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Conservation laws play a central
role in physics. In this chapter
we introduce the concept of

momentum and show that it, like energy,
is a conserved quantity. Nothing we can
do—in fact, nothing that can occur in
nature—can change the total energy or
the total momentum of the universe.

As with conservation of energy, we
shall see that the conservation of
momentum provides a powerful way of
approaching a variety of problems that
would be extremely difficult to solve
using Newton’s laws directly. In particular,

problems involving the collision of two
or more objects—such as a baseball bat
striking a ball or one car bumping into
another at an intersection—are
especially well suited to a momentum
approach. Finally, we introduce the
concept of the center of mass and show
that it allows us to extend many of the
results that have been obtained for point
particles to systems involving more
realistic objects.
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Linear Momentum
and Collisions

As these pool balls collide, a number of changes occur in the system. First, the ball that was at
rest initially is now moving. Second, the all-white cue ball moves in a new direction with a new
speed. Still there is one physical quantity that is completely unaffected by the collision—the
total momentum of the system. In this chapter we introduce momentum, show how it is related
to Newton’s second law, and use it to analyze a wide range of collisions.
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9–1 Linear Momentum
Imagine for a moment that you are sitting at rest on a skateboard that can roll
without friction on a smooth surface. If you catch a heavy, slow-moving ball
tossed to you by a friend, you begin to move. If, on the other hand, your friend
tosses you a light, yet fast-moving ball, the net effect may be the same—that is,
catching a lightweight ball moving fast enough will cause you to move with the
same speed as when you caught the heavy ball.

In physics, the previous observations are made precise by defining a quantity
called the linear momentum, , which is defined as the product of the mass m and
velocity of an object:

Definition of Linear Momentum, 
9–1

In our example, if the heavy ball has twice the mass of the light ball but the light
ball has twice the speed of the heavy ball, the momenta of the two balls are equal
in magnitude. We can see from Equation 9–1 that the units of linear momentum
are simply the units of mass times the units of velocity: There is no spe-
cial shorthand name given to this combination of units.

It is important to note that a constant linear momentum is the momentum of
an object of mass m that is moving in a straight line with a velocity In Chapter 11
we introduce a similar quantity to describe the momentum of an object that ro-
tates. This momentum will be referred to as the angular momentum. In general,
when we simply say momentum, we are referring to the linear momentum We
will always specify angular momentum when referring to the momentum associ-
ated with rotation.

Because the velocity is a vector with both a magnitude and a direction, so
too is the momentum, The next Exercise gives some feeling for the
magnitude of the momentum, for everyday objects.

E X E R C I S E  9 – 1
(a) A 1180-kg car drives along a city street at 30.0 miles per hour (13.4 m/s). What is the
magnitude of the car’s momentum? (b) A major-league pitcher can give a 0.142-kg base-
ball a speed of 101 mi/h (45.1 m/s). Find the magnitude of the baseball’s momentum.

S O L U T I O N

a. Using we find

b. Similarly,

As an illustration of the vector nature of momentum, consider the situations
shown in Figures 9–1 (a) and (b). In Figure 9–1 (a), a 0.10-kg beanbag bear is
dropped to the floor, where it hits with a speed of 4.0 m/s and sticks. In Figure 
9–1 (b) a 0.10-kg rubber ball also hits the floor with a speed of 4.0 m/s, but in this
case the ball bounces upward off the floor. Assuming an ideal rubber ball, its ini-
tial upward speed is 4.0 m/s. Now the question in each case is, “What is the
change in momentum?”

To approach the problem systematically, we introduce a coordinate system as
shown in Figure 9–1. With this choice, we can see that neither object has momen-
tum in the x direction; thus we need only consider the y component of momen-
tum, The problem, therefore, is one-dimensional; still, we must be careful
about the sign of py.

py.

pb = mbvb = 10.142 kg2145.1 m/s2 = 6.40 kg # m/s

pc = mcvc = 11180 kg2113.4 m/s2 = 15,800 kg # m/s

p = mv,

p = mv,
p
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▲ FIGURE 9–1 Change in momentum
A beanbag bear and a rubber ball, with
the same mass m and the same down-
ward speed v, hit the floor. (a) The bean-
bag bear comes to rest on hitting the
floor. Its change in momentum is mv
upward. (b) The rubber ball bounces
upward with a speed v. Its change in
momentum is 2mv upward.
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P R O B L E M - S O L V I N G  N O T E

Coordinate Systems

Be sure to draw a coordinate system for
momentum problems, even if the problem
is only one-dimensional. It is important to
use the coordinate system to assign the
correct sign to velocities and momenta in
the system.

We begin with the beanbag. Just before hitting the floor, it moves downward
(that is, in the negative y direction) with a speed of . Letting m stand
for the mass of the beanbag, we find that the initial momentum is

After landing on the floor, the beanbag is at rest; hence, its final momentum is zero:

Therefore the change in momentum is

Note that the change in momentum is positive—that is, in the upward direction.
This makes sense because, before the bag landed, it had a negative (downward)
momentum in the y direction. In order to increase the momentum from a negative
value to zero, it is necessary to add a positive (upward) momentum.

Next, consider the rubber ball in Figure 9–1 (b). Before bouncing, its momen-
tum is

the same as for the beanbag. After bouncing, when the ball is moving in the up-
ward (positive) direction, its momentum is

As a result, the change in momentum for the rubber ball is

This is twice the change in momentum of the beanbag! The reason is that in this case,
the momentum in the y direction must first be increased from to 0, then in-
creased again from 0 to mv. For the beanbag, the change was merely from to 0.

Note how important it is to be careful about the vector nature of the momen-
tum and to use the correct sign for Otherwise, we might have concluded—
erroneously—that the rubber ball had zero change in momentum, since the
magnitude of its momentum was unchanged by the bounce. In fact, its momentum
does change due to the change in its direction of motion.

One additional point: Since momentum is a vector, the total momentum of a
system of objects is the vector sum of the momenta of all the objects. That is,

9–2

This is illustrated for the case of three objects in the following Example.

p
!
total = p

!
1 + p

!
2 + p

!
3 + Á

py.

-mv
-mv

 = 210.10 kg214.0 m/s2 = 0.80 kg # m/s

 ¢py = py,f - py,i = mv - m1-v2 = 2mv

py,f = mv

py,i = m1-v2

 = 10.10 kg214.0 m/s2 = 0.40 kg # m/s

 ¢py = py,f - py,i = 0 - m1-v2 = mv

py,f = m102 = 0

py,i = m1-v2

v = 4.0 m/s

E X A M P L E  9 – 1 D U C K ,  D U C K ,  G O O S E :  A D D I N G  M O M E N T A

At a city park, a person throws some bread into a duck pond. Two 4.00-kg ducks and a 9.00-kg goose paddle rapidly toward the
bread, as shown in our sketch. If the ducks swim at 1.10 m/s, and the goose swims with a speed of 1.30 m/s, find the magnitude
and direction of the total momentum of the three birds.

P I C T U R E  T H E  P R O B L E M

In our sketch we place the origin where the bread floats on the water. Note that duck 1 swims in the positive x direction, duck 2
swims in the negative y direction, and the goose swims in the positive y direction. Therefore, and 

where and The total momentum, points at an
angle relative to the positive x axis.u

p
!
total,mg = 9.00 kg.vg = 1.30 m/s, md = 4.00 kg,vd = 1.10 m/s,p

!
g = mgvgyN ,

p
!
d1 = mdvdxN , p

!
d2 = -mdvdyN ,



S O L U T I O N

1. Use x and y unit vectors to express the momentum
of each bird in vector form:

2. Sum the momentum vectors to obtain the
total momentum:

3. Calculate the magnitude of the total momentum:

4. Calculate the direction of the total momentum:

I N S I G H T

Note that the momentum of each bird depends only on its mass and velocity; it is independent of the bird’s location. In addition,
we observe that the magnitude of the total momentum is less than the sum of the magnitudes of each bird’s momentum individ-
ually. This is generally the case when dealing with vector addition—the only exception is when all vectors point in the same
direction.

