ball are described by one of the following four cases:
case 1, ; case 2, ; case 3,

; case 4, . (a) In which of these cases
will the ball definitely pass at some later time? (b) In which
of these cases is more information needed to determine whether
the ball will cross ? (c) In which of these cases will the ball
come to rest momentarily at some time during its motion?

46. •• Suppose the car in Problem 44 comes to rest in 35 m. How
much time does this take?

47. •• Starting from rest, a boat increases its speed to 4.12 m/s with
constant acceleration. (a) What is the boat’s average speed? (b) If
it takes the boat 4.77 s to reach this speed, how far has it traveled?

48. •• IP BIO A cheetah can accelerate from rest to 25.0 m/s in 6.22 s.
Assuming constant acceleration, (a) how far has the cheetah run in
this time? (b) After sprinting for just 3.11 s, is the cheetah’s speed
12.5 m/s, more than 12.5 m/s, or less than 12.5 m/s? Explain. (c)
What is the cheetah’s average speed for the first 3.11 s of its sprint?
For the second 3.11 s of its sprint? (d) Calculate the distance cov-
ered by the cheetah in the first 3.11 s and the second 3.11 s.

S E C T I O N  2 – 6 A P P L I C AT I O N S  O F  T H E
E Q U AT I O N S  O F  M O T I O N

49. • A child slides down a hill on a toboggan with an acceleration
of . If she starts at rest, how far has she traveled in
(a) 1.0 s, (b) 2.0 s, and (c) 3.0 s?

50. • The Detonator On a ride called the Detonator at Worlds of
Fun in Kansas City, passengers accelerate straight downward
from rest to 45 mi/h in 2.2 seconds. What is the average accel-
eration of the passengers on this ride?

1.8 m>s2

x = 0

x = 0
a 6 0, v0 6 0a 6 0, v0 7 0

a 7 0, v0 6 0a 7 0, v0 7 0

x = 2 m

the “travelers would . . . encounter a violent recoil,” but he prob-
ably didn’t know that people generally lose consciousness if
they experience accelerations greater than about .)

53. •• BIO Bacterial Motion Approximately 0.1% of the bacteria
in an adult human’s intestines are Escherichia coli. These bacte-
ria have been observed to move with speeds up to and
maximum accelerations of . Suppose an E. coli bac-
terium in your intestines starts at rest and accelerates at

. How much (a) time and (b) distance are required
for the bacterium to reach a speed of ?

54. •• Two cars drive on a straight highway. At time , car 
1 passes mile marker 0 traveling due east with a speed of 
20.0 m/s. At the same time, car 2 is 1.0 km east of mile marker 
0 traveling at 30.0 m/s due west. Car 1 is speeding up with an
acceleration of magnitude , and car 2 is slowing down
with an acceleration of magnitude . (a) Write x-versus-
t equations of motion for both cars, taking east as the positive
direction. (b) At what time do the cars pass next to one another?

55. •• A Meteorite Strikes On October 9, 1992, a 27-pound mete-
orite struck a car in Peekskill, NY, leaving a dent 22 cm deep in the
trunk. If the meteorite struck the car with a speed of 130 m/s, what
was the magnitude of its deceleration, assuming it to be constant?

56. •• A rocket blasts off and moves straight upward from the
launch pad with constant acceleration. After 3.0 s the rocket is at
a height of 77 m. (a) What are the magnitude and direction of the
rocket’s acceleration? (b) What is its speed at this time?

57. •• IP You are driving through town at 12.0 m/s when sud-
denly a ball rolls out in front of you. You apply the brakes and
begin decelerating at . (a) How far do you travel before
stopping? (b) When you have traveled only half the distance in
part (a), is your speed 6.0 m/s, greater than 6.0 m/s, or less than
6.0 m/s? Support your answer with a calculation.

58. •• IP You are driving through town at 16 m/s when suddenly
a car backs out of a driveway in front of you. You apply the
brakes and begin decelerating at . (a) How much time
does it take to stop? (b) After braking half the time found in
part (a), is your speed 8.0 m/s, greater than 8.0 m/s, or less than
8.0 m/s? Support your answer with a calculation. (c) If the car
backing out was initially 55 m in front of you, what is the max-
imum reaction time you can have before hitting the brakes and
still avoid hitting the car?

59. •• IP BIO A Tongue’s Acceleration When a chameleon captures
an insect, its tongue can extend 16 cm in 0.10 s. (a) Find the magni-
tude of the tongue’s acceleration, assuming it to be constant. (b) In
the first 0.050 s, does the tongue extend 8.0 cm, more than 8.0 cm,
or less than 8.0 cm? Support your conclusion with a calculation.

3.2 m>s2

3.5 m>s2

3.2 m>s2
2.5 m>s2

t = 0

12 mm>s
156 mm>s2

166 mm>s2
15 mm>s

7g ' 70 m>s2
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The Detonator (Problem 50)

51. • Air Bags Air bags are designed to deploy in 10 ms. Estimate
the acceleration of the front surface of the bag as it expands. Ex-
press your answer in terms of the acceleration of gravity g.

52. • Jules Verne In his novel From the Earth to the Moon (1866),
Jules Verne describes a spaceship that is blasted out of a cannon,
called the Columbiad, with a speed of 12,000 yards/s. The
Columbiad is 900 ft long, but part of it is packed with powder, so
the spaceship accelerates over a distance of only 700 ft. Estimate
the acceleration experienced by the occupants of the spaceship
during launch. Give your answer in . (Verne realized thatm>s2 It’s not polite to reach! (Problem 59)



(a) Find the magnitude of the cart’s acceleration for each angle.
(b) Show that your results for part (a) are in close agreement
with the formula, . (We will derive this formula in
Chapter 5.)

S E C T I O N  2 – 7    F R E E LY  FA L L I N G  O B J E C T S

a = g sin u

52 C H A P T E R  2 O N E - D I M E N S I O N A L  K I N E M A T I C S

60. •• IP Coasting due west on your bicycle at 8.4 m/s, you en-
counter a sandy patch of road 7.2 m across. When you leave 
the sandy patch your speed has been reduced by 2.0 m/s to 
6.4 m/s. (a) Assuming the sand causes a constant acceleration,
what was the bicycle’s acceleration in the sandy patch? Give
both magnitude and direction. (b) How long did it take to cross
the sandy patch? (c) Suppose you enter the sandy patch with a
speed of only 5.4 m/s. Is your final speed in this case 3.4 m/s,
more than 3.4 m/s, or less than 3.4 m/s? Explain.

61. •• BIO Surviving a Large Deceleration On July 13, 1977, while
on a test drive at Britain’s Silverstone racetrack, the throttle on
David Purley’s car stuck wide open. The resulting crash subjected
Purley to the greatest “g-force” ever survived by a human—he de-
celerated from 173 km/h to zero in a distance of only about 
0.66 m. Calculate the magnitude of the acceleration experienced
by Purley (assuming it to be constant), and express your answer in
units of the acceleration of gravity, .

62. •• IP A boat is cruising in a straight line at a constant speed of
2.6 m/s when it is shifted into neutral. After coasting 12 m the
engine is engaged again, and the boat resumes cruising at the re-
duced constant speed of 1.6 m/s. Assuming constant accelera-
tion while coasting, (a) how long did it take for the boat to coast
the 12 m? (b) What was the boat’s acceleration while it was
coasting? (c) When the boat had coasted for 6.0 m, was its speed
2.1 m/s, more than 2.1 m/s, or less than 2.1 m/s? Explain.

63. •• A model rocket rises with constant acceleration to a height of
3.2 m, at which point its speed is 26.0 m/s. (a) How much time
does it take for the rocket to reach this height? (b) What was the
magnitude of the rocket’s acceleration? (c) Find the height and
speed of the rocket 0.10 s after launch.

64. •• The infamous chicken is dashing toward home plate with a
speed of 5.8 m/s when he decides to hit the dirt. The chicken
slides for 1.1 s, just reaching the plate as he stops (safe, of
course). (a) What are the magnitude and direction of the
chicken’s acceleration? (b) How far did the chicken slide?

65. •• A bicyclist is finishing his repair of a flat tire when a friend
rides by with a constant speed of 3.5 m/s. Two seconds later the
bicyclist hops on his bike and accelerates at until he
catches his friend. (a) How much time does it take until he catches
his friend? (b) How far has he traveled in this time? (c) What is his
speed when he catches up?

66. •• A car in stop-and-go traffic starts at rest, moves forward 
13 m in 8.0 s, then comes to rest again. The velocity-versus-time
plot for this car is given in Figure 2–30. What distance does the
car cover in (a) the first 4.0 seconds of its motion and (b) the last
2.0 seconds of its motion? (c) What is the constant speed V that
characterizes the middle portion of its motion?

2.4 m>s2

g = 9.81 m>s2

67. ••• A car and a truck are heading directly toward one another
on a straight and narrow street, but they avoid a head-on colli-
sion by simultaneously applying their brakes at . The re-
sulting velocity-versus-time graphs are shown in Figure 2–31.
What is the separation between the car and the truck when they
have come to rest, given that at the car is at and
the truck is at ? (Note that this information deter-
mines which line in the graph corresponds to which vehicle.)

x = -35 m
x = 15 mt = 0

t = 0

68. ••• In a physics lab, students measure the time it takes a small
cart to slide a distance of 1.00 m on a smooth track inclined at an
angle above the horizontal. Their results are given in the fol-
lowing table.
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▲ FIGURE 2–30 Problem 66
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(Problems 71 and 72)



two windows of equal height, as shown in Figure 2–32. (a) Is the
increase in speed of the hammer as it drops past window 1
greater than, less than, or equal to the increase in speed as it
drops past window 2? (b) Choose the best explanation from
among the following:

I. The greater speed at window 2 results in a greater increase
in speed.

II. Constant acceleration means the hammer speeds up the
same amount for each window.

III. The hammer spends more time dropping past window 1.
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69. • CE At the edge of a roof you throw ball 1 upward with an ini-
tial speed ; a moment later you throw ball 2 downward with
the same initial speed. The balls land at the same time. Which of
the following statements is true for the instant just before the
balls hit the ground? A. The speed of ball 1 is greater than the
speed of ball 2; B. The speed of ball 1 is equal to the speed of ball
2; C. The speed of ball 1 is less than the speed of ball 2.

70. • Legend has it that Isaac Newton was hit on the head by a falling
apple, thus triggering his thoughts on gravity. Assuming the story
to be true, estimate the speed of the apple when it struck Newton.

71. • The cartoon shows a car in free fall. Is the statement made in
the cartoon accurate? Justify your answer.

72. • Referring to the cartoon in Problem 71, how long would it
take for the car to go from 0 to 30 mi/h?

73. • Jordan’s Jump Michael Jordan’s vertical leap is reported to
be 48 inches. What is his takeoff speed? Give your answer in
meters per second.

74. • BIO Gulls are often observed dropping clams and other
shellfish from a height to the rocks below, as a means of open-
ing the shells. If a seagull drops a shell from rest at a height of
14 m, how fast is the shell moving when it hits the rocks?

75. • A volcano launches a lava bomb straight upward with an ini-
tial speed of 28 m/s. Taking upward to be the positive direc-
tion, find the speed and direction of motion of the lava bomb (a)
2.0 seconds and (b) 3.0 seconds after it is launched.

76. • An Extraterrestrial Volcano The first active volcano ob-
served outside the Earth was discovered in 1979 on Io, one of
the moons of Jupiter. The volcano was observed to be ejecting
material to a height of about . Given that the accel-
eration of gravity on Io is , find the initial velocity of
the ejected material.

77. • BIO Measure Your Reaction Time Here’s something you
can try at home—an experiment to measure your reaction time.
Have a friend hold a ruler by one end, letting the other end
hang down vertically. At the lower end, hold your thumb and
index finger on either side of the ruler, ready to grip it. Have
your friend release the ruler without warning. Catch it as
quickly as you can. If you catch the ruler 5.2 cm from the lower
end, what is your reaction time?

1.80 m>s2
2.00 * 105 m

v0

79. •• CE Predict/Explain Figure 2–33 shows a v-versus-t plot for
the hammer dropped by the carpenter in Problem 78. Notice
that the times when the hammer passes the two windows are
indicated by shaded areas. (a) Is the area of the shaded region
corresponding to window 1 greater than, less than, or equal to
the area of the shaded region corresponding to window 2? (b)
Choose the best explanation from among the following:

I. The shaded area for window 2 is higher than the shaded
area for window 1.

II. The windows are equally tall.
III. The shaded area for window 1 is wider than the shaded

area for window 2.

How fast are your reactions? (Problem 77)

1

2

▲ FIGURE 2–32 Problem 78

80. •• CE A ball is thrown straight upward with an initial speed .
When it reaches the top of its flight at height h, a second ball is
thrown straight upward with the same initial speed. Do the
balls cross paths at height , above , or below ?

81. •• Bill steps off a 3.0-m-high diving board and drops to the water
below. At the same time, Ted jumps upward with a speed of 
4.2 m/s from a 1.0-m-high diving board. Choosing the origin to
be at the water’s surface, and upward to be the positive x direc-
tion, write x-versus-t equations of motion for both Bill and Ted.

1
2h1

2h1
2h

v0

t

Window 2Window 1

v

▲ FIGURE 2–33 Problem 79

78. •• CE Predict/Explain A carpenter on the roof of a building
accidentally drops her hammer. As the hammer falls it passes
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82. •• Repeat the previous problem, this time with the origin 3.0 m
above the water, and with downward as the positive x direction.

83. •• On a hot summer day in the state of Washington while
kayaking, I saw several swimmers jump from a railroad bridge
into the Snohomish River below. The swimmers stepped off the
bridge, and I estimated that they hit the water 1.5 s later. (a)
How high was the bridge? (b) How fast were the swimmers
moving when they hit the water? (c) What would the swim-
mers’ drop time be if the bridge were twice as high?

