\qquad
Date: \qquad Per: \qquad
Directions: Solve for each of the below questions.

Problem 1

Given a circuit contents a combination of three capacitors X, Y and Z, see the figure below.

If the switch S is $O N$, find:
a) circuit equivalent capacitance (equivalent capacitor)
b) electric charge stored in the circuit
c) electric charge stored in capacitor Z, use series principle
d) potential difference across capacitor Z
e) potential difference across capacitor X
f) potential difference across capacitor Y
g) electric charge stored in capacitor X
h) electric charge stored in capacitor Y
i) electric charge stored in capacitor Z
j) energy stored in the circuit
k) energy stored in capacitor X
l) energy stored in capacitor Y
m) energy stored in capacitor Z

Problem 2

Given a parallel-plate capacitor in vacuum. The plates of capacitor are 2 cm apart and $50 \mathrm{~cm}^{2}$ in area of each plate. A potential difference of 120 volt is applied acroos capacitor. When ε_{0} is $8,85 \times 10^{-}$ ${ }^{12} C^{2} N^{-1-2}$ calculate :
a) capacitor capacitance
b) charge stored in capacitor
c) the magnitude of electric charge in space between the two plates of capacitor

Problem 3

A plate-capacitor of capacitance C in vacuum. If then a material with its dielectric constant $K=2$ is inserted between capacitor plates, find the new capacitance of capacitor!

Problem 4

Given a parallel plate-capacitor of $1200 \mu \mathrm{~F}$ in vacuum. If the area of capacitor plates are doubled and the separation between two plates is 1.5 times the original, find the new capacitance of the capacitor!

Problem 1 : Discussion

a) First replace X and Y parallel combination by its equivalent capacitance, named $C_{x y}$:

$$
\begin{aligned}
& C_{x y}=C_{x}+C_{y} \\
& C_{x y}=6+6=12 \mathrm{~F}
\end{aligned}
$$

Replacing the two capacitors gives us the equivalent circuit in series combination, then find the equivalent for $C_{x y}$ and C_{z}, the two are in series, called $C_{\text {eq }}$ or $C_{\text {tot }}$:
$\frac{1}{C_{t o t}}=\frac{1}{C_{x y}}+\frac{1}{C_{z}}$
$\frac{1}{C_{\text {tot }}}=\frac{1}{12}+\frac{1}{12}=\frac{2}{12}$
$C_{\text {tot }}=\frac{12}{2}=6 \mathrm{~F}$
b) Charge stored in the circuit or the charge in the equivalent capacitance; $Q_{\text {tot }}, C_{\text {tot }}$ multipled by $V_{\text {tot }}$

$$
Q_{\text {tot }}=C_{\text {tot }} V_{\text {tot }}=6(24)=144 C
$$

c) Charge stored in capacitor $Z ; Q_{Z}$

For series combination, the charge is the same on all capacitors, it's the same as the charge on the equivalent capacitor :
$Q_{x y}=Q_{z}=Q_{t o t}$
$Q_{z}=144 C$
d) potential difference across capacitor Z; named V_{Z}

$$
V_{z}=\frac{Q_{z}}{C_{z}}=\frac{144}{12}=12 \mathrm{Volt}
$$

e) potential difference across capacitors X and Z are the same cause of parallel combination

$$
V_{x}=V_{x y}=\frac{Q_{x y}}{C_{x y}}=\frac{144}{12}=12 \mathrm{Volt}
$$

f) potential difference across Y is the same as potential difference across X
$V_{y}=V_{x}=12$ Volt
g) charge in capacitor X, be careful, it's not the same as charge in equivalent capacitor
$Q_{x}=C_{x} V_{x}=6(12)=72 C$
h) charge in capacitor Y
$Q_{y}=C_{y} V_{y}=6(12)=72 C$
i) charge in capacitor Z
$Q_{z}=C_{z} V_{z}=12(12)=144 C$
j) energy stored in the circuit

Use one of these three formula to get the energy stored
$W=\frac{1}{2} C V^{2}$
$W=\frac{1}{2} \frac{Q^{2}}{C}$
$W=\frac{1}{2} Q V$
So then
$W_{\text {tot }}=\frac{1}{2} C_{\text {tot }} V_{\text {tot }}^{2}=\frac{1}{2}(6)(24)^{2}=1728$ joule
k) energy stored in capacitor X
$W_{x}=\frac{1}{2} C_{x} V_{x}^{2}=\frac{1}{2}(6)(12)^{2}=432$ joule
l) energy stored in capacitor Y
$W_{y}=\frac{1}{2} C_{y} V_{y}^{2}=\frac{1}{2}(6)(12)^{2}=432$ joule
m) energy stored in capacitor Z
$W_{z}=\frac{1}{2} C_{z} V_{z}^{2}=\frac{1}{2}(12)(12)^{2}=864$ joule

Problem 2: Answer
a) capacitor capacitance
$C=\frac{k A \epsilon_{o}}{d}$
$C=\frac{(1)\left(50 \times 10^{-4}\right)\left(8,85 \times 10^{-12}\right)}{2 \times 10^{-2}}=2,2 \times 10^{-12}=2,2 p F$
b) charge stored in capacitor
$Q=C V$
$Q=\left(2 \times, 2 \times 10^{-12}\right)(120)=264 \times 10^{-12}=264 p C$
c) the magnitude of electric charge in space between the two plates of capacitor
$E=\frac{V}{d}$
$E=\frac{120}{2 \times 10^{-2}}=6000 \mathrm{~V} / \mathrm{m}$

Problem 3: Answer
There are no changing in area and plates separation distance of capacitor, so then the new capacitance is
$\frac{C_{2}}{C_{1}}=\frac{k_{2}}{k_{1}}$
$\frac{C_{2}}{C}=\frac{2}{1}$
$C_{2}=2 C$

Problem 4: Answer
$C=\frac{k A \epsilon_{o}}{d}$
$\frac{C_{2}}{C_{1}}=\frac{A_{2}}{A_{1}} \times \frac{d_{1}}{d_{2}}$
$\frac{C_{2}}{1200}=\frac{(2)(1)}{(1)(1,5)}$
$C_{2}=\frac{2}{1,5} \times 1200=1600 \mu \mathrm{~F}$