P R A C T I C E  P R O B L E M

Should the speed of the goose be increased or decreased if the total momentum of the three birds is to point in the positive x
direction? Verify your answer by calculating the required speed. [Answer: The goose’s speed must be decreased. Setting the
momentum of the goose equal to minus the momentum of duck 2 yields ]

Some related homework problems: Problem 1, Problem 2, Problem 3

vg = 0.489 m/s.

u = tan-1aptotal,y

ptotal,x
b = tan-1a7.30 kg # m/s

4.40 kg # m/s
b = 58.9°

 = 8.52 kg # m/s

 = 414.40 kg # m/s22 + 17.30 kg # m/s22
 ptotal = 4ptotal,x

2 + p2
total,y

 = 14.40 kg # m/s2xN + 17.30 kg # m/s2yN
 = 14.40 kg # m/s2xN + [-4.40 kg # m/s + 11.7 kg # m/s]yN

 p
!
total = p

!
d1 + p

!
d2 + p

!
g

 = 111.7 kg # m/s2yN
 p
!
g = mgvgyN = 19.00 kg211.30 m/s2yN

 = -14.40 kg # m/s2yN
 p
!
d2 = -mdvdyN = -14.00 kg211.10 m/s2yN

 = 14.40 kg # m/s2xN
 p
!
d1 = mdvdxN = 14.00 kg211.10 m/s2xN

vd = 1.10 m/s

pd2 

pd1 

pg

ptotal

vg = 1.30 m/s

vd = 1.10 m/s

x

y

x

y

�

S T R A T E G Y

Write the momentum of each
bird as a vector, using unit vec-
tors in the x and y directions.
Next, sum these vectors compo-
nent by component to find the
total momentum. Finally, use
the components of the total mo-
mentum to calculate its magni-
tude and direction.
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9–2 Momentum and Newton’s Second Law
In Chapter 5 we introduced Newton’s second law:

As mentioned, this expression is valid only for objects that have constant mass.
The more general law, which holds even if the mass changes, is expressed in terms

aF
!
= ma

!
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of momentum. In fact, Newton’s original statement of the second law was in just
this form:

Newton’s Second Law

9–3

That is, the net force acting on an object is equal to the change in its momentum
divided by the time interval during which the change occurs—in other words, the
net force is the rate of change of momentum with time.

To show the connection between these two statements of the second law, con-
sider the change in momentum, Since we have

However, if the mass is constant, so that it follows that the change
in momentum is simply m times

As a result, Newton’s second law, for objects of constant mass, can be written as
follows:

Finally, recall that acceleration is the rate of change of velocity with time:

Therefore, we can write Equation 9–3 as

9–4

Hence, the two statements are equivalent if the mass is constant.
It should be noted, however, that is the general form of Newton’s

second law, and that it is valid no matter how the mass may vary. In the remain-
der of this chapter we use this form of the second law to investigate the connec-
tions between forces and changes in momentum.

9–3 Impulse
The pitcher delivers a fastball, the batter takes a swing, and with a crack of the bat
the ball that was approaching home plate at 95.0 mi/h is now heading toward the
pitcher at 115 mi/h. In the language of physics, we say that the bat has delivered
an impulse, to the ball.

During the brief time the ball and bat are in contact—perhaps as little as a
thousandth of a second—the force between them rises rapidly to a large value, as
shown in Figure 9–2, then falls back to zero as the ball takes flight. It would be al-
most impossible, of course, to describe every detail of the way the force varies
with time. Instead, we focus on the average force exerted by the bat, which is
also shown in Figure 9–2. The impulse, then, is defined to be times the length
of time, that the ball and bat are in contact, which is simply the area under the
force-versus-time curve:

Definition of Impulse, 

9–5

SI unit: N # s = kg # m/s
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Note that impulse is a vector and that it points in the same direction as the aver-
age force. In addition, its units are the same as
the units of momentum.

It is no accident that impulse and momentum have the same units. In fact, re-
arranging Newton’s second law, Equation 9–3, we see that the average force times

is simply the change in momentum of the ball due to the bat:

Hence, in general, impulse is just the change in momentum:

Momentum–Impulse Theorem

9–6

For instance, if we know the impulse delivered to an object—that is, its change in
momentum—and the time interval during which the change occurs, we can find
the average force that caused the impulse.

As an example, let’s calculate the impulse given to the baseball considered at
the beginning of this section, as well as the average force between the ball and the
bat. First, set up a coordinate system with the positive x axis pointing from home
plate toward the pitcher’s mound, as indicated in Figure 9–3. If the ball’s mass is
0.145 kg, its initial momentum—which is in the negative x direction—is

Immediately after the hit, the ball’s final momentum is in the positive x direction:

The impulse, then, is

I
!
= ¢p

!
= p

!
f - p

!
i = [7.45 kg # m/s - 1-6.16 kg # m/s2]xN = 113.6 kg # m/s2xN

p
!
f = mvfxN = 10.145 kg21115 mi/h2a0.447 m/s

1 mi/h
bxN = 17.45 kg # m/s2xN

p
!
i = -mvixN = -10.145 kg2195.0 mi/h2a 0.447 m/s

1 mi/h
bxN = -16.16 kg # m/s2xN

I
!
= F

!
av ¢t = ¢p

!

F
!
av ¢t = ¢p

!

F
!
av =

¢p
!

¢t

¢t

N # s = 1kg # m/s22 # s = kg # m/s,

FIGURE 9–2 The average force during 
a collision
The force between two objects that col-
lide, as when a bat hits a baseball, rises
rapidly to very large values, then drops
again to zero in a matter of milliseconds.
Rather than try to describe the complex
behavior of the force, we focus on its av-
erage value, Note that the area under
the rectangle is the same as the area
under the actual force curve.
Fav

Fav.

▲

vi

vf

Force

Time

Fav

Force versus time during
contact between the ball
and the bat

Average force
during contact

▲ FIGURE 9–3 Hitting a baseball
A batter hits a ball, sending it back to-
ward the pitcher’s mound. The impulse
delivered to the ball by the bat changes
the ball’s momentum from to pfxN .-pixN

x

x

pi

pf

R E A L - W O R L D  P H Y S I C S

The force between a ball and a bat
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We saw in Section 9–1 that the change in momentum is different for an object
that hits something and sticks compared with an object that hits and bounces off.
This means that the impulse, and hence the force, is different in the two cases. We
explore this in the following Conceptual Checkpoint.

C O N C E P T U A L  C H E C K P O I N T  9 – 1 R A I N  V E R S U S  H A I L

A person stands under an umbrella during a rain shower. A few minutes later the rain-
drops turn to hail—though the number of “drops” hitting the umbrella per time and
their speed remain the same. Is the force required to hold the umbrella in the hail (a) the
same as, (b) more than, or (c) less than the force required in the rain?
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If the ball and bat are in contact for a typical time, the
average force is

Note that the average force is in the positive x direction; that is, toward the
pitcher, as expected. In addition, the magnitude of the average force is remark-
ably large. In everyday units, the force between the ball and the bat is more than
2500 pounds! This explains why the ball is observed in high-speed photographs
to deform significantly during a hit—the force is so large that, for an instant, it par-
tially flattens the ball. Finally, notice that the weight of the ball, which is only about
0.3 lb, is completely negligible compared to the forces involved during the hit.

In problems that are strictly one-dimensional, we can drop the vector notation
when dealing with impulse. However, we must still be careful about the signs of the
various quantities in the system. This is illustrated in the following Active Example.

F
!
av =

¢p
!

¢t
=

I
!

¢t
=
113.6 kg # m/s2xN

1.20 * 10-3 s
= 11.13 * 104 N2xN

1.20 ms = 1.20 * 10-3 s,

▲ When a softball is hit by a bat (top), an
enormous force (thousands of newtons)
acts for a very short period of time—
perhaps only a few ms. During this time,
the ball is dramatically deformed by the
impact. To keep the same thing from hap-
pening to a pole vaulter, who must fall
nearly 20 feet after clearing the bar (bot-
tom), a deeply padded landing area is pro-
vided. The change in the pole vaulter’s
momentum as he is brought to a stop,

is the same whether he lands
on a mat or on concrete. However, the
padding is very yielding, greatly prolong-
ing the time during which he is in con-
tact with the mat. The corresponding force
on the vaulter is thus markedly decreased.

¢t

mv = F¢t,

A C T I V E  E X A M P L E  9 – 1 F I N D  T H E  F I N A L  S P E E D
O F  T H E  B A L L

A 0.144-kg baseball is moving toward home plate with a speed of 43.0 m/s when it
is bunted (hit softly). The bat exerts an average force of on the ball for
1.30 ms. The average force is directed toward the pitcher, which we take to be the
positive x direction. What is the final speed of the ball?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Relate change in momentum to 
impulse (Equation 9–5):

2. Solve for the final momentum:

3. Calculate the initial momentum:

4. Calculate the impulse:

5. Use these results to find the final momentum:

6. Divide by the mass to find the final velocity:

I N S I G H T

With our choice of coordinate system, we see that the initial momentum of the ball
was in the negative x direction. The impulse applied to the ball, however, resulted
in a final momentum (and velocity) in the positive x direction.