84. •• Highest Water Fountain The world’s highest fountain of
water is located, appropriately enough, in Fountain Hills, Arizona.
The fountain rises to a height of 560 ft (5 feet higher than the Wash-
ington Monument). (a) What is the initial speed of the water? (b)
How long does it take for water to reach the top of the fountain?

85. •• Wrongly called for a foul, an angry basketball player throws
the ball straight down to the floor. If the ball bounces straight
up and returns to the floor 2.8 s after first striking it, what was
the ball’s greatest height above the floor?

86. •• To celebrate a victory, a pitcher throws her glove straight up-
ward with an initial speed of 6.0 m/s. (a) How long does it take
for the glove to return to the pitcher? (b) How long does it take
for the glove to reach its maximum height?

87. •• IP Standing at the edge of a cliff 32.5 m high, you drop a
ball. Later, you throw a second ball downward with an initial
speed of 11.0 m/s. (a) Which ball has the greater increase in
speed when it reaches the base of the cliff, or do both balls
speed up by the same amount? (b) Verify your answer to part
(a) with a calculation.

88. •• You shoot an arrow into the air. Two seconds later (2.00 s)
the arrow has gone straight upward to a height of 30.0 m above
its launch point. (a) What was the arrow’s initial speed? 
(b) How long did it take for the arrow to first reach a height of
15.0 m above its launch point?

89. •• While riding on an elevator descending with a constant
speed of 3.0 m/s, you accidentally drop a book from under
your arm. (a) How long does it take for the book to reach the el-
evator floor, 1.2 m below your arm? (b) What is the book’s
speed relative to you when it hits the elevator floor?

90. •• A hot-air balloon is descending at a rate of 2.0 m/s when a
passenger drops a camera. If the camera is 45 m above the
ground when it is dropped, (a) how long does it take for the cam-
era to reach the ground, and (b) what is its velocity just before it
lands? Let upward be the positive direction for this problem.

91. •• IP Standing side by side, you and a friend step off a bridge
at different times and fall for 1.6 s to the water below. Your
friend goes first, and you follow after she has dropped a dis-
tance of 2.0 m. (a) When your friend hits the water, is the sepa-
ration between the two of you 2.0 m, less than 2.0 m, or more
than 2.0 m? (b) Verify your answer to part (a) with a calculation.

92. •• A model rocket blasts off and moves upward with an accel-
eration of until it reaches a height of 26 m, at which
point its engine shuts off and it continues its flight in free fall.
(a) What is the maximum height attained by the rocket? 
(b) What is the speed of the rocket just before it hits the ground?
(c) What is the total duration of the rocket’s flight?

93. ••• Hitting the “High Striker” A young woman at a carni-
val steps up to the “high striker,” a popular test of strength
where the contestant hits one end of a lever with a mallet, pro-
pelling a small metal plug upward toward a bell. She gives the
mallet a mighty swing and sends the plug to the top of the
striker, where it rings the bell. Figure 2–34 shows the corre-
sponding position-versus-time plot for the plug. Using the in-

12 m>s2

formation given in the plot, answer the following questions:
(a) What is the average speed of the plug during its upward
journey? (b) By how much does the speed of the plug decrease
during its upward journey? (c) What is the initial speed of the
plug? (Assume the plug to be in free fall during its upward mo-
tion, with no effects of air resistance or friction.)

94. ••• While sitting on a tree branch 10.0 m above the ground,
you drop a chestnut. When the chestnut has fallen 2.5 m, you
throw a second chestnut straight down. What initial speed
must you give the second chestnut if they are both to reach the
ground at the same time?
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95. • In a well-known Jules Verne novel, Phileas Fogg travels
around the world in 80 days. What was Mr. Fogg’s approximate
average speed during his adventure?

96. • An astronaut on the Moon drops a rock straight downward
from a height of 1.25 m. If the acceleration of gravity on the Moon
is , what is the speed of the rock just before it lands?

97. • You jump from the top of a boulder to the ground 1.5 m
below. Estimate your deceleration on landing.

98. • A Supersonic Waterfall Geologists have learned of periods
in the past when the Strait of Gibraltar closed off, and the
Mediterranean Sea dried out and become a desert. Later, when
the strait reopened, a massive saltwater waterfall was created.
According to geologists, the water in this waterfall was super-
sonic; that is, it fell with speeds in excess of the speed of sound.
Ignoring air resistance, what is the minimum height necessary
to create a supersonic waterfall? (The speed of sound may be
taken to be 340 m/s.)

99. •• CE At the edge of a roof you drop ball A from rest, and then
throw ball B downward with an initial velocity of . Is the in-
crease in speed just before the balls land more for ball A, more
for ball B, or the same for each ball?

v0
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100. •• CE Suppose the two balls described in Problem 99 are released
at the same time, with ball Adropped from rest and ball B thrown
downward with an initial speed . Identify which of the five
plots shown in Figure 2–35 corresponds to (a) ball A and (b) ball B.

101. •• Astronauts on a distant planet throw a rock straight upward
and record its motion with a video camera. After digitizing their
video, they are able to produce the graph of height, y, versus
time, t, shown in Figure 2–36. (a) What is the acceleration of grav-
ity on this planet? (b) What was the initial speed of the rock?

v0

108. •• A doctor, preparing to give a patient an injection, squirts a
small amount of liquid straight upward from a syringe. If the
liquid emerges with a speed of 1.5 m/s, (a) how long does it
take for it to return to the level of the syringe? (b) What is the
maximum height of the liquid above the syringe?

109. •• A hot-air balloon has just lifted off and is rising at the con-
stant rate of 2.0 m/s. Suddenly one of the passengers realizes
she has left her camera on the ground. A friend picks it up and
tosses it straight upward with an initial speed of 13 m/s. If the
passenger is 2.5 m above her friend when the camera is tossed,
how high is she when the camera reaches her?

110. ••• In the previous problem, what is the minimum initial speed
of the camera if it is to just reach the passenger? (Hint: When the
camera is thrown with its minimum speed, its speed on reach-
ing the passenger is the same as the speed of the passenger.)

111. ••• Old Faithful Watching Old Faithful erupt, you notice
that it takes a time t for water to emerge from the base of the
geyser and reach its maximum height. (a) What is the height of
the geyser, and (b) what is the initial speed of the water? Eval-
uate your expressions for (c) the height and (d) the initial
speed for a measured time of 1.65 s.

112. ••• IP A ball is thrown upward with an initial speed .
When it reaches the top of its flight, at a height h, a second ball
is thrown upward with the same initial velocity. (a) Sketch an
x-versus-t plot for each ball. (b) From your graph, decide
whether the balls cross paths at h/2, above h/2, or below h/2.
(c) Find the height where the paths cross.

113. ••• Weights are tied to each end of a 20.0-cm string. You hold
one weight in your hand and let the other hang vertically a
height h above the floor. When you release the weight in your
hand, the two weights strike the ground one after the other
with audible thuds. Find the value of h for which the time be-
tween release and the first thud is equal to the time between
the first thud and the second thud.

114. ••• A ball, dropped from rest, covers three-quarters of the dis-
tance to the ground in the last second of its fall. (a) From what
height was the ball dropped? (b) What was the total time of fall?

115. ••• A stalactite on the roof of a cave drips water at a steady
rate to a pool 4.0 m below. As one drop of water hits the pool,
a second drop is in the air, and a third is just detaching from
the stalactite. (a) What are the position and velocity of the sec-
ond drop when the first drop hits the pool? (b) How many
drops per minute fall into the pool?

116. ••• You drop a ski glove from a height h onto fresh snow, and
it sinks to a depth d before coming to rest. (a) In terms of g and
h, what is the speed of the glove when it reaches the snow? (b)
What are the magnitude and direction of the glove’s accelera-
tion as it moves through the snow, assuming it to be constant?
Give your answer in terms of g, h, and d.

117. ••• To find the height of an overhead power line, you throw a
ball straight upward. The ball passes the line on the way up
after 0.75 s, and passes it again on the way down 1.5 s after it
was tossed. What are the height of the power line and the ini-
tial speed of the ball?

118. ••• Suppose the first rock in Conceptual Checkpoint 2–5
drops through a height h before the second rock is released
from rest. Show that the separation between the rocks, S, is
given by the following expression:

In this result, the time t is measured from the time the second
rock is dropped.

S = h + (22gh)t

v0
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102. •• Drop Tower NASA operates a 2.2-second drop tower at the
Glenn Research Center in Cleveland, Ohio. At this facility, ex-
perimental packages are dropped from the top of the tower, on
the 8th floor of the building. During their 2.2 seconds of free fall,
experiments experience a microgravity environment similar to
that of a spacecraft in orbit. (a) What is the drop distance of a
2.2-s tower? (b) How fast are the experiments traveling when
they hit the air bags at the bottom of the tower? (c) If the exper-
imental package comes to rest over a distance of 0.75 m upon
hitting the air bags, what is the average stopping acceleration?

103. •• IP A youngster bounces straight up and down on a tram-
poline. Suppose she doubles her initial speed from 2.0 m/s to
4.0 m/s. (a) By what factor does her time in the air increase? (b)
By what factor does her maximum height increase? (c) Verify
your answers to parts (a) and (b) with an explicit calculation.

104. •• At the 18th green of the U.S. Open you need to make a 20.5-ft
putt to win the tournament. When you hit the ball, giving it an ini-
tial speed of 1.57 m/s, it stops 6.00 ft short of the hole. (a) Assum-
ing the deceleration caused by the grass is constant, what should
the initial speed have been to just make the putt? (b) What initial
speed do you need to make the remaining 6.00-ft putt?

105. •• IP A popular entertainment at some carnivals is the blan-
ket toss (see photo, p. 39). (a) If a person is thrown to a maxi-
mum height of 28.0 ft above the blanket, how long does she
spend in the air? (b) Is the amount of time the person is above
a height of 14.0 ft more than, less than, or equal to the amount
of time the person is below a height of 14.0 ft? Explain. (c) Ver-
ify your answer to part (b) with a calculation.

106. •• Referring to Conceptual Checkpoint 2–5, find the separa-
tion between the rocks at (a) , (b) , and (c)

, where time is measured from the instant the second
rock is dropped. (d) Verify that the separation increases lin-
early with time.

107. •• IP A glaucous-winged gull, ascending straight upward at
5.20 m/s, drops a shell when it is 12.5 m above the ground. (a)
What are the magnitude and direction of the shell’s accelera-
tion just after it is released? (b) Find the maximum height
above the ground reached by the shell. (c) How long does it
take for the shell to reach the ground? (d) What is the speed of
the shell at this time?
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▲ FIGURE 2–36 Problem 101



119. ••• An arrow is fired with a speed of 20.0 m/s at a block of
Styrofoam resting on a smooth surface. The arrow penetrates
a certain distance into the block before coming to rest relative
to it. During this process the arrow’s deceleration has a mag-
nitude of and the block’s acceleration has a magni-
tude of . (a) How long does it take for the arrow to
stop moving with respect to the block? (b) What is the com-
mon speed of the arrow and block when this happens? (c)
How far into the block does the arrow penetrate?

120. ••• Sitting in a second-story apartment, a physicist notices a
ball moving straight upward just outside her window. The ball
is visible for 0.25 s as it moves a distance of 1.05 m from the
bottom to the top of the window. (a) How long does it take be-
fore the ball reappears? (b) What is the greatest height of the
ball above the top of the window?

121. ••• The Quadratic Formula from Kinematics In this prob-
lem we show how the kinematic equations of motion can be
used to derive the quadratic formula. First, consider an object
with an initial position , an initial velocity , and an accel-
eration a. To find the time when this object reaches the position

we can use the quadratic formula, or apply the follow-
ing two-step procedure: (a) Use Equation 2–12 to show that
the velocity of the object when it reaches is given

by . (b) Use Equation 2–7 to show that the

time corresponding to the velocity found in part (a) is 

. (c) To complete our derivation, show

that the result of part (b) is the same as applying the quadratic
formula to .
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Bam!—Apollo 15 Lands on the Moon
The first word spoken on the surface of the Moon after Apollo
15 landed on July 30, 1971, was “Bam!” This was James Irwin’s
involuntary reaction to their rather bone-jarring touchdown.
“We did hit harder than any of the other flights!” says Irwin.
“And I was startled, obviously, when I said, ‘Bam!’”

The reason for the “firm touchdown” of Apollo 15, as pilot
David Scott later characterized it, was that the rocket engine
was shut off a bit earlier than planned, when the lander was
still 4.30 ft above the lunar surface and moving downward
with a speed of 0.500 ft/s. From that point on the lander de-
scended in lunar free fall, with an acceleration of 1.62 m/s2. As
a result, the landing speed of Apollo 15 was by far the largest of
any of the Apollo missions. In comparison, Neil Armstrong’s
landing speed on Apollo 11 was the lowest at 1.7 ft/s—he
didn’t shut off the engine until the footpads were actually on
the surface. Apollos 12, 14, and 17 all landed with speeds be-
tween 3.0 and 3.5 ft/s.

To better understand the descent of Apollo 15, we show its
trajectory during the final stages of landing in Figure 2–37 (a). In
Figure 2–37 (b) we show a variety of speed-versus-time plots.

122. • How long did it take for the lander to drop the final 4.30 ft to
the Moon’s surface?

A. 1.18 s B. 1.37 s

C. 1.78 s D. 2.36 s

123. •• What was the impact speed of the lander when it touched
down? Give your answer in feet per second (ft/s), the same
units used by the astronauts.

A. 2.41 ft/s B. 6.78 ft/s

C. 9.95 ft/s D. 10.6 ft/s

x = x0 + v0t + 1
2at2 = 0

t =
-v0;4v0 

2 - 2ax0

a

v = ;4v0 

2 - 2ax0

x = 0

x = 0

v0x0

450 m >  s2
1550 m >  s2
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124. • Which of the speed-versus-time plots in Figure 2–37 (b) cor-
rectly represents the speed of the Apollo 15 lander?

