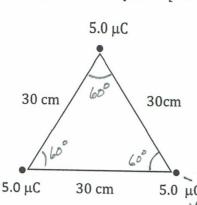
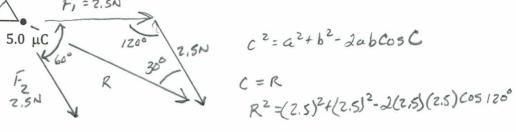
<u>Directions:</u> Show <u>all</u> your work and label all answers and show steps to solutions. If you show a formula not on the formula sheet, you must show how you got it!! Explain answers when necessary.

1. Two charged bodies exert a force of 0.55 N on each other. What will be the force if they are moved so they are only one fifth (1/5) as far apart? 2 pts [13.75 N]

How many electrons make up a charge of 300  $\mu C?~2~pts~$  [1.875 x  $10^{15}~e^{-}$ ] 2.


Particles of charge +90, +88, and -50  $\,\mu\text{C}$  are placed in a line seen below. The center one is 3. 0.45 m from each of the others. Calculate the net force on each due to the other two. 10 pts.

$$F_1 = 9 \times 10^9 \times \frac{50 \times 10^6 \times 38 \times 10^6}{(.45 \text{m})^2}$$
  $f_3 = F_1 : .195.6 \text{N}$   $f_5 = F_2 : ... 50 \text{N}$ 


$$F_{2} = 9 \times 10^{4} \times \frac{50 \times 10^{6} \times 90 \times 10^{6}}{(.9m)^{2}} \quad F_{4} = 9 \times 10^{9} \frac{88 \times 10^{6} \times 90 \times 10^{6}}{(.45m)^{2}} \quad F_{6} = F_{4} :. 352N$$

$$F_{2} = 50N \qquad F_{4} = 352N$$

Three positive particles of charges 5.0  $\mu C$  are located at the corners of an equilateral 4. triangle with 30 cm sides. Calculate the magnitude AND direction of the net force on each particle. 10 pts. [4.33 N @ 30°]



$$F_1 = F_2$$
 :  $F_2 = 2.5N$ 

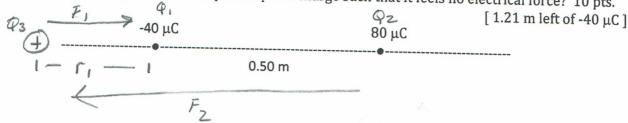


$$c^2 = a^2 + b^2 - \lambda a b \cos C$$

$$C = R$$

$$R^{2} = (2.5)^{2} + (2.5)^{2} - 2(2.5)(2.5)(2.5) = 0$$

$$R = 4.33N$$


$$\frac{5ma}{2.5} = \frac{5m120^6}{4,33}$$

What is the magnitude and direction of the electric field at a point midway between a -6.0  $\mu\text{C}$ 5. and a + 18.0  $\mu C$  charge 12.0 cm apart? 10 pts.  $\,$  [  $6.0 \times 10^7 \, N/C$  ]

6. What is the acceleration of an electron in a 6500 N/C Electric field? 3 pts.  $[1.14 \times 10^{15} \text{ m/s}^2]$ 

$$E = \frac{E}{Q} = \frac{ma}{Q}$$
  $a = \frac{EQ}{m} = \frac{6500 \times 1.6 \times 10^{19}}{9.11 \times 10^{13}} = 1.14 \times 10^{15} \text{ m/s}^2$ 

7. (III) Two charges below are separated by a distance of 0.50 m. Where along the line separating them can we place a point charge such that it feels no electrical force? 10 pts.



$$F_1 = F_2$$

$$\frac{Q_{3}Q_{1}}{\Gamma_{1}^{2}} = \frac{Q_{3}Q_{2}}{(\Gamma_{1}+15)^{2}}$$

$$\frac{Q_{1}}{\Gamma_{1}^{2}} = \frac{Q_{2}}{(\Gamma_{1}+15)^{2}}$$

$$\frac{Q_{0}X_{10}}{\Gamma_{1}^{2}} = \frac{80X_{10}}{(\Gamma_{1}^{2}+1\Gamma_{1}+125)}$$

Place test charge @ 1,21 m left of -40MC charge 8. You are given two unknown point charges,  $Q_1$  and  $Q_2$ . At a point on the line joining them, one-third of the way from  $Q_1$  to  $Q_2$ , the electric field is zero. What can you say about these two charges? 10 pts.  $[Q_2/Q_1 = 4/1]$ 

$$Q, E, E=0 \qquad E_2 \qquad Q_2$$

$$E_1 = E_2$$

$$K \frac{Q_1}{r_1^2} = K \frac{Q_2}{r_2^2}$$

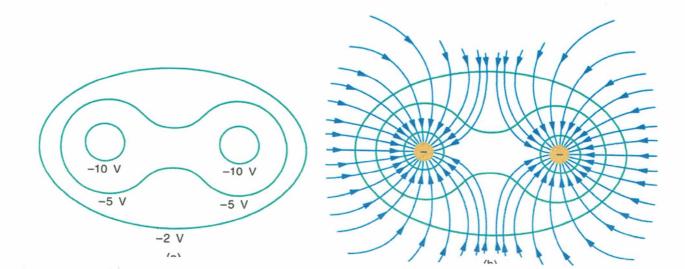
$$Q_1 = \frac{Q_2}{r_2^2}$$

$$\frac{Q_1}{\Gamma_1^2} = \frac{Q_2}{\Gamma_2^2}$$

$$\frac{Q_1}{(\frac{1}{3}d)^2} = \frac{Q_2}{(\frac{3}{3}d)^2}$$

$$\frac{Q_1}{Q_2} = \frac{1/q_1}{4/q}$$

$$\frac{Q_{1}}{Q_{2}} = \frac{1}{q} \cdot \frac{q}{q} = \frac{1}{4}$$
 $\frac{Q_{1}}{Q_{2}} = \frac{1}{4}$ 
 $\frac{Q_{1}}{Q_{2}} = \frac{1}{4}$ 
 $\frac{Q_{1}}{Q_{2}} = \frac{1}{4}$ 
 $\frac{Q_{1}}{Q_{2}} = \frac{1}{4}$ 


. Q27Q, (4+mes Grentei)

- 9. Examine the drawings below. Determine:
  - a. Which has a greater E-Field? A. -10 V B. -5 V C. -2 V (1 pt) [A] Why?

| ny? |                            |
|-----|----------------------------|
|     | (Density of E field lines) |

2 pts

b. Calculate the work done to move a charge (q=2C) from -2V to -10 V. 5 pts.