Y O U R  T U R N

Suppose the bat is in contact with the ball for 2.60 ms rather than 1.30 ms. What is
the final speed of the ball in this case?

(Answers to Your Turn problems are given in the back of the book.)

vf = pf/m = 15.7 m/s

pf = 2.26 kg # m/s

I = Fav ¢t = 8.45 kg # m/s

pi = -6.19 kg # m/s

pf = Fav ¢t + pi

¢p = pf - pi = I = Fav ¢t

6.50 * 103 N

© Harold and Esther Edgerton Foundation, 2007,
courtesy of Palm Press, Inc.



Rain Hail

▲ Most bats can take off simply by drop-
ping from their perch on a branch or the
ceiling of a cave, but vampire bats like this
one must leap from the ground to become
airborne. They do so by rocking forward
onto their front limbs and then pushing off,
using the extremely strong pectoral mus-
cles that are also their main source of
power in flight. Pushing downward on the
ground, a bat experiences an upward reac-
tion force exerted on it by the ground, with
a corresponding impulse sufficient to pro-
pel it upward a considerable distance. In
fact, a vampire bat can launch itself 1 m or
more into the air in a mere 30 ms.

E X A M P L E  9 – 2 J U M P I N G  F O R  J O Y

After winning a prize on a game show, a 72-kg contestant jumps for joy. (a) If the jump results in an upward speed of 2.1 m/s,
what is the impulse experienced by the contestant? (b) Before the jump, the floor exerts an upward force of mg on the contestant.
What additional average upward force does the floor exert if the contestant pushes down on it for 0.36 s during the jump?

P I C T U R E  T H E  P R O B L E M

Our sketch shows that the contestant’s motion is purely one-
dimensional, with a final speed of 2.1 m/s in the positive
vertical direction. Note that we have chosen the positive y di-
rection to be upward, therefore and 

S T R A T E G Y

a. From the momentum–impulse theorem, we know that im-
pulse is equal to the change in momentum. We are given
the initial and final velocities of the contestant, and his
mass as well; hence the change in momentum, can be
calculated using the definition of momentum, 

b. The average value of the additional force exerted on the
contestant by the floor is where is given as 
0.36 s and is calculated in part (a).

S O L U T I O N

Part (a)

1. Write an expression for the impulse, noting that 

2. Substitute numerical values:

CONTINUED ON NEXT PAGE

I
!
= mv

!
f = 172 kg212.1 m/s2yN = 1150 kg # m/s2yN

I
!
= ¢p

!
= p
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!
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! ¢t¢p

!
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p
!
= mv
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.

¢p
!
,

v
!
f = 12.1 m/s2yN .v

!
i = 0

R E A S O N I N G  A N D  D I S C U S S I O N

When raindrops strike the umbrella, they tend to splatter and run off; when hailstones
hit the umbrella, they bounce back upward. As a result, the change in momentum is
greater for the hail—just as the change in momentum is greater for a rubber ball bounc-
ing off the floor than it is for a beanbag landing on the floor. Hence, the impulse and the
force are greater with hail.

A N S W E R

(b) The force is greater in the hail.

9 – 3 I M P U L S E 261

We conclude this section with an additional calculation involving impulse.

vf = 2.1 m/svi = 0

y
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CONTINUED FROM PREVIOUS PAGE

Part (b)

3. Express the average force in terms of the impulse and
the time interval 

I N S I G H T

The magnitude of the additional average force exerted by the floor is rather large; in fact, 420 N is approximately 95 lb, or about
60% of the contestant’s weight of 160 lb. Thus, the total upward force exerted by the floor is 
which is about 250 lb. The contestant, of course, exerts the same force downward. Fortunately, the contestant only needs to exert
that force for a third of a second.

When the contestant lands, an impulse is required to bring him to rest. If he lands with stiff legs, the impulse occurs in a short
time, resulting in a large force delivered to the knees—with possible harmful effects. If he bends his legs on landing, on the other
hand, the time duration is significantly increased, and the force applied to the contestant is correspondingly reduced.

P R A C T I C E  P R O B L E M

Suppose the contestant lands with a speed of 2.1 m/s and comes to rest in 0.25 s. What is the magnitude of the average force ex-
erted by the floor during landing? [Answer: ]

Some related homework problems: Problem 13, Problem 14

mg + 600 N ' 290 lb

mg + 420 N = 710 N + 420 N,

¢t:
F
!
av =

I
!

¢t
=
1150 kg # m/s2yN

0.36 s
= 1420 kg # m/s22yN = 1420 N2yNI

!

9–4 Conservation of Linear Momentum
In this section we turn to perhaps the most significant aspect of linear momentum—
the fact that it is a conserved quantity. In this respect, it plays a fundamental role
in physics similar to that of energy. We shall also see that momentum conserva-
tion leads to calculational simplifications, making it of great practical significance.

First, recall that the net force acting on an object is equal to the rate of change
of its momentum

Rearranging this expression, we find that the change in momentum during a time
interval is

9–7

Clearly, then, if the net force acting on an object is zero,

its change in momentum is also zero:

Writing the change of momentum in terms of its initial and final values, we have

or

9–8

Since the momentum does not change in this case, we say that it is conserved. To
summarize:

Conservation of Momentum
If the net force acting on an object is zero, its momentum is conserved; that is, 

Note that in some cases the force may be zero in one direction and nonzero
in another. For example, an object in free fall has a nonzero y component of
force, but no force in the x direction, As a result, the object’s y
component of momentum changes with time while its x component of momen-
tum remains constant. Therefore, in applying momentum conservation, we

Fx = 0.Fy Z 0,
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must remember that both the force and the momentum are vector quantities and
that the momentum conservation principle applies separately to each coordi-
nate direction.

Thus far, our discussion has referred to the forces acting on a single object.
Next, we consider a system composed of more than one object.

Internal Versus External Forces
The net force acting on a system of objects is the sum of forces applied from out-
side the system (external forces, ) and forces acting between objects within the
system (internal forces, ). Thus, we can write

As we shall see, internal and external forces play very different roles in terms of
how they affect the momentum of a system.

To illustrate the distinction, consider the case of two canoes floating at rest next
to one another on a lake, as described in Example 5–3 and shown in Figure 9–4. In
this case, let’s consider the “system” to be the two canoes and the people inside
them. When a person in canoe 1 pushes on canoe 2, a force is exerted on canoe 2.
By Newton’s third law, an equal and opposite force, is exerted on the
person in canoe 1. Note that and are internal forces, since they act between
objects in the system. In addition, note that they sum to zero:

F
!
1 + F

!
2 = 1-F

!
22 + F

!
2 = 0

F
!
2F

!
1

F
!
1 = -F

!
2,

F
!
2

F
!
net = aF

!
= aF

!
ext + aF

!
int

F
!
int

F
!
ext

FIGURE 9–4 Separating two canoes
A system comprised of two canoes and
their occupants. The forces and are
internal to the system. They sum to zero.

F
!
2F

!
1

▲

1 2

F2F1

Internal forces always sum to zero ...

... and hence they have no effect on the net momentum of the system.
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This is a special case, of course, but it demonstrates the following general principles:

• Internal forces, like all forces, always occur in action-reaction pairs.
• Because the forces in action-reaction pairs are equal and opposite—due to

Newton’s third law—internal forces must always sum to zero:

The fact that internal forces always cancel means that the net force acting on a sys-
tem of objects is simply the sum of the external forces acting on it:

The external forces, on the other hand, may or may not sum to zero—it all de-
pends on the particular situation. For example, if the system consists of the two
canoes in Figure 9–4, the external forces are the weights of the people and the ca-
noes acting downward, and the upward, normal force exerted by the water to
keep the canoes afloat. These forces sum to zero, and there is no acceleration in the
vertical direction. In the next few sections we consider a variety of systems in
which the external forces either sum to zero, or are so small that they can be ig-
nored. Later, in Section 9–7, we consider situations where the external forces do
not sum to zero and hence must be taken into account.

F
!
net = aF

!
ext + aF

!
int = aF

!
ext

aF
!
int = 0
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Two groups of canoeists meet in the middle of a lake. After a brief visit, a person in canoe 1 pushes on canoe 2 with a force of 46 N
to separate the canoes. If the mass of canoe 1 and its occupants is 130 kg, and the mass of canoe 2 and its occupants is 250 kg, find
the momentum of each canoe after 1.20 s of pushing.

P I C T U R E  T H E  P R O B L E M

We choose the positive x direction to point from canoe 1 to
canoe 2. With this choice, the force exerted on canoe 2 is

and the force exerted on canoe 1 is 

S T R A T E G Y

First, we find the acceleration of each canoe using 
Next, we use to find the velocity at time t.
Note that the canoes start at rest, hence Finally, the
momentum can be calculated using px = mvx.

v0x = 0.
vx = v0x + axt

ax = Fx/m.