A B C D

125. • Suppose, instead of shutting off the engine, the astronauts
had increased its thrust, giving the lander a small, but con-
stant, upward acceleration. Which speed-versus-time plot in
Figure 2–37 (b) would describe this situation?

A B C D

I N T E R A C T I V E  P R O B L E M S

126. •• Referring to Example 2–9 Suppose the speeder (red car)
is traveling with a constant speed of 25 m/s, and that the max-
imum acceleration of the police car (blue car) is . If the
police car is to start from rest and catch the speeder in 15 s or
less, what is the maximum head-start distance the speeder can
have? Measure time from the moment the police car starts.

127. •• Referring to Example 2–9 The speeder passes the posi-
tion of the police car with a constant speed of 15 m/s. The
police car immediately starts from rest and pursues the
speeder with constant acceleration. What acceleration must
the police car have if it is to catch the speeder in 7.0 s? Measure
time from the moment the police car starts.

128. •• IP Referring to Example 2–12 (a) In Example 2–12, the
bag of sand is released at 20.0 m and reaches a maximum height
of 22 m. If the bag had been released at 30.0 m instead, with
everything else remaining the same, would its maximum height
be 32 m, greater than 32 m, or less than 32 m? (b) Find the speed
of the bag just before it lands when it is released from 30.0 m.

129. •• Referring to Example 2–12 Suppose the balloon is de-
scending with a constant speed of 4.2 m/s when the bag of
sand comes loose at a height of 35 m. (a) How long is the bag
in the air? (b) What is the speed of the bag when it is 15 m
above the ground?

3.8 m>s2
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Of all the mathematical tools
used in this book, perhaps
none is more important

than the vector. In the next chapter, for
example, we use vectors to extend our
study of motion from one dimension to
two dimensions. More generally, vectors
are indispensable when a physical
quantity has a direction associated with
it. Suppose, for example, that a pilot
wants to fly from Denver to Dallas. If the
air is still, the pilot can simply head the
plane toward the destination. If there is a
wind blowing from west to east,
however, the pilot must use vectors to

determine the correct heading so that
the plane and its passengers will arrive in
Dallas and not Little Rock.

In this chapter we discuss what a
vector is, how it differs from a scalar, and
how it can represent a physical quantity.
We also show how to find the
components of a vector and how to add
and subtract vectors. All of these
techniques are used time and again
throughout the book. Other useful
aspects of vectors, such as how to
multiply them, will be presented in later
chapters when the need arises.

3–1 Scalars Versus Vectors 58

3–2 The Components of 
a Vector 58

3–3 Adding and Subtracting
Vectors 63

3–4 Unit Vectors 66

3–5 Position, Displacement,
Velocity, and Acceleration
Vectors 67

3–6 Relative Motion 71

Vectors in Physics

57

The points of the compass have long been used as a frame-
work for indicating directions. The compass shown here was produced

by Gowin Knight (1713–1772), whose improved designs were adopted by the
Royal Navy in 1752. In physics, we more frequently indicate directions with x and y

rather than N, S, E, and W. Either way, specifying a direction as well as a magnitude is essential
to defining one of the physicist’s basic tools, the vector.
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▲ FIGURE 3–1 Distance and direction
If you know only that the library is 
0.5 mi from you, it could lie anywhere on
a circle of radius 0.5 mi. If, instead, you
are told the library is 0.5 mi northwest,
you know its precise location.

E

Library?

Library?

Library?

You

0.5 mile
r

r

r

N 3–1 Scalars Versus Vectors
Numbers can represent many quantities in physics. For example, a numerical
value, together with the appropriate units, can specify the volume of a container,
the temperature of the air, or the time of an event. In physics, a number with its
units is referred to as a scalar:

• A scalar is a number with units. It can be positive, negative, or zero.

Sometimes, however, a scalar isn’t enough to adequately describe a physical
quantity—in many cases, a direction is needed as well. For example, suppose
you’re walking in an unfamiliar city and you want directions to the library. You
ask a passerby, “Do you know where the library is?” If the person replies “Yes,”
and walks on, he hasn’t been too helpful. If he says, “Yes, it is half a mile from
here,” that is more helpful, but you still don’t know where it is. The library could
be anywhere on a circle of radius one-half mile, as shown in Figure 3–1. To 
pin down the location, you need a reply such as, “Yes, the library is half a mile
northwest of here.” With both a distance and a direction, you know the location of
the library.

Thus, if you walk northwest for half a mile you arrive at the library, as indi-
cated by the upper left arrow in Figure 3–1. The arrow points in the direction trav-
eled, and its magnitude, 0.5 mi in this case, represents the distance covered. In
general, a quantity that is specified by both a magnitude and a direction is repre-
sented by a vector:

• A vector is a mathematical quantity with both a direction and a magnitude.

In the example of walking to the library, the vector corresponding to the trip is the
displacement vector. Other examples of vector quantities are the velocity and 
the acceleration of an object. For example, the magnitude of a velocity vector is 
its speed, and its direction is the direction of motion, as we shall see later in 
this chapter.

When we indicate a vector on a diagram or a sketch, we draw an arrow, as in
Figure 3–1. To indicate a vector with a written symbol, we use boldface for the
vector itself, with a small arrow above it to remind us of its vector nature, and
italic for its magnitude. Thus, for example, the upper-left vector in Figure 3–1 is
designated by the symbol , and its magnitude is (When we represent
a vector in a graph, we sometimes label it with the corresponding boldface sym-
bol, and sometimes with the appropriate magnitude.) It is common in handwrit-
ten material to draw a small arrow over the vector’s symbol, which is very simi-
lar to the way vectors are represented in this text.

3–2 The Components of a Vector
When we discussed directions for finding a library in the previous section, we
pointed out that knowing the magnitude and direction angle—0.5 mi north-
west—gives its precise location. We left out one key element in actually getting to
the library, however. In most cities it would not be possible to simply walk in a
straight line for 0.5 mi directly to the library, since to do so would take you
through buildings where there are no doors, through people’s backyards, and
through all kinds of other obstructions. In fact, if the city streets are laid out along
north–south and east–west directions, you might instead walk west for a certain
distance, then turn and proceed north an equal distance until you reach the
library, as illustrated in Figure 3–2. What you have just done is “resolved” 
displacement vector between you and the library into east–west and north–
south “components.”

In general, to find the components of a vector we need to set up a coordinate
system. In two dimensions we choose an origin, O, and a positive direction for
both the x and the y axes, as in Figure 3–3. If the system were three-dimensional, we
would also indicate a z axis.

r
!

r = 0.5 mi.r
!

▲ The information given by this sign
includes both a distance and a direction 
for each city. In effect, the sign defines a
displacement vector for each of these
destinations.
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Now, a vector is defined by its magnitude (indicated by the length of the
arrow representing the vector) and its direction. For example, suppose an ant
leaves its nest at the origin and, after foraging for some time, is at the location
given by the vector in Figure 3–4 (a). This vector has a magnitude and
points in a direction above the x axis. Equivalently, can be defined by
saying that it extends a distance in the x direction and a distance in the y di-
rection, as shown in Figure 3–4 (b). The quantities and are referred to as the x
and y scalar components of the vector 

We can find and by using standard trigonometric relations, as summa-
rized in the Problem-Solving Note on this page. Referring to Figure 3–4 (b), we see
that

and

Thus, we can say that the ant’s final displacement is equivalent to what it would
be if the ant had simply walked 1.36 m in the x direction and then 0.634 m in the
y direction.

To show the equivalence of these two ways of describing a vector, let’s start
with the components of as determined previously, and use them to calculate the
magnitude r and the angle First, note that and r form a right triangle with
r as the hypotenuse. Thus, we can use the Pythagorean theorem (Appendix A) to
find r in terms of and This gives

r = 4rx
2 + ry

2 = 411.36 m22 + 10.634 m22 = 42.25 m2 = 1.50 m

ry.rx

rx, ry,u.
r
!
,

ry = r sin 25.0° = 11.50 m210.4232 = 0.634 m

rx = r cos 25.0° = 11.50 m210.9062 = 1.36 m

ryrx

r
!
.

ryrx

ryrx

r
!

u = 25.0°
r = 1.50 mr

!

▲ FIGURE 3–3 A two-dimensional
coordinate system
The positive x and y directions are
indicated in this shorthand form.

+x

+y

x

y

O

FIGURE 3–2 A walk along city streets 
to the library
By taking the indicated path, we have
“resolved” the vector into east–west
and north–south components.
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P R O B L E M - S O L V I N G  N O T E

A Vector and Its Components

Given the magnitude and direction of a
vector, find its components:

Ay

Ax
x

y

�

A

FIGURE 3–4 A vector and its scalar
components
(a) The vector is defined by its length

and its direction angle
measured counterclockwise

from the positive x axis. (b) Alternatively,
the vector can be defined by its x
component, , and its y
component, ry = 0.634 m.

rx = 1.36 m
r
!

1u = 25.0°21r = 1.50 m2 r
!

▲

x

rr = 1.50 m

= 25.0°θ

y

O x

r
ry = 0.634 m

rx = 1.36 m

y

O

(a) A vector defined in terms of its
length and direction angle

(b) The same vector defined in
terms of its x and y components

Given the components of a vector, find its
magnitude and direction:

u = tan-1
Ay

Ax

A = 4Ax
2 + Ay

2

Ay = A sin u
Ax = A cos u
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as expected. Second, we can use any two sides of the triangle to obtain the angle
as shown in the next three calculations:

In some situations we know a vector’s magnitude and direction; in other cases
we are given the vector’s components. You will find it useful to be able to convert
quickly and easily from one description of a vector to the other using trigonomet-
ric functions and the Pythagorean theorem.

 u = tan-1a0.634 m
1.36 m

b = tan-110.4662 = 25.0°

 u = cos-1a 1.36 m
1.50 m

b = cos-110.9072 = 25.0°

 u = sin-1a0.634 m
1.50 m

b = sin-110.4232 = 25.0°

u,

E X A M P L E  3 – 1 D E T E R M I N I N G  T H E  H E I G H T  O F  A  C L I F F

In the Jules Verne novel Mysterious Island, Captain Cyrus Harding wants to find the height of a cliff. He
stands with his back to the base of the cliff, then marches straight away from it for At this

point he lies on the ground and measures the angle from the horizontal to the top of the cliff. If the angle is 34.0°, (a) how high
is the cliff? (b) What is the straight-line distance from Captain Harding to the top of the cliff?

P I C T U R E  T H E  P R O B L E M

Our sketch shows Cyrus Harding making his measurement of the
angle, to the top of the cliff. The relevant triangle for this
problem is also indicated. Note that the opposite side of the triangle is
the height of the cliff, h; the adjacent side is the distance from the base
of the cliff to Harding, and finally, the hypotenuse is
the distance, d, from Harding to the top of the cliff.

S T R A T E G Y

The tangent of is the height of the triangle divided by the base:
. Since we know both and the base, we can find the

height using this relation. Similarly, the distance from Harding to the
top of the cliff can be obtained by solving for d.

S O L U T I O N

Part (a)

1. Use to solve for the height of the cliff, h:

Part (b)

2. Similarly, use to solve for the distance
d from Captain Harding to the top of the cliff:

I N S I G H T

An alternative way to solve part (b) is to use the Pythagorean
theorem:

Thus, if we let denote the vector from Cyrus Harding to the
top of the cliff, as shown here, its magnitude is 603 ft and its di-
rection is 34.0° above the x axis. Alternatively, the x component
of is and its y component is 337 ft.

P R A C T I C E  P R O B L E M

What angle would Cyrus Harding have found if he had walked from the cliff to make his measurement?
[Answer: ]

Some related homework problems: Problem 5, Problem 17

u = 29.3°
6.00 * 102 ft

5.00 * 102 ftr
!

r
!

d = 4h2 + b2 = 41337 ft22 + 15.00 * 102 ft22 = 603 ft

d =
b

cos u =
5.00 * 102 ft

cos 34.0°
= 603 ftcos u = b >  d

h = b tan u = 15.00 * 102 ft2 tan 34.0° = 337 fttan u = h>b

cos u = b >  d

utan u = h >  b
u

b = 5.00 * 102 ft;

u = 34.0°,

5.00 * 102 ft.

d
h

b = 5.00 × 102 ft

�

r

x

y

O

ry = 337 ft

�

rx = 5.00 × 102 ft

R E A L - W O R L D
P H Y S I C S
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E X E R C I S E  3 – 1
a. Find and for the vector with magnitude and direction given by

and respectively.

b. Find B and for the vector with components and 

S O L U T I O N

a.

b.

Next, how do you determine the correct signs for the x and y components of a
vector? This can be done by considering the right triangle formed by and  
as shown in Figure 3–5. To determine the sign of start at the tail of the vector
and move along the x axis toward the right angle. If you are moving in the posi-
tive x direction, then is positive if you are moving in the negative x
direction, then is negative For the y component, start at the right
angle and move toward the tip of the arrow. is positive or negative depending
on whether you are moving in the positive or negative y direction.

For example, consider the vector shown in Figure 3–6 (a). In this case, 
and as indicated in the figure. Similarly, the signs of and are given
in Figure 3–6 (b, c, d) for the vectors shown there. Be sure to verify each of these
cases by applying the rules just given. As we continue our study of physics, it is
important to be able to find the components of a vector and to assign to them the
correct signs.

AyAxAy 6 0,
Ax 7 0

Ay

1Ax 6 02.Ax

1Ax 7 02;Ax

Ax,
A

!
,Ax, Ay,

B = 75.8 m, u = 4.69°

Ax = 1.4 m, Ay = 3.2 m

By = 6.20 m.Bx = 75.5 mB
!

u

u = 66°,A = 3.5 m
A

!
AyAx

▲ FIGURE 3–5 A vector whose x and y
components are positive

x

Right angle

y

O

A
Ay > 0Ay

Ax > 0

Ax

▲ FIGURE 3–6 Examples of vectors with components of different signs
To determine the signs of a vector’s components, it is only necessary to observe the direction in which they point. For example, in part (a)
the x component points in the positive direction; hence Similarly, the y component in part (a) points in the negative y direction;
therefore Ay 6 0.

