Name: \qquad
Date: \qquad Period \qquad
Directions: Answer each problem, showing all your work and labeling all of your units!!!

1. In the diagram below, a shell is fired from a cannon on the edge of a cliff. The mouth of the cannon is 65 m above the level of a lake. The shell is observed to fall into the water at a distance of 800 m from the bottom of the cliff 6 seconds after the cannon is fired. Neglect air resistance. 10 pts.

a. Find the initial horizontal velocity of the shell. Ans $=133.33 \mathrm{~m} / \mathrm{s}$
b. Find the initial vertical component of the velocity of the shell. Ans $=18.6 \mathrm{~m} / \mathrm{s}$
c. Find the initial velocity of the shell when fired. Ans = $134.6 \mathrm{~m} / \mathrm{s} @ 7.9^{\circ}$
d. How high above the cliff does the shell rise? Ans = 17.65 m
e. Find the velocity with which the shell strikes the water. Ans = $139.3 \mathrm{~m} / \mathrm{s} @ 16.8^{\circ}$
2. An athlete throws a shotput (mass 7.3 kg) with an initial velocity of $9 \mathrm{~m} / \mathrm{s}$ at a 45 degree angle to the horizontal. Calculate the horizontal distance traveled. The shot leaves the shotputter's hand at a height of 1.7 m above the ground. 10 pts. Ans $=9.6 \mathrm{~m}$
$x=\frac{-b+/-\sqrt{b^{2}-4 a c}}{2 a} \quad a x^{2}+b x+c=0$
3. Draw the Free-Body diagram for the Box allowed to slide down the below incline.

Label $F_{\mathrm{x}}, \mathrm{F}_{\mathrm{N}}, \mathrm{F}_{\mathrm{w}}, \mathrm{F}_{\mathrm{fr}}$. Draw the right triangle with dotted lines to show $\mathrm{F}_{\mathrm{N}}{ }^{\text {' }}$, and F_{x} added together vectorally. 5 pts.