F
!
1 = 1-46 N2xN .

F
!
2 = 146 N2xN

1 2

x
0

F1 = 46 N F2 = 46 N
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Finally, how do external and internal forces affect the momentum of a system?
To see the connection, first note that Newton’s second law gives the change in the
net momentum for a given time interval 

Because the internal forces cancel, however, the change in the net momentum is
directly related to the net external force:

9–9

Therefore, the key distinction between internal and external forces is the following:

Conservation of Momentum for a System of Objects

• Internal forces have absolutely no effect on the net momentum of a system.
• If the net external force acting on a system is zero, its net momentum is

conserved. That is,

It is important to note that these statements apply only to the net momentum
of a system, not to the momentum of each individual object. For example, sup-
pose a system consists of two objects, 1 and 2, and that the net external force act-
ing on the system is zero. As a result, the net momentum must remain constant:

This does not mean, however, that is constant or that is constant. All we can
say is that the sum of and does not change.

As a specific example, consider the case of the two canoes floating on a lake,
as described previously. Initially the momentum of the system is zero, because the
canoes are at rest. After a person pushes the canoes apart, they are both moving,
and hence both have nonzero momentum. Thus, the momentum of each canoe
has changed. On the other hand, because the net external force acting on the sys-
tem is zero, the sum of the canoes’ momenta must still vanish. We show this in the
next Example.

p
!
2p

!
1

p
!
2p

!
1

p
!
net = p

!
1 + p

!
2 = constant

p
!
1,f + p

!
2,f + p

!
3,f + Á = p

!
1,i + p

!
2,i + p

!
3,i + Á

¢p
!
net = AaF

!
ext B  ¢t

¢p
!
net = F

!
net ¢t

¢t:

▲ If the astronaut in this photo pushes on
the satellite, the satellite exerts an equal but
opposite force on him, in accordance with
Newton’s third law. If we are calculating
the change in the astronaut’s momentum,
we must take this force into account. How-
ever, if we define the system to be the astro-
naut and the satellite, the forces between
them are internal to the system. Whatever
effect they may have on the astronaut or
the satellite individually, they do not affect
the momentum of the system as a whole.
Therefore, whether a particular force
counts as internal or external depends
entirely on where we draw the boundaries
of the system.

P R O B L E M - S O L V I N G  N O T E

Internal Versus External Forces

It is important to keep in mind that inter-
nal forces cannot change the momentum
of a system—only a net external force can
do that.



In a situation like that described in Example 9–3, the person in canoe 1 pushes
canoe 2 away. At the same time, canoe 1 begins to move in the opposite direction.
This is referred to as recoil. It is essentially the same as the recoil one experiences
when firing a gun or when turning on a strong stream of water.

A particularly interesting example of recoil involves the human body. Perhaps
you have noticed, when resting quietly in a rocking or reclining chair, that the
chair wobbles back and forth slightly about once a second. The reason for this
movement is that each time your heart pumps blood in one direction (from the
atria to the ventricles, then to the aorta and pulmonary arteries, and so on) your
body recoils in the opposite direction. Because the recoil depends on the force ex-
erted by your heart on the blood and the volume of blood expelled from the heart
with each beat, it is possible to gain valuable medical information regarding the
health of your heart by analyzing the recoil it produces.

The medical instrument that employs the physical principle of recoil is called
the ballistocardiograph. It is a completely noninvasive technology that simply re-
quires the patient to sit comfortably in a chair fitted with sensitive force sensors
under the seat and behind the back. Sophisticated bathroom scales also utilize this
technology. A ballistocardiographic (BCG) scale detects the recoil vibrations of the
body as a person stands on the scale. This allows the BCG scale to display not only
the person’s body weight but his or her heart rate as well.

A more dramatic application of heartbeat recoil is currently being used at the
Riverbend Maximum Security Institution in Tennessee. The only successful
breakout from this prison occurred when four inmates hid in a secret compart-
ment in a delivery truck that was leaving the facility. The institution now uses a
heartbeat recoil detector that would have foiled this escape. Vehicles leaving the
prison must stop at a checkpoint where a small motion detector is attached to it
with a suction cup. Any persons hidden in the vehicle will reveal their presence
by the very beating of their hearts. These heartbeat detectors have proved to be
100 percent effective, even though the recoil of the heart may displace a large
truck by only a few millionths of an inch. Similar systems are being used at other
high-security installations and border crossings.
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S O L U T I O N

1. Use Newton’s second law to find the acceleration of canoe 2:

2. Do the same calculation for canoe 1. Note that the
acceleration of canoe 1 is in the negative direction:

3. Calculate the velocity of each canoe at 

4. Calculate the momentum of each canoe at 

I N S I G H T

Note that the sum of the momenta of the two canoes is zero. This is just what one would expect: The canoes start at rest with zero
momentum, there is zero net external force acting on the system, hence the final momentum must also be zero. The final veloci-
ties do not add to zero; it is momentum that is conserved, not velocity 

Finally, we solved this problem using one-dimensional kinematics so that we could clearly see the distinction between velocity
and momentum. An alternative way to calculate the final momentum of each canoe is to use For
canoe 1 we have in agreement with our results above. A simi-
lar calculation yields for canoe 2.

P R A C T I C E  P R O B L E M

What are the final momenta if the canoes are pushed apart with a force of 56 N? [Answer: ]

Some related homework problems: Problem 21, Problem 22

p1,x = -67 kg #  m/s, p2,x = 67 kg #  m/s

p
!
2,f = 155 kg # m/s2xN

= 1-55 kg #  m/s2xN ,p
!
1,f = F

!
1 ¢t + p

!
1,i = 1-46 N2xN11.20 s2 + 0

¢p
!
= p

!
f - p

!
i = F

!
¢t.

1v!2.1mv
!2

p2,x = m2v2,x = 1250 kg210.22 m/s2 = 55 kg #  m/s

p1,x = m1v1,x = 1130 kg21-0.42 m/s2 = -55 kg #  m/st = 1.20 s:

v2,x = a2,xt = 10.18 m/s2211.20 s2 = 0.22 m/s

v1,x = a1,xt = 1-0.35 m/s2211.20 s2 = -0.42 m/st = 1.20 s:

a1,x = a
F1,x

m1
=

-46 N
130 kg

= -0.35 m/s2

a2,x = a
F2,x

m2
=

46 N
250 kg

= 0.18 m/s2

R E A L - W O R L D  P H Y S I C S :  B I O

The ballistocardiograph

R E A L - W O R L D  P H Y S I C S :  B I O

Heartbeat detectors



A C T I V E  E X A M P L E  9 – 2 F I N D  T H E  V E L O C I T Y
O F  T H E  B E E

A honeybee with a mass of 0.150 g lands on one end of a floating 4.75-g popsicle
stick. After sitting at rest for a moment, it runs toward the other end with a velocity

relative to the still water. The stick moves in the opposite direction with a speed
of 0.120 cm/s. What is the velocity of the bee? (Let the direction of the bee’s motion
be the positive x direction.)

v
!
b

vb
vs

x

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Set the total momentum of the
system equal to zero:

2. Solve for the momentum of the bee:

3. Calculate the momentum of the stick:

4. Calculate the momentum
of the bee:

5. Divide by the bee’s mass to find
its velocity:

I N S I G H T

Because only internal forces are at work while the bee walks on the stick, the sys-
tem’s total momentum must remain zero.

v
!
b = p

!
b/mb = 13.80 cm/s2xN

p
!
b = mbvbxN = -p

!
s = 10.570 g # cm/s2xN

p
!
s = -msvsxN = 1-0.570 g # cm/s2xN

p
!
b = -p

!
s = mbvbxN

p
!
b + p

!
s = 0
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▲ This Hubble Space Telescope photo-
graph shows the aftermath of a violent ex-
plosion of the star Eta Carinae. The explo-
sion, which was observed on Earth in 1841
and briefly made Eta Carinae the second
brightest star in the sky, produced two
bright lobes of matter spewing outward in
opposite directions. In this photograph,
these lobes have expanded to about the size
of our solar system. The momentum of the
star before the explosion must be the same
as the total momentum of the star and the
bright lobes after the explosion. Since the
lobes are roughly symmetric and move in
opposite directions, their net momentum is
essentially zero. Thus, we conclude that the
momentum of the star itself was virtually
unchanged by the explosion.

C O N C E P T U A L  C H E C K P O I N T  9 – 2 M O M E N T U M  V E R S U S  K I N E T I C  E N E R G Y

In Example 9–3, the final momentum of the system (consisting of the two canoes and
their occupants) is equal to the initial momentum of the system. Is the final kinetic en-
ergy (a) equal to, (b) less than, or (c) greater than the initial kinetic energy?