Ax 7 0.

x

y

O
Ay

Ax

Ax > 0
Ay < 0

Ax < 0
Ay < 0

Ax < 0
Ay > 0

A

(a)

x

y

O
Ay

Ax

(b)

x

y

OAx

Ay

A

(c)

A

Ax > 0
Ay > 0

x

y

O

Ay

Ax

A

(d)

E X E R C I S E  3 – 2
The vector has a magnitude of 7.25 m. Find its components for direction angles of

a. c.

b. d.

S O L U T I O N

a.

b.

c.

d. Ax = 6.57 m, Ay = -3.06 m

Ax = -3.06 m, Ay = -6.57 m

Ax = -4.16 m, Ay = 5.94 m

Ax = 7.22 m, Ay = 0.632 m

u = 335°u = 125°

u = 245°u = 5.00°

A
!
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Be careful when using your calculator to determine the direction angle, be-
cause you may need to add 180° to get the correct angle, as measured counter-
clockwise from the positive x axis. For example, if and 
your calculator will give the following result:

Does this angle correspond to the specified vector? The way to check is to sketch 
When you do, your drawing is similar to Figure 3–6 (c), and thus the direction
angle of should be between 90° and 180°. To obtain the correct angle, add 180°
to the calculator’s result:

This, in fact, is the direction angle for the vector 

E X E R C I S E  3 – 3

The vector has components and Find the direction
angle, for this vector.

S O L U T I O N

Finally, in many situations the direction of a vector is given by the angle 
measured relative to the x axis, as in Figure 3–7 (a). In these cases we know that

and

On the other hand, we are sometimes given the angle between the vector and the
y axis, as in Figure 3–7 (b). If we call this angle then it follows that

and

These two seemingly different results are actually in complete agreement.
Note that or If we use the trigonometric identities
given in Appendix A, we find

and

E X E R C I S E  3 – 4
If a vector’s direction angle relative to the x axis is 35°, then its direction angle relative to
the y axis is 55°. Find the components of a vector of magnitude 5.2 m in terms of

a. its direction relative to the x axis, and

b. its direction relative to the y axis.

S O L U T I O N

a.

b. Ax = 15.2 m2 sin 55° = 4.3 m, Ay = 15.2 m2 cos 55° = 3.0 m

Ax = 15.2 m2 cos 35° = 4.3 m, Ay = 15.2 m2 sin 35° = 3.0 m

A
!

Ay = A cos u¿ = A cos190° - u2 = A sin u

Ax = A sin u¿ = A sin190° - u2 = A cos u

u¿ = 90° - u.u + u¿ = 90°,

Ay = A cos u¿

Ax = A sin u¿

u¿,

Ay = A sin u

Ax = A cos u

u,A
!

tan-1[1-1.70 m2>1-2.10 m2] = tan-111.70>2.102 = 39.0°, u = 39.0 + 180° = 219°

u,
By = -1.70 m.Bx = -2.10 mB

!

A
!
.

u = -63° + 180° = 117°

A
!

A
!
.

u = tan-1a 1.0 m
-0.50 m

b = tan-11-2.02 = -63°

Ay = 1.0 m,Ax = -0.50 m

u,

▲ FIGURE 3–7 Vector direction angles
Vector and its components in terms of
(a) the angle relative to the x axis and (b)
the angle relative to the y axis.

A
!

x

y

O

A

Ax = A cos �
�

Ay = A sin �

x

y

O

Ax = A sin

(a)

(b)

Ay = A cos � ′

 �′

 �′
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3–3 Adding and Subtracting Vectors
One important reason for determining the components of a vector is that they are
useful in adding and subtracting vectors. In this section we begin by defining vec-
tor addition graphically, and then show how the same addition can be performed
more concisely and accurately with components.

Adding Vectors Graphically
One day you open an old chest in the attic and find a treasure map inside. To lo-
cate the treasure, the map says that you must “Go to the sycamore tree in the back-
yard, march 5 paces north, then 3 paces east.” If these two displacements are rep-
resented by the vectors and in Figure 3–8, the total displacement from the tree
to the treasure is given by the vector We say that is the vector sum of and

that is, In general, vectors are added graphically according to the
following rule:

• To add the vectors and place the tail of at the head of The sum, 
is the vector extending from the tail of to the head of 

If the instructions to find the treasure were a bit more complicated—5 paces
north, 3 paces east, then 4 paces southeast, for example—the path from the
sycamore tree to the treasure would be like that shown in Figure 3–9. In this case, 
the total displacement, is the sum of the three vectors and that is, 

It follows that to add more than two vectors, we just keep plac-
ing the vectors head-to-tail, head-to-tail, and then draw a vector from the tail of
the first vector to the head of the last vector, as in Figure 3–9.

In order to place a given pair of vectors head-to-tail, it may be necessary to
move the corresponding arrows. This is fine, as long as you don’t change their
length or their direction. After all, a vector is defined by its length and direction;
if these are unchanged, so is the vector.

• A vector is defined by its magnitude and direction, regardless of its location.

D
!

= A
!

+ B
!

+ C
!
.

C
!
;A

!
, B

!
,D

!
,

B
!
.A

!
C

!
= A

!
+ B

!
,

A
!
.B

!
B
!
,A

!

C
!

= A
!

+ B
!
.B

!
;

A
!

C
!

C
!
.

B
!

A
!

▲ To a good approximation, these snow
geese are all moving in the same direction
with the same speed. As a result, their ve-
locity vectors are equal, even though their
positions are different.

▲ FIGURE 3–8 The sum of two vectors

To go from the sycamore tree to the treasure, one must first 
go 5 paces north and then 3 paces east The net 
displacement from the tree to the treasure is C

!
= A

!
+ B

!
.

1B!2.1A!2

Treasure

Sycamore
tree

5 paces
to North

E

N

A

3 paces
to East

B

C = A + B
Net displacement

▲ FIGURE 3–9 Adding several vectors

Searching for a treasure that is 5 paces north 3 paces east
and 4 paces southeast of the sycamore tree. The net

displacement from the tree to the treasure is D
!

= A
!

+ B
!

+ C
!
.

1C!21B!2,
1A!2,

Sycamore
tree

E

N

Treasure

5 paces
to North

4 paces to
southeastA

3 paces
to East

B
C

Net displacement
D = A + B + C
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For example, in Figure 3–10 all of the vectors are the same, even though they are at
different locations on the graph.

As an example of moving vectors, consider two vectors, and and their
vector sum, 

C
!

= A
!

+ B
!

C
!
:

B
!
,A

!

as illustrated in Figure 3–11 (a). By moving the arrow representing so that its tail
is at the origin, and moving the arrow for so that its tail is at the head of we
obtain the construction shown in Figure 3–11 (b). From this graph we see that 
which is is also equal to 

That is, the sum of vectors is independent of the order in which the vectors 
are added.

C
!

= A
!

+ B
!

= B
!

+ A
!

B
!

+ A
!
:A

!
+ B

!
,

C
!
,

B
!
,A

! B
!

▲ FIGURE 3–10 Identical vectors at
different locations
A vector is defined by its direction and
length; its location is immaterial.

A
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A

A

A

A

A

A

▲ FIGURE 3–11

The vector is equal to (a) and (b) Note also that is the
diagonal of the parallelogram formed by the vectors and For this reason,
this method of vector addition is referred to as the “parallelogram method.”
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!
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O
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C

Now, suppose that has a magnitude of 5.00 m and a direction angle of 60.0°
above the x axis, and that has a magnitude of 4.00 m and a direction angle ofB

!A
!

▲ FIGURE 3–12 Graphical addition 
of vectors
The vector has a magnitude of 5.00 m
and a direction angle of 60.0°; the vector 
has a magnitude of 4.00 m and a direction
angle of 20.0°. The magnitude and direc-
tion of can be measured on
the graph with a ruler and a protractor.

C
!

= A
!

+ B
!

B
!A

!

x

y

O

A

60.0°

20.0°

C

B

�

20.0° above the x axis. These two vectors and their sum, are shown in Figure 3–12.
The question is: What are the length and direction angle of 

A graphical way to answer this question is to simply measure the length and
direction of in Figure 3–12. With a ruler, we find the length of to be approxi-
mately 1.75 times the length of which means that is roughly 

Similarly, with a protractor we measure the angle to be about 45.0° above
the x axis.

Adding Vectors Using Components
The graphical method of adding vectors yields approximate results, limited by
the accuracy with which the vectors can be drawn and measured. In contrast,
exact results can be obtained by adding and in terms of their components. To
see how this is done, consider Figure 3–13 (a), which shows the components of 
and and Figure 3–13 (b), which shows the components of Clearly,

and

Thus, to add vectors, you simply add the components.
Returning to our example in Figure 3–12, the components of and are

and

Bx = 14.00 m2 cos 20.0° = 3.76 m By = 14.00 m2 sin 20.0° = 1.37 m

Ax = 15.00 m2 cos 60.0° = 2.50 m Ay = 15.00 m2 sin 60.0° = 4.33 m

B
!

A
!

Cy = Ay + By

Cx = Ax + Bx

C
!
.B

!
,

A
!B

!
A

!

u8.75 m.
1.75 15.00 m2 =C

!
A

!
,

C
!

C
!

C
!
?

C
!
,
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Adding component by component yields the components of 

and

With these results, we can now find precise values for C, the magnitude of vector
and its direction angle In particular,

and

Note that these exact values are in rough agreement with the approximate results
found by graphical addition.

In the future, we will always add vectors using components—graphical addi-
tion is useful primarily as a rough check on the results obtained with components.

u = tan-1aCy

Cx
b = tan-1a5.70 m

6.26 m
b = tan-110.9112 = 42.3°

C = 4Cx 

2 + Cy 

2 = 416.26 m22 + 15.70 m22 = 271.7 m2 = 8.47 m

u.C
!
,

Cy = Ay + By = 4.33 m + 1.37 m = 5.70 m

Cx = Ax + Bx = 2.50 m + 3.76 m = 6.26 m

C
!

= A
!

+ B
!
:

▲ FIGURE 3–13 Component addition 
of vectors
(a) The x and y components of and 
(b) The x and y components of Notice
that and . Cy = Ay + ByCx = Ax + Bx
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.
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x

y

O

A

(a)

(b)

B

C

Cx = Ax + Bx

Cy = Ay + By

A C T I V E  E X A M P L E  3 – 1 T R E A S U R E  H U N T :  F I N D  
T H E  D I R E C T I O N  A N D
M A G N I T U D E

What are the magnitude and direction of the total displacement for the treasure
hunt illustrated in Figure 3–9? Assume each pace is 0.750 m in length.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

To define a convenient notation, let the first 5 paces be represented by the 
next 3 paces by and the final 4 paces by The total displacement, then, is 

1. Find the components of 

2. Find the components of 

3. Find the components of 

4. Sum the components of and to
find the components of 

5. Determine D and 

Y O U R  T U R N

If the length of each pace is decreased by a factor of two, to 0.375 m, by what factors
do you expect D and to change? Verify your answers with a numerical calculation.

(Answers to Your Turn problems are given in the back of the book.)

u

D = 4.66 m, u = 20.5°u:

D
!
:

Dx = 4.37 m, Dy = 1.63 mC
!

A
!
, B

!
,

Cx = 2.12 m, Cy = -2.12 mC
!
:

Bx = 2.25 m, By = 0B
!
:

Ax = 0, Ay = 3.75 mA
!
:

D
!

= A
!

+ B
!

+ C
!
.

C
!
.B

!
,

A
!
,

Subtracting Vectors
Next, how do we subtract vectors? Suppose, for example, that we would like to
determine the vector where

and and are the vectors shown in Figure 3–12. To find we start by rewrit-
ing it as follows:

That is, is the sum of and Now the negative of a vector has a very sim-
ple graphical interpretation:

• The negative of a vector is represented by an arrow of the same length as
the original vector, but pointing in the opposite direction. That is, multi-
plying a vector by minus one reverses its direction.

-B
!
.A

!
D

!
D

!
= A

!
+ 1-B

!2
D

!
,B

!
A

! D
!

= A
!

- B
!D

!
,
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For example, the vectors and are indicated in Figure 3–14 (a). Thus, to sub-
tract from simply reverse the direction of and add it to as indicated in
Figure 3–14 (b).

In terms of components, you subtract vectors by simply subtracting the com-
ponents. For example, if

then

and

Once the components of are found, its magnitude and direction angle can be
calculated as usual.

E X E R C I S E  3 – 5

a. For the vectors given in Figure 3–12, find the components of 

b. Find D and and compare with the vector shown in Figure 3–14 (b).

S O L U T I O N

a.

b. In Figure 3–14 (b) we see that 
is shorter than which has a magnitude of 4.00 m, and its direction angle is
somewhat greater than 90°, in agreement with our numerical results.

3–4 Unit Vectors
Unit vectors provide a convenient way of expressing an arbitrary vector in
terms of its components, as we shall see. But first, let’s define what we mean
by a unit vector. In particular, the unit vectors and are defined to be dimen-
sionless vectors of unit magnitude pointing in the positive x and y directions,
respectively:

• The x unit vector, is a dimensionless vector of unit length pointing in the
positive x direction.

• The y unit vector, is a dimensionless vector of unit length pointing in the
positive y direction.

Figure 3–15 shows and on a two-dimensional coordinate system. Since unit vec-
tors have no physical dimensions—like mass, length, or time—they are used to
specify direction only.

Multiplying Unit Vectors by Scalars
To see the utility of unit vectors, consider the effect of multiplying a vector by a
scalar. For example, multiplying a vector by 3 increases its magnitude by a factor
of 3, but does not change its direction, as shown in Figure 3–16. Multiplying by 
increases the magnitude by a factor of 3 and reverses the direction of the vector.
This is also shown in Figure 3–16. In the case of unit vectors—which have a mag-
nitude of 1 and are dimensionless—multiplication by a scalar results in a vector
with the same magnitude and dimensions as the scalar.

