\qquad
\qquad
Date \qquad

ARCHIMEDES' PRINCIPLE EXPERIMENT

Short Description:

Archimedes' principle states that an object submerged in a fluid is buoyed by a force that is equal to the weight of the displaced fluid. In this lab, you are to do two experiments involving Archimedes' principle involving 1) a metal block submerged in water and 2) a helium-filled balloon.

Equipment: Vertical long rod, clamp, force sensor, metal block+string, plastic beaker, balance plastic cup, balloon, small weight, He tank (machine shop), water.

PART 1: Density of Aluminum (or copper)

Preliminary questions

1. A the metal object is suspended by a string from a spring scale (the force sensor) which measures its weight. What is the weight of the object $\mathrm{W}_{(\mathrm{a})}$ in case (a) ?

What is the weight of the object $\mathrm{W}_{(\mathrm{b})}$ in case (b) ?

What the difference of the two weights is equal to?

2. A beaker partly filled with water sits on a balance. Now a piece of aluminum is lowered into the water and held by a string (with your hand for example) so that it does not touch the bottom of the beaker. No water overflows. Does the weight measured by the balance go up, go down, or stay the same?

Set up DataStudio with the force sensor and display a graph of force vs. time. Zero the force reading by pressing the tare button on the side. Next, hang the metal (either aluminum or copper) from the force sensor and record the weight of the metal for a few seconds. Then place the metal into the cup of water until it's submerged. (Place the cup on the table and adjust the height of the force sensor so the block doesn't touch the bottom of the beaker). Stop the measurement, and find the average reading in "air" and in the "water":

Weight Air_ \qquad Weight water \qquad

What is the physical meaning of the difference of these two readings?

Numerical value of the difference: \qquad

Now find the density of the metal from knowledge of its weight and buoyant force, using equation (1) in preliminary question 2.

How does your measured density compare with the accepted value?

Procedure B (for preliminary question 2)
Use the beaker with water, the balance and the metal block, no force sensor. Measure the weight of the baker (with the water in it) using the balance. Next, holding with your hand the string, suspend the metal block into the beaker sitting on a balance. Does the weight of the beaker change when the metal is submerged?

$$
W_{\text {Beaker }} \quad W_{(\text {Beaker }+ \text { Block })} \quad \text { (with the metal inside) }
$$

By how much? Express the difference in Newton.
$W_{(\text {Beaker }+ \text { Block })}-W_{\text {Beaker }}$
Which force does this difference represent?

How does this number compare with the results from Procedure A?

Question: Would your result be different if you lowered a piece of copper, of the same volume, instead of aluminum into the water? Explain.

PART II: Lifting capacity of a helium-filled balloon

The lifting capacity of a helium-filled balloon is given by the difference of the buoyant force acting on it and the weight of the helium in the balloon. If an object is suspended by a string from the balloon floating in air at a constant height, then the lifting capacity is:
$F_{B}-W_{H e}=m_{b} g+m_{s} g+m_{o} g$
where $F_{B}=\rho_{A i r} V_{b} g, W_{H e}=\rho_{H e} V_{b} g, m_{b}=$ balloon mass, $m_{o}=$ hanging object mass and $m_{s}=$ string mass (you can neglect it). Hang a small mass m_{o} from the balloon such that it floats in air without rising or falling. You can use paperclips or whatever object you prefer. After equilibrium is reached, remove the hanging mass m_{o} and measure it with the scale. Record m_{o} and m_{b} as well by weighing a similar uninflated balloon (or ask to the TA for the weight of the balloon)
\qquad

Calculate the net weight in Newtons, the RHS of equation (2): \qquad

Estimate the volume of the balloon using a ruler and assuming the balloon is a sphere.
$V_{b}=$ \qquad

The density of helium is $0.179 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. Now calculate the lifting capacity (in Newtons), the LHS of equation (2): \qquad

How does the calculated lifting capacity compare with the net weight of the load?

Question: How many helium filled balloons like the one you used in this lab would be required to lift you into the air?