R E A S O N I N G  A N D  D I S C U S S I O N

The final momentum of the two canoes is zero because one canoe has a positive momen-
tum and the other has a negative momentum of the same magnitude. The two momenta,
then, sum to zero. Kinetic energy, which is cannot be negative; hence no such can-
cellation is possible. Both canoes have positive kinetic energies, and therefore, the final
kinetic energy is greater than the initial kinetic energy, which is zero.

Where does the increase in kinetic energy come from? It comes from the muscular work
done by the person who pushes the canoes apart.

A N S W E R

(c) is greater than Ki.Kf

1
2 mv2,

A special case of some interest is the universe. Since there is nothing external to
the universe—by definition—it follows that the net external force acting on it is
zero. Therefore, its net momentum is conserved. No matter what happens—a comet
collides with the Earth, a star explodes and becomes a supernova, a black hole swal-
lows part of a galaxy—the total momentum of the universe simply cannot change.
A particularly vivid illustration of momentum conservation in our own galaxy is
provided by the exploding star Eta Carinae. As can be seen in the Hubble Space
Telescope photograph, jets of material are moving away from the star in opposite
directions, just like the canoes moving apart from one another in Example 9–3.

Conservation of momentum also applies to the more everyday situation de-
scribed in the next Active Example.

R E A L - W O R L D  P H Y S I C S

Stellar explosions



Y O U R  T U R N

Suppose the mass of the popsicle stick is 9.50 g rather than 4.75 g. What is the bee’s
velocity in this case?

(Answers to Your Turn problems are given in the back of the book.)

9–5 Inelastic Collisions
We now turn our attention to collisions. By a collision we mean a situation in
which two objects strike one another, and in which the net external force is either
zero or negligibly small. For example, if two train cars roll along on a level track
and hit one another, this is a collision. In this case, the net external force—the
weight downward and the normal force exerted by the tracks upward—is zero.
As a result, the momentum of the two-car system is conserved.

Another example of a collision is a baseball being struck by a bat. In this case,
the external forces are not zero because the weight of the ball is not balanced by
any other force. However, as we have seen in Section 9–3, the forces exerted dur-
ing the hit are much larger than the weight of the ball or the bat. Hence, to a good
approximation, we may neglect the external forces (the weight of the ball and bat)
in this case, and say that the momentum of the ball–bat system is conserved.

Now it may seem surprising at first, but the fact that the momentum of a sys-
tem is conserved during a collision does not necessarily mean that the system’s
kinetic energy is conserved. In fact most, or even all, of a system’s kinetic energy
may be converted to other forms during a collision while, at the same time, not
one bit of momentum is lost. This shall be explored in detail in this section.

In general, collisions are categorized according to what happens to the kinetic
energy of the system. There are two possibilities. After a collision, the final kinetic
energy, is either equal to the initial kinetic energy, or it is not. If the
collision is said to be elastic. We shall consider elastic collisions in the next section.

On the other hand, the kinetic energy may change during a collision. Usually
it decreases due to losses associated with sound, heat, and deformation. Some-
times it increases, if the collision sets off an explosion, for instance. In any event,
collisions in which the kinetic energy is not conserved are referred to as inelastic:

Inelastic Collisions
In an inelastic collision, the momentum of a system is conserved,

but its kinetic energy is not,

Kf Z Ki

p
!
f = p

!
i

Kf = Ki,Ki,Kf,
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In both elastic and inelastic collisions,
momentum is conserved. The same is not
true of kinetic energy, however. In the
largely inelastic collision at left, much of
the hockey players’ initial kinetic energy is
transformed into work: rearranging the
players’ anatomies and shattering the glass
of the rink. In the highly elastic collision at
right, the ball rebounds with very little
diminution of its kinetic energy (though a
little energy is lost as sound and heat).

▲



FIGURE 9–5 Railroad cars collide and
stick together
A moving train car collides with an iden-
tical car that is stationary. After the colli-
sion, the cars stick together and move
with the same speed.

▲

vf

v1,i = v0 v2,i = 0

x

Before

After
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Finally, in the special case where objects stick together after the collision, we
say that the collision is completely inelastic.

Completely Inelastic Collisions
When objects stick together after colliding, the collision is completely inelastic.

In a completely inelastic collision, the maximum amount of kinetic energy is lost.
If the total momentum of the system is zero, this means that all of the kinetic en-
ergy is lost. For systems with nonzero total momentum, however, some kinetic
energy will remain after the collision—still, the amount lost is the maximum per-
mitted by momentum conservation.

Inelastic Collisions in One Dimension
Consider a system of two identical train cars of mass m on a smooth, level track. One
car is at rest initially while the other moves toward it with a speed as shown in
Figure 9–5. When the cars collide, the coupling mechanism latches, causing the cars to
stick together and move as a unit. What is the speed of the cars after the collision?

v0,

To answer this question, we begin by considering the general case that applies
to any completely inelastic collision, and then we look at the specific case of the
two train cars. In general, suppose that two masses, and have initial veloc-
ities and respectively. The initial momentum of the system is

After the collision, the objects move together with a common velocity There-
fore, the final momentum is

Equating the initial and final momenta yields or

9–10

We can apply this general result to the case of the two railroad cars by noting
that and Thus, the final velocity is

9–11

As you might have guessed, the final speed is one-half the initial speed.

E X E R C I S E  9 – 2
A 1200-kg car moving at 2.5 m/s is struck in the rear by a 2600-kg truck moving at
6.2 m/s. If the vehicles stick together after the collision, what is their speed immediately
after colliding? (Assume that external forces may be ignored.)

vf =
mv0 + m # 0
m + m

=
m

2m
v0 =

1
2
v0

v2,i = 0.m1 = m2 = m, v1,i = v0,

vf =
m1v1,i + m2v2,i

m1 + m2

m1v1,i + m2v2,i = 1m1 + m22vf,

pf = 1m1 + m22vf

vf.

pi = m1v1,i + m2v2,i

v2,iv1,i

m2,m1



S O L U T I O N

Applying Equation 9–10 with and 
yields 

During the collision of the railroad cars, some of the initial kinetic energy is
converted to other forms. Some propagates away as sound, some is converted to
heat, some creates permanent deformations in the metal of the latching mecha-
nism. The precise amount of kinetic energy that is lost is addressed in the follow-
ing Conceptual Checkpoint.

vf = 5.0 m/s.6.2 m/s
v2,i =m1 = 1200 kg, v1,i = 2.5 m/s, m2 = 2600 kg,

C O N C E P T U A L  C H E C K P O I N T  9 – 3 H O W  M U C H  K I N E T I C  E N E R G Y  I S  L O S T ?

A railroad car of mass m and speed v collides and sticks to an identical railroad car that
is initially at rest. After the collision, is the kinetic energy of the system (a) 1/2, (b) 1/3,
or (c) 1/4 of its initial kinetic energy?

R E A S O N I N G  A N D  D I S C U S S I O N

Before the collision, the kinetic energy of the system is

After the collision, the mass doubles and the speed is halved. Hence, the final kinetic
energy is

Therefore, one-half of the initial kinetic energy is converted to other forms of energy.
An equivalent way to arrive at this conclusion is to express the kinetic energy in terms of
the momentum, 

Since the momentum is the same before and after the collision, the fact that the mass
doubles means the kinetic energy is halved.

A N S W E R

(a) The final kinetic energy is one-half the initial kinetic energy.

K =
1
2
mv2 =

1
2
am2v2

m
b =

p2

2m

p = mv:

Kf =
1
2
12m2av

2
b2

=
1
2
a1

2
 mv2b =

1
2

 Ki

Ki =
1
2

  mv2
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Note that we know the precise amount of kinetic energy that was lost, even
though we don’t know just how much went into sound, how much went into
heat, and so on. It is not necessary to know all of those details to determine how
much kinetic energy was lost.

We also know how much momentum was lost—none.

E X A M P L E  9 – 4 G O A L - L I N E  S T A N D

On a touchdown attempt, a 95.0-kg running back runs toward
the end zone at 3.75 m/s. A 111-kg linebacker moving at 
4.10 m/s meets the runner in a head-on collision. If the two
players stick together, (a) what is their velocity immediately
after the collision? (b) What are the initial and final kinetic en-
ergies of the system?