For example, if a vector has the scalar components and 
we can write it as

A
!

= 15 m2xN + 13 m2yN
Ay = 3 m,Ax = 5 mA

!

-3

yNxN

yN ,

xN ,

yNxN

B
!
,

D
!

D = 3.22 m, u = -66.9° + 180° = 113°.

Dx = -1.26 m, Dy = 2.96 m

D
!

u

D
!

= A
!

- B
!
.

D
!

Dy = Ay - By

Dx = Ax - Bx

D
!

= A
!

- B
!

A
!
,B

!
A

!
,B

! -B
!

B
!

▲ FIGURE 3–14 Vector subtraction
(a) The vector and its negative 
(b) A vector construction for
D

!
= A

!
- B

!
.

-B
!
.B

!

(a)

–B

B

(b)

–B

D
A

B

x

y

O

x

y

O

▲ FIGURE 3–15 Unit vectors
The unit vectors and point in the pos-
itive x and y directions, respectively.

yNxN

x

y

x̂

ŷ

O
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We refer to the quantities (5 m) and (3 m) as the x and y vector components of the
vector In general, an arbitrary two-dimensional vector can always be writ-
ten as the sum of a vector component in the x direction and a vector component in
the y direction:

This is illustrated in Figure 3–17 (a). An equivalent way of representing the vector
components of a vector is illustrated in Figure 3–17 (b). In this case we see that the
vector components are the projection of a vector onto the x and y axes. The sign of
the vector components is positive if they point in the positive x or y direction, and
negative if they point in the negative x or y direction. This is how vector compo-
nents will generally be shown in later chapters.

Finally, note that vector addition and subtraction are straightforward with
unit vector notation:

and

Clearly, unit vectors provide a useful way to keep track of the x and y components
of a vector.

D
!

= A
!

- B
!

= 1Ax - Bx2xN + 1Ay - By2yN

C
!

= A
!

+ B
!

= 1Ax + Bx2xN + 1Ay + By2yN

A
!

= Ax xN + Ay yN

A
!

A
!
.

yNxN

▲ FIGURE 3–16 Multiplying a vector 
by a scalar
Multiplying a vector by a positive scalar
different from 1 will change the length 
of the vector but leave its direction the
same. If the vector is multiplied by a
negative scalar its direction is reversed.

O
x

y

A

3A

–3A

FIGURE 3–17 Vector components
(a) A vector can be written in terms
of unit vectors as 
(b) Vector components can be thought of
as the projection of the vector onto the x
and y axes. This method of representing
vector components will be used fre-
quently in subsequent chapters.

A
!

= Ax xN + Ay yN .
A

!▲
x

y

(a)

A
Ay ŷ

Ax x̂O
x

y

(b)

A

Ax x̂O

Ay ŷ

3–5 Position, Displacement, Velocity,
and Acceleration Vectors

In Chapter 2 we discussed four different one-dimensional vectors: position,
displacement, velocity, and acceleration. Each of these quantities had a direc-
tion associated with it, indicated by its sign; positive meant in the positive di-
rection, negative meant in the negative direction. Now we consider these vec-
tors again, this time in two dimensions, where the possibilities for direction are
not so limited.

Position Vectors
To begin, imagine a two-dimensional coordinate system, as in Figure 3–18. Position
is indicated by a vector from the origin to the location in question. We refer to the
position vector as its units are meters, m.

Definition: Position Vector,

3–1

SI unit: meter, m

In terms of unit vectors, the position vector is simply r
!

= xxN + yyN .

position vector = r
!

r
!

r
!
;

▲ FIGURE 3–18 Position vector
The position vector points from the ori-
gin to the current location of an object.
The x and y vector components of are

and respectively.yyN ,xxN
r
!

r
!

x

y

r
y ŷ

x x̂O
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Displacement Vectors
Now, suppose that initially you are at the location indicated by the position vector

and that later you are at the final position represented by the position vector 
Your displacement vector, is the change in position:

Definition: Displacement Vector,

3–2

SI unit: meter, m

Rearranging this definition slightly, we see that

That is, the final position is equal to the initial position plus the change in posi-
tion. This is illustrated in Figure 3–19, where we see that extends from the head
of to the head of 

Velocity Vectors
Next, the average velocity vector is defined as the displacement vector divided
by the elapsed time 

Definition: Average Velocity Vector,

3–3

SI unit: meter per second, m/s

Since is a vector, it follows that is also a vector; it is the vector times the
scalar Thus is parallel to and has the units m/s.

E X E R C I S E  3 – 6
A dragonfly is observed initially at the position Three sec-
onds later it is at the position What was the dragonfly’s
average velocity during this time?

S O L U T I O N

To help visualize imagine a particle moving in two dimensions along the
blue path shown in Figure 3–20. If the particle is at point at time and at at
time its displacement is indicated by the vector The average velocity is par-
allel to as indicated in Figure 3–20. It makes sense physically that is parallel
to after all, on average you have moved in the direction of during the time
from to To put it another way, a particle that starts at at the time and
moves with the velocity until the time will arrive in precisely the same lo-
cation as the particle that follows the blue path.

By considering smaller and smaller time intervals, as in Figure 3–21, it is possi-
ble to calculate the instantaneous velocity vector:

Definition: Instantaneous Velocity Vector,

3–4

SI unit: meter per second, m/s

v
!

= lim
¢t:0

¢r
!

¢t

v
!

t2v
!
av

t1P1t2.t1

¢r
!

¢r
!
;

v
!
av¢r

!
,

¢r
!
.t2,

P2t1,P1

v
!
av,

= 1-1.67 m/s2xN + 10.667 m/s2yN
v
!
av = 1r!f - r

!
i2>¢t = [1-5.00 m2xN + 12.00 m2yN ]>13.00 s2

r
!
f = 1-3.00 m2xN + 15.50 m2yN .

r
!
i = 12.00 m2xN + 13.50 m2yN .

¢r
!

v
!
av11>¢t2.

¢r
!

v
!
av¢r

!

v
!
av =

¢r
!

¢t

v
!
av

¢t.
¢r

!

r
!
f.r

!
i

¢r
!

r
!
f = r

!
i + ¢r

!

¢r
!

= r
!
f - r

!
i

¢r
!

¢r
!
,

r
!
f.r

!
i,

▲ FIGURE 3–19 Displacement vector
The displacement vector is the change
in position. It points from the head of the
initial position vector , to the head of the
final position vector Thus 
or ¢r

!
= r

!
f - r

!
i.

r
!
f = r

!
i + ¢r

!
r
!
f.
r
!

¢r
!

O

rf

ri

�r

x

y

▲ A map can be used to determine the
direction and magnitude of the displace-
ment vector from your initial position to
your destination.

▲ FIGURE 3–20 Average velocity vector
The average velocity, , points in the
same direction as the displacement, ,
for any given interval of time.

¢r
!v

!
av

The average velocity ...

... points in the same
direction as the displacement.

O

vav

t2

t1

P1

P2�r

x

y
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As can be seen in Figure 3–21, the instantaneous velocity at a given time is tan-
gential to the path of the particle at that time. In addition, the magnitude of the ve-
locity vector is the speed of the particle. Thus, the instantaneous velocity vector
tells you both how fast a particle is moving and in what direction.

E X E R C I S E  3 – 7
Find the speed and direction of motion for a rainbow trout whose velocity is

S O L U T I O N

that is, 19° below the x axis.

Acceleration Vectors
Finally, the average acceleration vector over an interval of time, is defined as
the change in the velocity vector, divided by the scalar 

Definition: Average Acceleration Vector,

3–5

An example is given in Figure 3–22, where we show the initial and final velocity
vectors corresponding to two different times. Since the change in velocity is de-
fined as

it follows that

as indicated in Figure 3–22. Thus, is the vector extending from the head of to
the head of just as extends from the head of to the head of in Figure 3–19.
The direction of is the direction of as shown in Figure 3–22(b).

Can an object accelerate if its speed is constant? Absolutely—if its direction
changes. Consider a car driving with a constant speed on a circular track, as

¢v
!
,a

!
av

r
!
fr

!
i¢r

!
v
!
f,

v
!
i¢v

!
v
!
f = v

!
i + ¢v

!

¢v
!

= v
!
f - v

!
i

SI unit: meter per second per second, m/s2

a
!
av =

¢v
!

¢t

a
!
av

¢t.¢v
!
,

¢t,

speed = v = 213.7 m/s22 + 1-1.3 m/s22 = 3.9 m/s, u = tan-1a -1.3 m/s
3.7 m/s

b = -19°,

v
!

= 13.7 m/s2xN + 1-1.3 m/s2yN .

▲ FIGURE 3–21 Instantaneous velocity
vector
The instantaneous velocity vector is ob-
tained by calculating the average velocity
vector over smaller and smaller time in-
tervals. In the limit of vanishingly small
time intervals, the average velocity ap-
proaches the instantaneous velocity,
which points in the direction of motion.

v
!

The instantaneous velocity vector
points in the direction of motion
at any given time.

x

y

v

O

▲ FIGURE 3–22 Average acceleration vector
(a) As a particle moves along the blue path its velocity changes in magnitude and direction.
At the time the velocity is at the time the velocity is (b) The average acceleration
vector points in the direction of the change in velocity vector We obtain 
by moving so that its tail coincides with the tail of and then drawing the arrow that
connects the head of to the head of Note that need not point in the direction of
motion, and in general it doesn’t.
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!
avv

!
f.v

!
i

v
!
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!
f
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!
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!
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(a) The instantaneous velocity at two 
different times
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O
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(b) The average acceleration points in the
same direction as the change in velocity
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shown in Figure 3–23. Suppose that the initial velocity of the car is 
and that 10.0 s later its final velocity is Note that the speed is
12 m/s in each case, but the velocity is different because the direction has changed.
Calculating the average acceleration, we find a nonzero acceleration:

Thus, a change in direction is just as important as a change in speed in producing
an acceleration. We shall study circular motion in detail in Chapter 6.

Finally, by going to infinitesimally small time intervals, we can define
the instantaneous acceleration:

Definition: Instantaneous Acceleration Vector,

3–6

SI unit: meter per second per second, m/s2

a
!

= lim
¢t:0

 
¢v

!

¢t

a
!

¢t : 0,

 =
1-12 m/s2yN - 112 m/s2xN

10.0 s
= 1-1.2 m/s22xN + 1-1.2 m/s22yN

 a
!
av =

¢v
!

¢t
=

v
!
f - v

!
i

10.0 s

v
!
f = 1-12 m/s2yN .

v
!
i = 112 m/s2xN ,

A C T I V E  E X A M P L E  3 – 2 F I N D  T H E  A V E R A G E  
A C C E L E R A T I O N

A car is traveling northwest at 9.00 m/s. Eight seconds later it has rounded a corner
and is now heading north at 15.0 m/s. What are the magnitude and direction of its
average acceleration during those 8.00 seconds?

Let the positive x direction be east, and the positive y direction be north.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Write out 

2. Write out 

3. Calculate 

4. Find 

5. Determine and north of east

Y O U R  T U R N

Find the magnitude and direction of the average acceleration if the same change in
velocity occurs in 4.00 s rather than 8.00 s.

(Answers to Your Turn problems are given in the back of the book.)

aav = 1.34 m/s2, u = 53.6°u:aav

a
!
av = 10.795 m/s22xN + 11.08 m/s22yNa

!
av:

¢v
!

= 16.36 m/s2xN + 18.64 m/s2yN¢v
!
:

v
!
f = 115.0 m/s2yNv

!
f:

v
!
i = 1-6.36 m/s2xN + 16.36 m/s2yNv

!
i:

▲ FIGURE 3–23 Average acceleration for a
car traveling in a circle with constant speed
Although the speed of this car never
changes, it is still accelerating—due to
the change in its direction of motion. For
the time interval depicted, the car’s aver-
age acceleration is in the direction of 
which is toward the center of the circle.
(As we shall see in Chapter 6, the car’s
acceleration is always toward the center
of the circle.)

¢v
!
,

The car’s speed is constant ...

... but the car accelerates
because its direction of 
motion changes.

The car’s average
acceleration is
toward the center
of the circle ...

... in the same direction
as the change in velocity.

x

y

vi

vf

O

x

y

vi

vf

vf �v

O

The velocities of these cyclists change in
both magnitude and direction as they slow
to negotiate a series of sharp curves and
then speed up again. Both kinds of velocity
change involve an acceleration.

▲



3 – 6 R E L A T I V E  M O T I O N 71

Note carefully the following critical distinctions between the velocity vector
and the acceleration vector:

• The velocity vector, is always in the direction of a particle’s motion.
• The acceleration vector, can point in directions other than the direction

of motion, and in general it does.

An example of a particle’s motion, showing the velocity and acceleration vectors
at various times, is presented in Figure 3–24.

Note that in all cases the velocity is tangential to the motion, though the ac-
celeration points in various directions. When the acceleration is perpendicular to
the velocity of an object, as at points (2) and (3) in Figure 3–24, its speed remains
constant while its direction of motion changes. At points (1) and (4) in Figure 3–24
the acceleration is antiparallel (opposite) or parallel to the velocity of the object,
respectively. In such cases, the direction of motion remains the same while the
speed changes. Throughout the next chapter we shall see further examples of mo-
tion in which the velocity and acceleration are in different directions.