P I C T U R E  T H E  P R O B L E M

In our sketch, we let subscript 1 refer to the red-and-gray run-
ning back, who carries the ball, and subscript 2 refer to the blue-
and-gold linebacker, who will make the tackle. The direction of
the running back’s initial motion is taken to be in the positive x
direction. Therefore, the initial velocities of the players are

and v
!
2 = 1-4.10 m/s2xN .v

!
1 = 13.75 m/s2xN

v1 = (3.75 m/s)x v2 = (– 4.10 m/s)x

x

ˆ ˆ

P R O B L E M - S O L V I N G  N O T E

Momentum Versus Energy
Conservation

Be sure to distinguish between momen-
tum conservation and energy conserva-
tion. A common error is to assume that
kinetic energy is conserved just because
the momentum is conserved.

CONTINUED ON NEXT PAGE



CONTINUED FROM PREVIOUS PAGE

S T R A T E G Y

a. The final velocity can be found by applying momentum conservation to the system consisting of the two players. Initially,
the players have momenta in opposite directions. After the collision, the players move together with a combined mass

and a velocity 

b. The kinetic energies can be found by applying to the players individually to obtain the initial kinetic energy, and then
to their combined motion for the final kinetic energy.

S O L U T I O N

Part (a)

1. Set the initial momentum equal to the final momentum:

2. Solve for the final velocity and substitute numerical
values, being careful to use the appropriate signs:

Part (b)

3. Calculate the initial kinetic energy of the two players:

4. Calculate the final kinetic energy of the players, noting that
they both move with the same velocity after the collision:

I N S I G H T

After the collision, the two players are moving in the negative direction; that is, away from the end zone. This is because the line-
backer had more negative momentum than the running back had positive momentum. As for the kinetic energy, of the original
1600 J, only 23.7 J is left after the collision. This means that over 98% of the original kinetic energy is converted to other forms.
Even so, none of the momentum is lost.

P R A C T I C E  P R O B L E M

If the final speed of the two players is to be zero, should the speed of the running back be increased or decreased? Check your
answer by calculating the required speed for the running back. [Answer: The running back’s speed should be increased to
4.79 m/s.]

Some related homework problems: Problem 28, Problem 35

 = 1
2195.0 kg + 111 kg21-0.480 m/s22 = 23.7 J

 Kf = 1
21m1 + m22vf 

2

 = 1600 J

 = 1
2195.0 kg213.75 m/s22 + 1

21111 kg21-4.10 m/s22
 Ki = 1

2m1v1 

2 + 1
2m2v2 

2

 = 1-0.480 m/s2xN
 =
195.0 kg213.75 m/s2xN + 1111 kg21-4.10 m/s2xN

95.0 kg + 111 kg

 v
!
f =
m1v

!
1 + m2v

!
2

m1 + m2

m1v
!
1 + m2v

!
2 = 1m1 + m22v!f

1
2mv

2

v
!
f.m1 + m2

E X A M P L E  9 – 5 B A L L I S T I C  P E N D U L U M

In a ballistic pendulum, an object of mass m is fired with an initial speed at the bob of a pendulum.
The bob has a mass M, and is suspended by a rod of negligible mass. After the collision, the object and

the bob stick together and swing through an arc, eventually
gaining a height h. Find the height h in terms of m, M, and g.

P I C T U R E  T H E  P R O B L E M

Our sketch shows the physical setup of a ballistic pendulum.
Initially, only the object of mass m is moving, and it moves in
the positive x direction with a speed Immediately after the
collision, the bob and object move together with a new speed,

which is determined by momentum conservation. Finally,
the pendulum continues to swing to the right until its speed
decreases to zero and it comes to rest at the height h.

S T R A T E G Y

There are two distinct physical processes at work in the ballistic pendulum. The first is a completely inelastic collision between
the bob and the object. Momentum is conserved during this collision, but kinetic energy is not. After the collision, the remaining
kinetic energy is converted into gravitational potential energy, which determines how high the bob and object will rise.

vf,

v0.

v0,

v0
R E A L - W O R L D
P H Y S I C S

v0
vf

v = 0

m M M + m
h

x
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S O L U T I O N

1. Set the momentum just before the bob–object collision
equal to the momentum just after the collision. Let 
be the speed just after the collision:

2. Solve for the speed just after the collision, 

3. Calculate the kinetic energy just after the collision:

4. Set the kinetic energy after the collision equal to the
gravitational potential energy at the height h: 

5. Solve for the height, h:

I N S I G H T

A ballistic pendulum is often used to measure the speed of a rapidly moving object, such as a bullet. If a bullet were shot straight
up, it would rise to the height which can be thousands of feet. On the other hand, if a bullet of mass m is fired into a bal-
listic pendulum, in which M is much greater than m, the bullet reaches only a small fraction of this height. Thus, the ballistic pen-
dulum makes for a more convenient and practical measurement.

P R A C T I C E  P R O B L E M

A 7.00-g bullet is fired into a ballistic pendulum whose bob has a mass of 0.950 kg. If the bob rises to a height of 0.220 m, what was
the initial speed of the bullet? [Answer: If this bullet were fired straight up, it would rise in
the absence of air resistance.]

Some related homework problems: Problem 32, Problem 33

4.11 km L 13,000 ftv0 = 284 m/s.

v0 

2/2g,

h = a m
M + m

b2av0 

2

2g
b

1
2
mv0 

2a m
M + m

b = 1M + m2gh

 =
1
2
mv0 

2a m
M + m

b
 Kf =

1
2
1M + m2vf  

2 =
1
2

(M + m2a m
M + m

b2
v0 

2

vf = a m
M + m

bv0vf:

vf

mv0 = 1M + m2vf

Inelastic Collisions in Two Dimensions
Next we consider collisions in two dimensions, where we must conserve the mo-
mentum component by component. To do this, we set up a coordinate system and
resolve the initial momentum into x and y components. Next, we demand that the
final momentum have precisely the same x and y components as the initial mo-
mentum. That is,

and

The following Example shows how to carry out such a calculation in a practical
situation.

py,i = py,f

px,i = px,f

P R O B L E M - S O L V I N G  N O T E

Sketch the System Before and
After the Collision

In problems involving collisions, it is use-
ful to draw the system before and after the
collision. Be sure to label the relevant
masses, velocities, and angles.

E X A M P L E  9 – 6 B A D  I N T E R S E C T I O N :  A N A L Y Z I N G  A  T R A F F I C  A C C I D E N T

A car with a mass of 950 kg and a speed of 16 m/s approaches an intersection, as shown on the next
page. A 1300-kg minivan traveling at 21 m/s is heading for the same intersection. The car and minivan
collide and stick together. Find the speed and direction of the wrecked vehicles just after the collision,
assuming external forces can be ignored.

P I C T U R E  T H E  P R O B L E M

In our sketch, we align the x and y axes with the crossing streets. With this choice, (the car’s velocity) is in the positive x di-
rection, and (the minivan’s velocity) is in the positive y direction. In addition, the problem statement indicates that 

CONTINUED ON NEXT PAGE

v
!
2

v
!
1

R E A L - W O R L D
P H Y S I C S



CONTINUED FROM PREVIOUS PAGE

and After the collision, the
two vehicles move together (as a unit) with a speed in a
direction with respect to the positive x axis.

S T R A T E G Y

Because external forces can be ignored, the total momen-
tum of the system must be conserved during the collision.
This is really two conditions: (i) the x component of mo-
mentum is conserved, and (ii) the y component of mo-
mentum is conserved. These two conditions determine
the two unknowns: the final speed, and the final direc-
tion, 

S O L U T I O N

1. Set the initial x component of momentum equal to the
final x component of momentum:

2. Do the same for the y component of momentum:

3. Divide the y momentum equation by the x momentum
equation. This eliminates giving an equation involving

alone: 

4. Solve for 

5. The final speed can be found using either the x or the
y momentum equation. Here we use the x equation:

I N S I G H T

As a check, you should verify that the y momentum equation gives the same value for 

When a collision occurs in the real world, a traffic-accident investigation team will measure skid marks at the scene of the crash
and use this information—along with some basic physics—to determine the initial speeds and directions of the vehicles. This in-
formation is often presented in court, where it can lead to a clear identification of the driver at fault.

P R A C T I C E  P R O B L E M

Suppose the speed and direction immediately after the collision are known to be and respectively. Find
the initial speed of each car. [Answer: ]

Some related homework problems: Problem 29, Problem 30

v1 = 22 m/s, v2 = 14 m/s
u = 42°,vf = 12.5 m/s

vf.

 =
1950 kg2116 m/s2

1950 kg + 1300 kg2 cos 61°
= 14 m/s

 vf =
m1v1

1m1 + m22 cos u

 = tan-111.82 = 61°

 u = tan-1am2v2

m1v1
b = tan-1 c 11300 kg2121 m/s2

1950 kg2116 m/s2 du:

u

vf,

m2v2

m1v1
=
1m1 + m22vf sin u
1m1 + m22vf cos u

=
sin u
cos u

= tan u

m2v2 = 1m1 + m22vf sin u

m1v1 = 1m1 + m22vf cos u

u.
vf,

u

vf

m2 = 1300 kg.m1 = 950 kg

x

y

v1 = 16 m/s

vf

v2 = 21 m/s

�

9–6 Elastic Collisions
In this section we consider collisions in which both momentum and kinetic
energy are conserved. As mentioned in the previous section, such collisions are
referred to as elastic:
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Elastic Collisions
In an elastic collision, momentum and kinetic energy are conserved. That is,

and

Most collisions in everyday life are rather poor approximations to being elastic—
usually there is a significant amount of energy converted to other forms. However,
the collision of objects that bounce off one another with little deformation—like
billiard balls, for example—provides a reasonably good approximation to an elastic
collision. In the subatomic world, on the other hand, elastic collisions are com-
mon. Elastic collisions, then, are not merely an ideal that is approached but never
attained—they are constantly taking place in nature.

Elastic Collisions in One Dimension
Consider a head-on collision of two carts on an air track, as pictured in Figure 9–6.
The carts are provided with bumpers that give an elastic bounce when the carts
collide. Let’s suppose that initially cart 1 is moving to the right with a speed to-
ward cart 2, which is at rest. If the masses of the carts are and respectively,
then momentum conservation can be written as follows:

In this expression, and are the final velocities of the two carts. Note that we
say velocities, not speeds, since it is possible for cart 1 to reverse direction, in
which case would be negative.

Next, the fact that this is an elastic collision means the final velocities must
also satisfy energy conservation:

Thus, we now have two equations for the two unknowns, and Straight-
forward—though messy—algebra yields the following results:

9–12

Note that the final velocity of cart 1 can be positive, negative, or zero, depending
on whether is greater than, less than, or equal to respectively. The final ve-
locity of cart 2, however, is always positive.

m2,m1

v2,f = a 2m1

m1 + m2
bv0

v1,f = am1 - m2

m1 + m2
bv0

v2,f.v1,f

1
2
m1v0

2 =
1
2
m1v1,f

2 +
1
2
m2v2,f

2

v1,f

v2,fv1,f

m1v0 = m1v1,f + m2v2,f

m2,m1

v0

Kf = Ki

p
!
f = p

!
i

FIGURE 9–6 An elastic collision
between two air carts
In the case pictured, is to the right
(positive), which means that is greater
than In fact, we have chosen

for this plot; therefore,
and as given by

Equations 9–12. If were less than 
cart 1 would bounce back toward the left,
meaning that would be negative.v1,f

m2,m1

v2,f = 4v0/3v1,f = v0/3
m1 = 2m2

m2.
m1

v1,f

▲

v1,i = v0

Before

v2,i = 0 

After

m2m1

v1,f v2,f

m2m1

x



E X E R C I S E  9 – 3
At an amusement park, a 96.0-kg bumper car moving with a speed of 1.24 m/s bounces
elastically off a 135-kg bumper car at rest. Find the final velocities of the cars.

S O L U T I O N

Using Equations 9–12, we find the final velocities to be and
Note that the direction of travel of car 1 has been reversed.

Let’s check a few special cases of our results. First, consider the case where the
two carts have equal masses, Substituting into Equations 9–12, we
find

and

Thus, after the collision, the cart that was moving with velocity is now at rest,
and the cart that was at rest is now moving with velocity In effect, the carts
have “exchanged” velocities. This case is illustrated in Figure 9–7 (a).

Next, suppose that is much greater than or, equivalently, that ap-
proaches zero. Returning to Equations 9–12, and setting we find

and

v2,f =
2 # 0

0 + m2
v0 = 0

v1,f = a0 - m2

0 + m2
bv0 = a -m2

m2
bv0 = -v0

m1 = 0,
m1m1,m2

v0.
v0

v2,f = a 2m
m + m

bv0 = v0

v1,f = am - m
m + m

bv0 = 0

m1 = m2 = m.

v2,f = 1.03 m/s.
v1,f = -0.209 m/s

x

v0

Before

(a) m1 = m2 = m

v = 0

After

mm

m

v1,f = 0
v2,f = v0

m

v0

Before

(b) m1 << m2

v = 0

v1,f ≈ –v0

After

m1 m2

v2,f ≈ 0

m2

x

m1

v0

Before

(c) m1 >> m2

v = 0

After

m2m1

v1,f ≈ v0 v2,f ≈ 2v0

m2m1

x

FIGURE 9–7 Elastic collisions between
air carts of various masses
(a) Carts of equal mass exchange veloci-
ties when they collide. (b) When a light
cart collides with a stationary heavy cart,
its direction of motion is reversed. Its
speed is practically unchanged. (c) When
a heavy cart collides with a stationary
light cart, it continues to move in the
same direction with essentially the
same speed. The light cart moves off
with a speed that is roughly twice the
initial speed of the heavy cart.

▲
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Physically, we interpret these results as follows: A very light cart collides with a
heavy cart that is at rest. The heavy cart hardly budges, but the light cart is re-
flected, heading backward (remember the minus sign in ) with the same speed
it had initially. For example, if you throw a ball against a wall, the wall is the very
heavy object and the ball is the light object. The ball bounces back with the same
speed it had initially (assuming an ideal elastic collision). We show a case in
which is much less than in Figure 9–7 (b).

Finally, what happens when is much greater than To check this limit
we can set equal to zero. We consider the results in the following Conceptual
Checkpoint.

m2

m2?m1

m2m1

-v0

C O N C E P T U A L  C H E C K P O I N T  9 – 4 S P E E D  A F T E R  A  
C O L L I S I O N

A hoverfly is happily maintaining a fixed position about 10 ft above the ground when an
elephant charges out of the bush and collides with it. The fly bounces elastically off the
forehead of the elephant. If the initial speed of the elephant is v0, is the speed of the fly
after the collision equal to (a) v0, (b) 1.5v0, or (c) 2v0?

R E A S O N I N G  A N D  D I S C U S S I O N

We can use Equations 9–12 to find the final speeds of the fly and the elephant. First, let m1
be the mass of the elephant, and m2 be the mass of the fly. Clearly, m2 is vanishingly small
compared with m1, hence we can evaluate Equations 9–12 in the limit This yields

and

As expected, the speed of the elephant is unaffected. The fly, however, rebounds with
twice the speed of the elephant. Figure 9–7 (c) illustrates this case with air carts.

A N S W E R

(c) The speed of the fly is 2v0.

Note that after the collision the fly is separating from the elephant with the
speed Before the collision the elephant was approaching the fly
with the same speed, This is a special case of the following general result:

The speed of separation after a head-on elastic collision is always
equal to the speed of approach before the collision.

The proof of this statement is the subject of Problem 91.

v0.
2v0 - v0 = v0.

v2,f = a 2m1

m1 + m2
bv0

 
 m2 : 0 " a

2m1

m1
bv0 = 2v0

v1,f = am1 - m2

m1 + m2
bv0

 
 m2 : 0 " a

m1

m1
bv0 = v0

m2: 0.

▲ The apparatus shown here illustrates
some of the basic features of elastic colli-
sions between objects of equal mass. The
device consists of five identical metal balls
suspended by strings. When the end ball is
pulled out to the side and then released so
as to fall back and strike the second ball, it
creates a rapid succession of elastic colli-
sions among the balls. In each collision, one
ball comes to rest while the next one begins
to move with the original speed, just as
with the air carts in Figure 9–7 (a). When
the collisions reach the other end of the ap-
paratus, the last ball swings out to the same
height from which the first ball was re-
leased.

If two balls are pulled out and released,
two balls swing out at the other side, and
so on. To see why this must be so, imagine
that the two balls swing in with a speed v
and a single ball swings out at the other
side with a speed What value must 
have (a) to conserve momentum, and (b) to
conserve kinetic energy? Since the required 
speed is for (a) and for
(b), it follows that it is not possible to con-
serve both momentum and kinetic energy
with two balls swinging in and one ball
swinging out.

v¿ = 22vv¿ = 2v

v¿v¿.

Momentum Transfer and Height Amplification
In a collision between two objects of different mass, like the small and large balls in this
photo, a significant amount of momentum can be transferred from the large object to the
small object. Even though the total momentum is conserved, the small object can be given a
speed that is significantly larger than any of the initial speeds. This is illustrated in the photo
by the height to which the small ball bounces. A similar process occurs in the collapse of a
star during a supernova explosion. The resulting collision can send jets of material racing
away from the supernova at nearly the speed of light, just like the small ball that takes off
with such a large speed in this collision.