3–6 Relative Motion
A good example of the use of vectors is in the description of relative motion.
Suppose, for example, that you are standing on the ground as a train goes by at
15.0 m/s, as shown in Figure 3–25. Inside the train, a free-riding passenger is walk-
ing in the forward direction at 1.2 m/s relative to the train. How fast is the pas-
senger moving relative to you? Clearly, the answer is 

What if the passenger had been walking with the same speed, but to-
ward the back of the train? In this case, you would see the passenger going by
with a speed of 

Let’s generalize these results. Call the velocity of the train relative to the 
ground the velocity of the passenger relative to the train and the velocity of
the passenger relative to the ground As we saw in the previous paragraph, 
the velocity of the passenger relative to the ground is

3–7

This vector addition is illustrated in Figure 3–26 for the two cases we discussed.

v
!
pg = v

!
pt + v

!
tg

v
!
pg.

v
!
pt,v

!
tg,

-1.2 m/s + 15.0 m/s = 13.8 m/s.

16.2 m/s.
1.2 m/s + 15.0 m/s =

a
!
,

v
!
,

FIGURE 3–24 Velocity and acceleration
vectors for a particle moving along a 
winding path
The acceleration of a particle need not
point in the direction of motion. At point
(1) the particle is slowing down, at (2) it
is turning to the left, at (3) it is turning to
the right, and, finally, at point (4) it is
speeding up.

▲

x

y

O

a

a

a
a

1

2

3

4

v v

v

v

FIGURE 3–25 Relative velocity of a
passenger on a train with respect to a 
person on the ground
(a) The passenger walks toward the front
of the train. (b) The passenger walks to-
ward the rear of the train.

▲

x

y

O

1.2 m/s

(a)

15.0 m/s

x
O

1.2 m/s

x

y

(b)

15.0 m/s

FIGURE 3–26 Adding velocity vectors
Vector addition to find the velocity of the
passenger with respect to the ground for
(a) Figure 3–25 (a) and (b) Figure 3–25 (b).
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Though this example dealt with one-dimensional motion, Equation 3–7 is
valid for velocity vectors pointing in arbitrary directions. For example, instead of
walking on the car’s floor, the passenger might be climbing a ladder to the roof of
the car, as in Figure 3–27. In this case is vertical, is horizontal, and is
simply the vector sum 

E X E R C I S E  3 – 8
Suppose the passenger in Figure 3–27 is climbing a vertical ladder with a speed of
0.20 m/s, and the train is slowly coasting forward at 0.70 m/s. Find the speed and di-
rection of the passenger relative to the ground.

S O L U T I O N

Note that the subscripts in Equation 3–7 follow a definite pattern. On the left-
hand side of the equation we have the subscripts pg. On the right-hand side we
have two sets of subscripts, pt and tg; note that a pair of t’s has been inserted be-
tween the p and the g. This pattern always holds for any relative motion problem,
though the subscripts will be different when referring to different objects. Thus,
we can say quite generally that

3–8

where, in the train example, we can identify 1 as the passenger, 2 as the train, and
3 as the ground.

The vector addition in Equation 3–8 is shown in Figure 3–28. For convenience
in seeing how the subscripts are ordered in the equation, we have labeled the tail
of each vector with its first subscript and the head of each vector with its second
subscript.

One final note about velocities and their subscripts: Reversing the subscripts
reverses the velocity. This is indicated in Figure 3–29, where we see that

Physically, what we are saying is that if you are riding in a car due north at 20 m/s
relative to the ground, then the ground, relative to you, is moving due south at
20 m/s.

Let’s apply these results to a two-dimensional example.

v
!
ba = -v

!
ab

v
!
13 = v

!
12 + v

!
23

vpg = 410.70 m/s22 + 10.20 m/s22 = 0.73 m/s, u = tan-110.20/0.702 = 16°

v
!
pg = 10.70 m/s2xN + 10.20 m/s2yN ; thus

v
!
pt + v

!
tg.

v
!
pgv

!
tgv

!
pt

▲ FIGURE 3–27 Relative velocity in two dimensions
A person climbs up a ladder on a moving train with velocity relative to the train. If the
train moves relative to the ground with a velocity the velocity of the person on the train 
relative to the ground is v
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!
pt + v

!
tg.

v
!
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O
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▲ FIGURE 3–28 Vector addition used to
determine relative velocity
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When we add the vector v12 ...
... to the vector v23 ...

disappears and
we are left with
the vector v13.
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▲ FIGURE 3–29 Reversing the subscripts
of a velocity reverses the corresponding
velocity vector
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E X A M P L E  3 – 2 C R O S S I N G  A  R I V E R

You are riding in a boat whose speed relative to the water is 6.1 m/s. The boat points at an angle of 25°
upstream on a river flowing at 1.4 m/s. (a) What is your velocity relative to the ground? (b) Suppose the

speed of the boat relative to the water remains the same, but the direction in which it points is changed. What angle is required
for the boat to go straight across the river?

P I C T U R E  T H E  P R O B L E M

We choose the x axis to be perpendicular to the river, and the y axis to point
upstream. With these choices the velocity of the boat relative to the water is
25° above the x axis. In addition, the velocity of the water relative to the
ground has a magnitude of 1.4 m/s and points in the negative y direction.

S T R A T E G Y

If the water were still, the boat would move in the direction in which it is
pointed. With the water flowing downstream, as shown, the boat will move
in a direction closer to the x axis. (a) To find the velocity of the boat we use

with 1 referring to the boat (b), 2 referring to the water (w),
and 3 referring to the ground (g). (b) To go “straight across the river” means
that the velocity of the boat relative to the ground should be
in the x direction. Thus, we choose the angle that cancels
the y component of velocity.

S O L U T I O N

Part (a)

1. Rewrite with and 

2. From our sketch we see that the water flows at 1.4 m/s in the
negative y direction relative to the ground:

3. The velocity of the boat relative to the water is given in the
problem statement:

4. Carry out the vector sum in Step 1 to find 

Part (b)

5. To cancel the y component of , we choose the angle 
that gives 1.4 m/s for the y component of :

6. Solve for . With this angle, we see that the y component 
of in Step 4 will be zero:

I N S I G H T

(a) Note that the speed of the boat relative to the ground is , and the direction angle is 
upstream. (b) The speed of the boat in this case is equal to the x component of its velocity, since the y

component is zero. Therefore, its speed is 

P R A C T I C E  P R O B L E M

Find the speed and direction of the boat relative to the ground if the river flows at 4.5 m/s. [Answer:
In this case, a person on the ground sees the boat going slowly downstream, even though the boat itself points upstream.]

Some related homework problems: Problem 50, Problem 53, Problem 55

vbg = 5.8 m/s, u = -19°.

(6.1 m/s) cos 13° = 5.9 m/s.
u = tan-1(1.2 >  5.5) = 12°

4(5.5 m/s)2 + (1.2 m/s)2 = 5.6 m/s

v
!
bg

u = sin-1(1.4>6.1) = 13°u

v
!
bw

(6.1 m/s)  sin  u = 1.4 m/s

u

v
!
bg

 = 15.5 m/s2xN + 11.2 m/s2yN
 v

!
bg = 15.5 m/s2xN + 12.6 m/s - 1.4 m/s2yNv

!
bg:

 = 15.5 m/s2xN + 12.6 m/s2yN
 v

!
bw = 16.1 m/s2 cos 25° xN + 16.1 m/s2 sin 25° yN

v
!
wg = 1-1.4 m/s2yN

v
!
bg = v

!
bw + v

!
wg3 : g:1 : b, 2 : w,v

!
13 = v

!
12 + v

!
23

u

v
!
13 = v

!
12 + v

!
23

R E A L - W O R L D
P H Y S I C S

x

y

25°

vbw = 6.1 m/s

vwg = 1.4 m/s

vwg

vbg

O

u

Suppose the problem had been to find the velocity of the boat relative to the
water so that it goes straight across the river at 5.0 m/s. That is, we want to find 

such that One approach is to simply solve 
for which gives

3–9

Another approach is to go back to our general relation, and
choose 1 to be the boat, 2 to be the ground, and 3 to be the water. With these sub-
stitutions we find

v
!
bw = v

!
bg + v

!
gw

v
!
13 = v

!
12 + v

!
23

v
!
bw = v

!
bg - v

!
wg

v
!
bw,

v
!
bw + v

!
wgv

!
bg =v

!
bg = 15.0 m/s2xN .v

!
bw



74 C H A P T E R  3 V E C T O R S  I N  P H Y S I C S

This is the same as Equation 3–9, since In either case, the desired ve-
locity of the boat relative to the water is

which corresponds to a speed of 5.2 m/s and a direction angle of 16° upstream.

v
!
bw = 15.0 m/s2xN + 11.4 m/s2yN

v
!
gw = -v

!
wg.

C H A P T E R  S U M M A RY

3 – 1 S C A L A R S  V E R S U S  V E C T O R S

Scalar
A number with appropriate units. Examples of scalar quantities include time
and length.

Vector
A quantity with both a magnitude and a direction. Examples include displace-
ment, velocity, and acceleration.

3 – 2 T H E  C O M P O N E N T S  O F  A  V E C T O R

x Component of Vector 
where is measured relative to the x axis.

y Component of Vector 
where is measured relative to the x axis.

Sign of the Components
is positive if points in the positive x direction, and negative if it points in

the negative x direction. Similar remarks apply to 

Magnitude of Vector 
The magnitude of is 

Direction Angle of Vector 
The direction angle of is where is measured relative to
the x axis.

uu = tan-11Ay>Ax2,A
! A

!A = 4Ax
2 + Ay

2.A
! A

! Ay.
A

!
Ax

uAy = A sin u,
A
!uAx = A cos u,

A
!

E

Library?

Library?

Library?

You

0.5 mile
r

r

r

N

x

y

O

A

Ax = A cos �
�

Ay = A sin �

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

In Chapter 2 we indicated direction
with + and – signs, since only two
directions were possible. With the
results from this chapter we can now
deal with quantities that point in any
direction at all.

In Chapter 4 we will consider
kinematics in two dimensions. As we
shall see, the vectors developed in this
chapter will play a key role in that
study. In particular, vectors will allow
us to analyze two-dimensional motion
as a combination of two completely
independent one-dimensional
motions.

The vector quantities we have considered
so far are position, displacement, velocity,
and acceleration. These quantities are
important throughout our study of
mechanics.

In Chapter 5 we will introduce one of
the most important concepts in all of
physics—force. It is a vector quantity.
Other important vector quantities to
be introduced in later chapters
include linear momentum (Chapter 9),
angular momentum (Chapter 11),
electric field (Chapter 19), and
magnetic field (Chapter 22).
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3 – 3 A D D I N G  A N D  S U BT R A C T I N G  V E C T O R S

Graphical Method
To add and place them so that the tail of is at the head of The sum

is the arrow from the tail of to the head of See Figure 3–8.

To find place and head-to-tail and draw an arrow from the tail of
to the head of See Figure 3–14.

Component Method
If then and If then

and

3 – 4 U N I T  V E C T O R S

x Unit Vector
Written the x unit vector is a dimensionless vector of unit length in the
positive x direction.

y Unit Vector
Written the y unit vector is a dimensionless vector of unit length in the
positive y direction.

Vector Addition

3 – 5 P O S I T I O N ,  D I S P L A C E M E N T,  V E L O C I T Y,  A N D  
A C C E L E R AT I O N  V E C T O R S

Position Vector
The position vector points from the origin to a particle’s location.

Displacement Vector
The displacement vector is the change in position; 

Velocity Vector
The velocity vector points in the direction of motion and has a magnitude
equal to the speed.

Acceleration Vector
The acceleration vector indicates how quickly and in what direction the
velocity is changing. It need not point in the direction of motion.

3 – 6 R E L AT I V E  M O T I O N

Velocity of Object 1 Relative to Object 3
, where object 2 can be anything.

Reversing the Subscripts on a Velocity
v
!
12 = -v

!
21.

v
!
13 = v

!
12 + v

!
23

a
!

v
!

¢r
!

= r
!
f - r

!
i.¢r

!

r
!

A
!

+ B
!

= 1Ax + Bx2xN + 1Ay + By2yN

yN ,

xN ,

Cy = Ay - By.Cx = Ax - Bx

C
!

= A
!

- B
!
,Cy = Ay + By.Cx = Ax + BxC

!
= A

!
+ B

!
,

-B
!
.A

! -B
!

A
!

A
!

- B
!
,

B
!
.A

!
C

!
= A

!
+ B

! A
!
.B

!
B
!
,A

!

Type of Problem Relevant Physical Concepts Related Examples

Add or subtract vectors. Resolve the vectors into x and y components, then add Active Example 3–1 
or subtract the components. Exercise 3–5

Calculate the average velocity. Divide the displacement, by the elapsed time, Exercise 3–6

Calculate the average acceleration. Divide the change in velocity, by the elapsed time, Active Example 3–2

Find the relative velocity of object 1 Use with the appropriate choices for Example 3–2
with respect to object 3. 1, 2, and 3. Exercise 3–8

v
!
13 = v

!
12 + v

!
23

¢t.¢v
!
,

¢t.¢r
!
,

x

y

x̂

ŷ

O

P R O B L E M - S O L V I N G  S U M M A RY
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C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. For the following quantities, indicate which is a scalar and
which is a vector: (a) the time it takes for you to run the 100-
yard dash; (b) your displacement after running the 100-yard
dash; (c) your average velocity while running; (d) your average
speed while running.

2. Which, if any, of the vectors shown in Figure 3–30 are equal?

3. Given that (a) how does the magnitude of 
compare with the magnitude of (b) How does the direction
of compare with the direction of A

!
?B

! A
!
?

B
!

A
!

+ B
!

= 0,

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••)
are used to indicate the level of difficulty.

▲ FIGURE 3–30 Conceptual Question 2

G

x

y

O

C

D

K

F

I

L

E

A B

H

▲ FIGURE 3–31 Problems 2, 3, and 4

x

y

O

A

C

D

B

4. Can a component of a vector be greater than the vector’s mag-
nitude?

5. Suppose that and have nonzero magnitude. Is it possible
for to be zero?

6. Can a vector with zero magnitude have one or more compo-
nents that are nonzero? Explain.

7. Given that and that how are and
oriented relative to one another?

8. Given that and that how are and 
oriented relative to one another?

9. Given that and that how are and 
oriented relative to one another?

10. Vector has x and y components of equal magnitude. What can
you say about the possible directions of 

11. The components of a vector satisfy the relation
What are the possible directions of 

12. Use a sketch to show that two vectors of unequal magnitude can-
not add to zero, but that three vectors of unequal magnitude can.

13. Rain is falling vertically downward and you are running for
shelter. To keep driest, should you hold your umbrella verti-
cally, tilted forward, or tilted backward? Explain.

14. When sailing, the wind feels stronger when you sail upwind
(“beating”) than when you are sailing downwind (“running”).
Explain.

A
!
?Ax = -Ay Z 0.

A
! A

!
?

A
!

B
!

A
!

A - B = C,A
!

+ B
!

= C
!
,

B
!

A
!

A + B = C,A
!

+ B
!

= C
!
,

B
! A

!
A2 + B2 = C2,A

!
+ B

!
= C

!
,

A
!

+ B
! B

!
A

!

S E C T I O N  3 – 2 T H E  C O M P O N E N T S  O F  A  V E C T O R

1. • CE Suppose that each component of a certain vector is dou-
bled. (a) By what multiplicative factor does the magnitude of
the vector change? (b) By what multiplicative factor does the
direction angle of the vector change?

2. • CE Rank the vectors in Figure 3–31 in order of increasing
magnitude.

4. • CE Rank the vectors in Figure 3–31 in order of increasing
value of their y component.

5. • The press box at a baseball park is 32.0 ft above the ground. A
reporter in the press box looks at an angle of 15.0° below the
horizontal to see second base. What is the horizontal distance
from the press box to second base?

6. • You are driving up a long, inclined road. After 1.2 miles you
notice that signs along the roadside indicate that your elevation
has increased by 530 ft. (a) What is the angle of the road above
the horizontal? (b) How far do you have to drive to gain an ad-
ditional 150 ft of elevation?

7. • A One-Percent Grade A road that rises 1 ft for every 100 ft
traveled horizontally is said to have a 1% grade. Portions of the
Lewiston grade, near Lewiston, Idaho, have a 6% grade. At
what angle is this road inclined above the horizontal?

8. • Find the x and y components of a position vector of magni-
tude , if its angle relative to the x axis is (a) 35.0° and
(b) 65.0°.

9. • A baseball “diamond” (Figure 3–32) is a square with sides 90 ft
in length. If the positive x axis points from home plate to first
base, and the positive y axis points from home plate to third
base, find the displacement vector of a base runner who has just
hit (a) a double, (b) a triple, or (c) a home run.

r = 75 m
r
!

3. • CE Rank the vectors in Figure 3–31 in order of increasing
value of their x component.

For instructor-assigned homework, go to www.masteringphysics.com
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▲ FIGURE 3–32 Problem 9

x

y

90 ft

90 ft

AB

C

10. •• A lighthouse that rises 49 ft above the surface of the water sits
on a rocky cliff that extends 19 ft from its base, as shown in Figure
3–33. A sailor on the deck of a ship sights the top of the light-
house at an angle of 30.0° above the horizontal. If the sailor’s eye
level is 14 ft above the water, how far is the ship from the rocks?

▲ FIGURE 3–33 Problem 10

19 ft

14 ft

30.0°

49 ft

11. •• H2O A water molecule is shown schematically in Figure 3–34.
The distance from the center of the oxygen atom to the center of
a hydrogen atom is 0.96 Å, and the angle between the hydrogen
atoms is 104.5°. Find the center-to-center distance between the
hydrogen atoms. (1 Å = 10-10 m.)

▲ FIGURE 3–34 Problem 11

0.96 A°

104.5°

Hydrogen

Hydrogen

Oxygen

Not just a watch! The 
Harrison H4. (Problem 13)

was the extension of the minute hand in the vertical direction
more than, less than, or equal to 3.0 cm? Explain. (c) Calculate the
vertical extension of the minute hand at 10 minutes past the hour.

14. •• You drive a car 680 ft to the east, then 340 ft to the north.
(a) What is the magnitude of your displacement? (b) Using a
sketch, estimate the direction of your displacement. (c) Verify your
estimate in part (b) with a numerical calculation of the direction.

15. •• Vector has a magnitude of 50 units and points in the
positive x direction. A second vector, , has a magnitude of
120 units and points at an angle of 70° below the x axis.
Which vector has (a) the greater x component, and (b) the
greater y component?

16. •• A treasure map directs you to start at a palm tree and walk
due north for 15.0 m. You are then to turn 90° and walk 22.0 m;
then turn 90° again and walk 5.00 m. Give the distance from the
palm tree, and the direction relative to north, for each of the
four possible locations of the treasure.

17. •• A whale comes to the surface to breathe and then dives at an
angle of 20.0° below the horizontal (Figure 3–35). If the whale
continues in a straight line for 150 m, (a) how deep is it, and
(b) how far has it traveled horizontally?

B
!A

!

▲ FIGURE 3–35 Problem 17

20.0°

12. •• IP The x and y components of a vector are and
respectively. Find (a) the direction and (b) the

magnitude of the vector (c) If both and are doubled, how
do your answers to parts (a) and (b) change?

13. •• IP The Longitude Problem In 1755, John Harrison
(1693–1776) completed his fourth precision chronometer, the H4,
which eventually won the celebrated Longitude Prize. (For the
human drama behind the Longitude Prize, see Longitude, by Dava
Sobel.) When the minute hand of the H4 indicated 10 minutes past
the hour, it extended 3.0 cm in the horizontal direction. (a) How
long was the H4’s minute hand? (b) At 10 minutes past the hour,

ryrxr
!
.

ry = -9.5 m,
rx = 14 mr

!

S E C T I O N  3 – 3 A D D I N G  A N D  S U BT R A C T I N G
V E C T O R S

18. • CE Consider the vectors and shown in Figure 3–36. Which
of the other four vectors in the figure and best 
represents the direction of (a) (b) and (c) ?

19. • CE Refer to Figure 3–36 for the following questions: (a) Is the
magnitude of greater than, less than, or equal to the
magnitude of ? (b) Is the magnitude of greater
than, less than, or equal to the magnitude of ?

20. • A vector has a magnitude of 40.0 m and points in a direc-
tion 20.0° below the positive x axis. A second vector, , has a
magnitude of 75.0 m and points in a direction 50.0° above the
positive x axis. (a) Sketch the vectors , and .
(b) Using the component method of vector addition, find the
magnitude and direction of the vector .C

!
C

!
= A

!
+ B

!
A

!
, B

!
B
!A

!
A

!
+ F

!A
!

+ E
!

A
!

+ E
!A

!
+ D

!

B
!

- A
!
,A

!
- B

!
,A

!
+ B

!
,

F
!21C!

, D
!
, E

!
,

B
!

A
!



29. • A vector has a length of 6.1 m and points in the negative x
direction. Find (a) the x component and (b) the magnitude of
the vector .

30. • The vector has a magnitude of 34 m and points in the
positive x direction. Find (a) the x component and (b) the mag-
nitude of the vector .

31. • Find the direction and magnitude of the vectors.

(a) ,

(b) , and (c) .

32. • Find the direction and magnitude of the vectors.

(a) ,

(b) , and (c) .

33. • For the vectors given in Problem 32, express (a) and
(b) in unit vector notation.

34. • Express each of the vectors in Figure 3–38 in unit vector notation.

35. •• Referring to the vectors in Figure 3–38, express the sum
in unit vector notation.A

!
+ B

!
+ C

!

B
!

- A
! A

!
- B

!
A

!
+ B

!
B
!

= (2.0 m)xN + (15 m)yN

A
!

= (25 m)xN + (-12 m)yN

A
!

+ B
!

B
!

= (-2.0 m)xN + (5.0 m)yN

A
!

= (5.0 m)xN + (-2.0 m)yN

A
!

-5.2 A
!

-3.7 A
!

A
!

78 C H A P T E R  3 V E C T O R S  I N  P H Y S I C S

▲ FIGURE 3–37 Problem 26

45°

30°

C

BA

▲ FIGURE 3–38 Problems 34 and 35

x

y

O

25°
1.0 m

1.5 m

1.5 m 2.0 m

40°

19°

C

B

A

D

21. • An air traffic controller observes two airplanes approaching
the airport. The displacement from the control tower to plane 1
is given by the vector , which has a magnitude of 220 km and
points in a direction 32° north of west. The displacement from
the control tower to plane 2 is given by the vector , which has
a magnitude of 140 km and points 65° east of north. (a) Sketch
the vectors , and . Notice that is the dis-
placement from plane 2 to plane 1. (b) Find the magnitude and
direction of the vector .

22. • The initial velocity of a car, , is 45 km/h in the positive x di-
rection. The final velocity of the car, , is 66 km/h in a direction
that points 75° above the positive x axis. (a) Sketch the vectors

, and . (b) Find the magnitude and direc-
tion of the change in velocity, .

23. •• Vector points in the positive x direction and has a magni-
tude of 75 m. The vector points in the positive y
direction and has a magnitude of 95 m. (a) Sketch , and .
(b) Estimate the magnitude and direction of the vector .
(c) Verify your estimate in part (b) with a numerical calculation.

24. •• Vector points in the negative x direction and has a mag-
nitude of 22 units. The vector points in the positive y direc-
tion. (a) Find the magnitude of if has a magnitude of
37 units. (b) Sketch and .

25. •• Vector points in the negative y direction and has a magni-
tude of 5 units. Vector has twice the magnitude and points
in the positive x direction. Find the direction and magnitude of
(a) , (b) , and (c) .

26. •• A basketball player runs down the court, following the path
indicated by the vectors , and in Figure 3–37. The magni-
tudes of these three vectors are and

. Find the magnitude and direction of the net dis-
placement of the player using (a) the graphical method and (b)
the component method of vector addition. Compare your results.

C = 7.0 m
A = 10.0 m, B = 20.0 m,

C
!

A
!
, B

!

B
!

- A
!

A
!

- B
!

A
!

+ B
!

B
!A

!
B
!

A
! A

!
+ B

!
B
!B

!A
!

B
!C
!

A
!
, B

!C
!

= A
!

+ B
!A

!
¢v

!¢v
!

= A
!
f - A

!
i-v

!
i , v

!
f

v
!
f

v
!
i

D
!

D
!

D
!

= A
!

- B
!

A
!
, -B

!
B
!

A
!

y

8

6

5

7

x

y

1

x

2

3
4

▲ FIGURE 3–39 Problem 36

S E C T I O N  3 – 5 P O S I T I O N ,  D I S P L A C E M E N T,
V E L O C I T Y,  A N D  A C C E L E R AT I O N  V E C T O R S

36. • CE The blue curves shown in Figure 3–39 display the constant-
speed motion of two different particles in the x-y plane. For
each of the eight vectors in Figure 3–39, state whether it is (a) a
position vector, (b) a velocity vector, or (c) an acceleration vec-
tor for the particles.

S E C T I O N  3 – 4 U N I T  V E C T O R S

27. • A particle undergoes a displacement of magnitude 54 m in
a direction 42° below the x axis. Express in terms of the unit
vectors and .

28. • A vector has a magnitude of 3.50 m and points in a direction
that is 145° counterclockwise from the x axis. Find the x and y
components of this vector.

yNxN
¢r

!¢r
!

37. • IP Moving the Knight Two of the allowed chess moves for
a knight are shown in Figure 3–40. (a) Is the magnitude of dis-
placement 1 greater than, less than, or equal to the magnitude
of displacement 2? Explain. (b) Find the magnitude and direc-
tion of the knight’s displacement for each of the two moves. As-
sume that the checkerboard squares are 3.5 cm on a side.

▲ FIGURE 3–36 Problems 18 and 19

x

y

O

B

F E

C D

A
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▲ FIGURE 3–40 Problem 37

1

2

38. • IP In its daily prowl of the neighborhood, a cat makes a dis-
placement of 120 m due north, followed by a 72-m displace-
ment due west. (a) Find the magnitude and direction of the dis-
placement required for the cat to return home. (b) If, instead,
the cat had first prowled 72 m west and then 120 m north, how
would this affect the displacement needed to bring it home?
Explain.

39. • If the cat in Problem 38 takes 45 minutes to complete the 
120-m displacement and 17 minutes to complete the 72-m dis-
placement, what are the magnitude and direction of its average
velocity during this 62-minute period of time?

40. • What are the direction and magnitude of your total displace-
ment if you have traveled due west with a speed of 27 m/s for
125 s, then due south at 14 m/s for 66 s?

41. •• You drive a car 1500 ft to the east, then 2500 ft to the north. If
the trip took 3.0 minutes, what were the direction and magni-
tude of your average velocity?

42. •• IP A jogger runs with a speed of 3.25 m/s in a direction 30.0°
above the x axis. (a) Find the x and y components of the jogger’s
velocity. (b) How will the velocity components found in part (a)
change if the jogger’s speed is halved?

43. •• You throw a ball upward with an initial speed of 4.5 m/s.
When it returns to your hand 0.92 s later, it has the same speed
in the downward direction (assuming air resistance can be ig-
nored). What was the average acceleration vector of the ball?

44. •• A skateboarder rolls from rest down an inclined ramp that is
15.0 m long and inclined above the horizontal at an angle of

. When she reaches the bottom of the ramp 3.00 s later
her speed is 10.0 m/s. Show that the average acceleration of the
skateboarder is , where .

45. •• Consider a skateboarder who starts from rest at the top of a
ramp that is inclined at an angle of 17.5° to the horizontal. As-
suming that the skateboarder’s acceleration is g sin 17.5°, find
his speed when he reaches the bottom of the ramp in 3.25 s.

46. ••• IP The Position of the Moon Relative to the center of
the Earth, the position of the Moon can be approximated by

where t is measured in seconds. (a) Find the magnitude and di-
rection of the Moon’s average velocity between and

days. (This time is one-quarter of the 29.5 days it takes
the Moon to complete one orbit.) (b) Is the instantaneous speed
of the Moon greater than, less than, or the same as the average
speed found in part (a)? Explain.

t = 7.38
t = 0

+ sin[(2.46 * 10-6 radians/s)t]yN6
r
!

= (3.84 * 108 m) 5cos[(2.46 * 10-6 radians>s)t]xN

g = 9.81 m>s2g sin u

u = 20.0°

47. ••• The Velocity of the Moon The velocity of the Moon rela-
tive to the center of the Earth can be approximated by

where t is measured in seconds. To approximate the instanta-
neous acceleration of the Moon at , calculate the magnitude
and direction of the average acceleration between the times (a)

and days and (b) and days. (The
time required for the Moon to complete one orbit is 29.5 days.)

S E C T I O N  3 – 6 R E L AT I V E  M O T I O N

48. • CE The accompanying photo shows a KC-10A Extender using
a boom to refuel an aircraft in flight. If the velocity of the KC-
10A is 125 m/s due east relative to the ground, what is the ve-
locity of the aircraft being refueled relative to (a) the ground,
and (b) the KC-10A?

t = 0.0100t = 0t = 0.100t = 0

t = 0

+ cos[(2.46 * 10-6 radians/s)t]yN6
v
!

= (945 m>s) 5-sin[(2.46 * 10-6 radians>s)t]xN

Air-to-air refueling. (Problem 48)

49. • As an airplane taxies on the runway with a speed of 16.5 m/s,
a flight attendant walks toward the tail of the plane with a
speed of 1.22 m/s. What is the flight attendant’s speed relative
to the ground?

50. • Referring to part (a) of Example 3–2, find the time it takes for
the boat to reach the opposite shore if the river is 35 m wide.

51. •• As you hurry to catch your flight at the local airport, you en-
counter a moving walkway that is 85 m long and has a speed of
2.2 m/s relative to the ground. If it takes you 68 s to cover 85 m
when walking on the ground, how long will it take you to cover
the same distance on the walkway? Assume that you walk with
the same speed on the walkway as you do on the ground.

52. •• In Problem 51, how long would it take you to cover the 
85-m length of the walkway if, once you get on the walkway,
you immediately turn around and start walking in the opposite
direction with a speed of 1.3 m/s relative to the walkway?

53. •• IP The pilot of an airplane wishes to fly due north, but there
is a 65-km/h wind blowing toward the east. (a) In what direc-
tion should the pilot head her plane if its speed relative to the
air is 340 km/h? (b) Draw a vector diagram that illustrates your
result in part (a). (c) If the pilot decreases the air speed of the
plane, but still wants to head due north, should the angle found
in part (a) be increased or decreased?

54. •• A passenger walks from one side of a ferry to the other as it
approaches a dock. If the passenger’s velocity is 1.50 m/s due
north relative to the ferry, and 4.50 m/s at an angle of 30.0° west
of north relative to the water, what are the direction and mag-
nitude of the ferry’s velocity relative to the water?
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66. •• An off-roader explores the open desert in her Hummer.
First she drives 25° west of north with a speed of 6.5 km/h for
15 minutes, then due east with a speed of 12 km/h for 7.5 minutes.
She completes the final leg of her trip in 22 minutes. What are
the direction and speed of travel on the final leg? (Assume her
speed is constant on each leg, and that she returns to her start-
ing point at the end of the final leg.)

67. •• Find the x, y, and z components of the vector shown in
Figure 3–41, given that .

68. •• A football is thrown horizontally with an initial velocity of
. Ignoring air resistance, the average acceleration (16.6 m>s)xN

A = 65 m
A

!

55. •• You are riding on a Jet Ski at an angle of 35° upstream on a
river flowing with a speed of 2.8 m/s. If your velocity relative
to the ground is 9.5 m/s at an angle of 20.0° upstream, what is
the speed of the Jet Ski relative to the water? (Note: Angles are
measured relative to the x axis shown in Example 3–2.)

56. •• IP In Problem 55, suppose the Jet Ski is moving at a speed of
12 m/s relative to the water. (a) At what angle must you point
the Jet Ski if your velocity relative to the ground is to be per-
pendicular to the shore of the river? (b) If you increase the
speed of the Jet Ski relative to the water, does the angle in part
(a) increase, decrease, or stay the same? Explain. (Note: Angles
are measured relative to the x axis shown in Example 3–2.)

57. ••• IP Two people take identical Jet Skis across a river, travel-
ing at the same speed relative to the water. Jet Ski A heads di-
rectly across the river and is carried downstream by the current
before reaching the opposite shore. Jet Ski B travels in a direc-
tion that is 35° upstream and arrives at the opposite shore di-
rectly across from the starting point. (a) Which Jet Ski reaches
the opposite shore in the least amount of time? (b) Confirm
your answer to part (a) by finding the ratio of the time it takes
for the two Jet Skis to cross the river. (Note: Angles are mea-
sured relative to the x axis shown in Example 3–2.)

G E N E R A L  P R O B L E M S

58. • CE Predict/Explain Consider the vectors and 
. (a) Is the magnitude of vector greater than, 

less than, or equal to the magnitude of vector ? (b) Choose the
best explanation from among the following:

I. The number 3.4 is greater than the number 1.2.
II. The component of is negative.

III. The vector points in the positive x direction.

59. • CE Predict/Explain Two vectors are defined as follows:
and . (a) Is the magnitude of 1.4 

greater than, less than, or equal to the magnitude of 2.2 ?
(b) Choose the best explanation from among the following:

I. The vector has a negative component.
II. A number and its negative have the same magnitude.

III. The vectors 1.4 and 2.2 point in opposite directions.

60. • You slide a box up a loading ramp that is 10.0 ft long. At the
top of the ramp the box has risen a height of 3.00 ft. What is the
angle of the ramp above the horizontal?

61. • Find the direction and magnitude of the vector ,
where and .

62. •• CE The components of a vector satisfy and 
. Is the direction angle of between 0° and 90°, between

90° and 180°, between 180° and 270°, or between 270° and 360°?

63. •• CE The components of a vector satisfy and .

Is the direction angle of between 0° and 90°, between 90° and
180°, between 180° and 270°, or between 270° and 360°?

64. •• It is given that , and
. Find the vectors and .

65. •• IP Two students perform an experiment with a train and a
ball. Michelle rides on a flatcar pulled at 8.35 m/s by a train on
a straight, horizontal track; Gary stands at rest on the ground
near the tracks. When Michelle throws the ball with an initial
angle of 65.0° above the horizontal, from her point of view,
Gary sees the ball rise straight up and back down above a fixed
point on the ground. (a) Did Michelle throw the ball toward the
front of the train or toward the rear of the train? Explain. (b) What
was the initial speed of Michelle’s throw? (c) What was the initial
speed of the ball as seen by Gary?

B
!

A
!

A
!

+ B
!

+ C
!

= (13.8 m)xN
C

!
= (62.2 m)xNA

!
- B

!
= (-51.4 m)xN ,

B
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!
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!
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!
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!
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!

= (1.4 m)yNA
!

= (-2.2 m)xN

A
! B

!

B
! A

!
B
!

= (-3.4 m)xN
A

!
= (1.2 m)xN

▲ FIGURE 3–41 Problem 67
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35°

55°

A

of the football over any period of time is . (a) Find
the velocity vector of the ball 1.75 s after it is thrown. (b) Find
the magnitude and direction of the velocity at this time.

69. •• As a function of time, the velocity of the football described in
Problem 68 can be written as .
Calculate the average acceleration vector of the football for the
time periods (a) to , (b) to , and
(c) to . (If the acceleration of an object is con-
stant, its average acceleration is the same for all time periods.)

70. •• Two airplanes taxi as they approach the terminal. Plane 1
taxies with a speed of 12 m/s due north. Plane 2 taxies with a
speed of 7.5 m/s in a direction 20° north of west. (a) What are
the direction and magnitude of the velocity of plane 1 relative
to plane 2? (b) What are the direction and magnitude of the
velocity of plane 2 relative to plane 1?

71. •• A shopper at the supermarket follows the path indicated
by vectors , and in Figure 3–42. Given that theD

!
A

!
, B

!
, C

!

t = 5.00 st = 0
t = 2.50 st = 0t = 1.00 st = 0

v
!

= (16.6 m>s)xN - [(9.81 m>s2)t]yN

(-9.81 m>s2)yN

▲ FIGURE 3–42 Problem 71
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vectors have the magnitudes ,
and find the total displacement of the shopper using
(a) the graphical method and (b) the component method of vec-
tor addition. Give the direction of the displacement relative to
the direction of vector .

72. •• Initially, a particle is moving at 4.10 m/s at an angle of 33.5°
above the horizontal. Two seconds later, its velocity is 6.05 m/s
at an angle of 59.0° below the horizontal. What was the parti-
cle’s average acceleration during these 2.00 seconds?

73. •• A passenger on a stopped bus notices that rain is falling
vertically just outside the window. When the bus moves with
constant velocity, the passenger observes that the falling rain-
drops are now making an angle of 15° with respect to the vertical.
(a) What is the ratio of the speed of the raindrops to the speed
of the bus? (b) Find the speed of the raindrops, given that the
bus is moving with a speed of 18 m/s.

74. •• A Big Clock The clock that rings the bell known as Big Ben
has an hour hand that is 9.0 feet long and a minute hand that is
14 feet long, where the distance is measured from the center of
the clock to the tip of each hand. What is the tip-to-tip distance
between these two hands when the clock reads 12 minutes after
four o’clock?

75. •• IP Suppose we orient the x axis of a two-dimensional coor-
dinate system along the beach at Waikiki. Waves approaching
the beach have a velocity relative to the shore given by

. Surfers move more rapidly than the waves,
but at an angle to the beach. The angle is chosen so that the
surfers approach the shore with the same speed as the waves.
(a) If a surfer has a speed of 7.2 m/s relative to the water, what
is her direction of motion relative to the positive x axis? (b)
What is the surfer’s velocity relative to the wave? (c) If the
surfer’s speed is increased, will the angle in part (a) increase or
decrease? Explain.

76. ••• IP Referring to Example 3–2, (a) what heading must the
boat have if it is to land directly across the river from its starting
point? (b) How much time is required for this trip if the river is
25.0 m wide? (c) Suppose the speed of the boat is increased, but
it is still desired to land directly across from the starting point.
Should the boat’s heading be more upstream, more down-
stream, or the same as in part (a)? Explain.

77. ••• Vector points in the negative x direction. Vector points
at an angle of 30.0° above the positive x axis. Vector has a
magnitude of 15 m and points in a direction 40.0° below the
positive x axis. Given that , find the magni-
tudes of and .

78. ••• As two boats approach the marina, the velocity of boat 1
relative to boat 2 is 2.15 m/s in a direction 47.0° east of north. If
boat 1 has a velocity that is 0.775 m/s due north, what is the ve-
locity (magnitude and direction) of boat 2?

PA S S A G E  P R O B L E M S

BIO Motion Camouflage in Dragonflies
Dragonflies, whose ancestors were once the size of hawks, have
prowled the skies in search of small flying insects for over 250
million years. Faster and more maneuverable than any other in-
sect, they even fold their front two legs in flight and tuck them
behind their head to be as streamlined as possible. They also
employ an intriguing stalking strategy known as “motion cam-
ouflage” to approach their prey almost undetected.

The basic idea of motion camouflage is for the dragonfly to
move in such a way that the line of sight from the prey to the
dragonfly is always in the same direction. Moving in this way,
the dragonfly appears almost motionless to its prey, as if it were

B
!

A
! A

!
+ B

!
+ C

!
= 0

C
!B

!
A

!

v
!
ws = (1.3 m>s)yN

A
!

D = 13 ft,
A = 51 ft, B = 45 ft, C = 35 ft an object at infinity. Eventually the prey notices the dragonfly

has grown in size and is therefore closer, but by that time it’s too
late for it to evade capture.

A typical capture scenario is shown in Figure 3–43, where the
prey moves in the positive y direction with the constant speed
vp = 0.750 m/s, and the dragonfly moves at an angle 
to the x axis with the constant speed vd. If the dragonfly chooses
its speed correctly, the line of sight from the prey to the dragon-
fly will always be in the same direction—parallel to the x axis in
this case.

u = 48.5°

▲ FIGURE 3–43 Problems 79, 80, 81, and 82
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79. • What speed must the dragonfly have if the line of sight,
which is parallel to the x axis initially, is to remain parallel to the
x axis?

A. 0.562 m/s B. 0.664 m/s

C. 1.00 m/s D. 1.13 m/s

80. • Suppose the dragonfly now approaches its prey along a path
with , but it still keeps the line of sight parallel to the
x axis. Is the speed of the dragonfly in this new case greater
than, less than, or equal to its speed in Problem 79?

81. • What is the correct “motion camouflage” speed of approach
for a dragonfly pursuing its prey at the angle � 68.5°?

A. 0.295 m/s B. 0.698 m/s

C. 0.806 m/s D. 2.05 m/s

82. •• If the dragonfly approaches its prey with a speed of 0.950 m/s,
what angle is required to maintain a constant line of sight par-
allel to the x axis?

A. 37.9° B. 38.3°

C. 51.7° D. 52.1°

I N T E R A C T I V E  P R O B L E M S

83. •• IP Referring to Example 3–2 Suppose the speed of the
boat relative to the water is 7.0 m/s. (a) At what angle to the x
axis must the boat be headed if it is to land directly across the
river from its starting position? (b) If the speed of the boat rela-
tive to the water is increased, will the angle needed to go directly
across the river increase, decrease, or stay the same? Explain.

84. ••• Referring to Example 3–2 Suppose the boat has a speed
of 6.7 m/s relative to the water, and that the dock on the oppo-
site shore of the river is at the location and 
relative to the starting point of the boat. (a) At what angle rela-
tive to the x axis must the boat be pointed in order to reach the
other dock? (b) With the angle found in part (a), what is the
speed of the boat relative to the ground?

y = 28 mx = 55 m

u

u

u 7 48.5°