▲



Elastic Collisions in Two Dimensions
In a two-dimensional elastic collision, if we are given the final speed and direction
of one of the objects, we can find the speed and direction of the other object using
energy conservation and momentum conservation. For example, consider the col-
lision of two 7.00-kg curling stones, as depicted in Figure 9–8. One stone is at rest
initially, the other approaches with a speed The collision is not
head-on, and after the collision, stone 1 moves with a speed of in
a direction 66.0° away from the initial line of motion. What are the speed and di-
rection of stone 2?

v1,f = 0.610 m/s
v1,i = 1.50 m/s.

First, let’s find the speed of stone 2. The easiest way to do this is to simply re-
quire that the final kinetic energy be equal to the initial kinetic energy. Initially, the
kinetic energy is

After the collision stone 1 has a speed of 0.610 m/s and stone 2 has the speed 
Hence, the final kinetic energy is

Solving for the speed of stone 2, we find

Next, we can find the direction of motion of stone 2 by requiring that the momen-
tum be conserved. For example, initially there is no momentum in the y direction.
This must be true after the collision as well. Hence, we have the following condition:

Solving for the angle we find

As a final check, compare the initial and final x components of momentum.
Initially, we have

px,i = m1v1,i = 17.00 kg211.50 m/s2 = 10.5 kg # m/s

u = 24.0°

u

0 = m1v1,f sin 66.0° - m2v2,f sin u

v2,f = 1.37 m/s

= 1.30 J + 1
2m2v2,f

2 = Ki

Kf = 1
2m1v1,f

2 + 1
2m2v2,f

2 = 1
217.00 kg210.610 m/s22 + 1

2m2v2,f
2

v2,f.

Ki = 1
2m1v1,i

2 = 1
217.00 kg211.50 m/s22 = 7.88 J

FIGURE 9–8 Two curling stones
undergo an elastic collision
The speed of curling stone 2 after this
collision can be determined using energy
conservation; its direction of motion can
be found using momentum conservation
in either the x or the y direction.

▲

v1,i  = 1.50 m/s

v1,f  = 0.610 m/s

v2,f

v2,i = 0

Before

After

66.0°
x

y

�
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P R O B L E M - S O L V I N G  N O T E

Kinetic Energy in Elastic Collisions

Remember that in elastic collisions, by de-
finition, the kinetic energy is conserved.



9 – 6 E L A S T I C  C O L L I S I O N S 277

Following the collision, the x component of momentum is

As expected, the momentum is unchanged.

 = 10.5 kg # m/s

 = 17.00 kg210.610 m/s2 cos 66.0° + 17.00 kg211.37 m/s2 cos 24.0°

 px,f = m1v1,f cos 66.0° + m2v2,f cos 24.0°

E X A M P L E  9 – 7 T W O  F R U I T S  I N  T W O  D I M E N S I O N S :  A N A L Y Z I N G
A N  E L A S T I C  C O L L I S I O N

Two astronauts on opposite ends of a spaceship are comparing lunches. One has an apple, the other has an orange. They decide
to trade. Astronaut 1 tosses the 0.130-kg apple toward astronaut 2 with a speed of 1.11 m/s. The 0.160-kg orange is tossed from
astronaut 2 to astronaut 1 with a speed of 1.21 m/s. Unfortunately, the fruits collide, sending the orange off with a speed of
1.16 m/s at an angle of 42.0° with respect to its original direction of motion. Find the final speed and direction of the apple,
assuming an elastic collision. Give the apple’s direction relative to its original direction of motion.

P I C T U R E  T H E  P R O B L E M

In our sketch we refer to the apple as object 1 and to the orange
as object 2. We also choose the positive x direction to be in the
initial direction of motion of the apple. We shall describe the
“Before” and “After” sketches separately:

B E F O R E

Initially, the apple moves in the positive x direction with a
speed of 1.11 m/s, and the orange moves in the negative x di-
rection with a speed of 1.21 m/s. There is no momentum in the
y direction before the collision.

A F T E R

After the collision, the orange moves with a speed of 1.16 m/s
in a direction 42° below the negative x axis. As a result, the or-
ange now has momentum in the negative y direction. To cancel
this y momentum, the apple must move in a direction that is
above the positive x axis, as indicated in the sketch.

S T R A T E G Y

As described in the text, we first find the speed of the apple by
demanding that the initial and final kinetic energies be the
same. Next, we find the angle by conserving momentum in
either the x or the y direction—the results are the same which-
ever direction is chosen.

S O L U T I O N

1. Calculate the initial kinetic energy of the system:

2. Calculate the final kinetic energy of the system in
terms of 

3. Set to find 

4. Set the final y component of momentum equal to
zero to determine the angle, 

Solve for 

5. Substitute numerical values:

CONTINUED ON NEXT PAGE

u = sin-110.8172 = 54.8°

sin u =
10.160 kg211.16 m/s2 sin 42.0°

10.130 kg211.17 m/s2 = 0.817

sin u =
m2v2,f sin 42.0°

m1v1,f
sin u:

u:
0 = m1v1,f sin u - m2v2,f sin 42.0°

v1,f = C210.197 J - 0.108 J2
0.130 kg

= 1.17 m/sv1,f:Kf = Ki

 = 1
210.130 kg2v1,f 

2 + 0.108 J

 = 1
210.130 kg2v1,f 

2 + 1
210.160 kg211.16 m/s22v1,f:

 Kf = 1
2 
m1v1,f 

2 + 1
2 
m2v2,f 

2

 = 0.197 J
 = 1

210.130 kg211.11 m/s22 + 1
210.160 kg211.21 m/s22

 Ki = 1
2 
m1v1,i 

2 + 1
2 
m2v2,i 

2

u

Before

v1,i = 1.11 m/s

v2,i = 1.21 m/s

v2,f = 1.16 m/s

v1,f

42°

After

� x

y



CONTINUED FROM PREVIOUS PAGE

I N S I G H T

The x momentum equation gives the same value for as expected.

P R A C T I C E  P R O B L E M

Suppose that after the collision the apple moves in the positive y direction with a speed of 1.27 m/s. What are the final speed and
direction of the orange in this case? [Answer: The orange moves with a speed of 1.07 m/s in a direction of 74.7° below the neg-
ative x axis.]

Some related homework problems: Problem 41, Problem 94

u,

9–7 Center of Mass
In this section we introduce the concept of the center of mass. We begin by defin-
ing its location for a given system of masses. Next we consider the motion of the
center of mass and show how it is related to the net external force acting on the sys-
tem. As we shall see, the center of mass plays a key role in the analysis of collisions.

Location of the Center of Mass
There is one point in any system of objects that has special significance—the
center of mass (CM). One of the reasons the center of mass is so special is the fact
that, in many ways, a system behaves as if all of its mass were concentrated there.
As a result, a system can be balanced at its center of mass:

The center of mass of a system of masses is the point where the
system can be balanced in a uniform gravitational field.

For example, suppose you are making a mobile. At one stage in its construc-
tion, you want to balance a light rod with objects of mass and connected to
either end, as indicated in Figure 9–9. To make the rod balance, you should attach
a string to the center of mass of the system, just as if all its mass were concentrated
at that point. In a sense, you can think of the center of mass as the “average” loca-
tion of the system’s mass.

To be more specific, suppose the two objects connected to the rod have the
same mass. In this case the center of mass is at the midpoint of the rod, since this
is where it balances. On the other hand, if one object has more mass than the other,
the center of mass is closer to the heavier object, as indicated in Figure 9–10. In gen-
eral, if a mass is on the x axis at the position and a mass is at the position

as in Figure 9–9, the location of the center of mass, is defined as the
“weighted” average of the two positions:

Center of Mass for Two Objects

9–13

Note that we have used for the total mass of the two objects, and
that the two positions, and are multiplied—or weighted—by their respec-
tive masses.

To see that this definition of agrees with our expectations, consider first the
case where the masses are equal: In this case, 
and Thus, as expected, if two masses 
are equal, their center of mass is halfway between them. On the other hand, if 

is significantly greater than it follows that and
since can be ignored in comparison to As a result, we

find that that is, the center of mass is essentially at the loca-
tion of the extremely heavy mass, In general, as one mass becomes larger than
the other, the center of mass moves closer to the larger mass.

m1.
Xcm ' m1x1/m1 = x1;

m1.m2m1x1 + m2x2 ' m1x1,
M = m1 + m2 ' m1m2,m1

Xcm = 1mx1 + mx22/2m = 1
21x1 + x22.

M = m1 + m2 = 2m,m1 = m2 = m.
Xcm

x2,x1

M = m1 + m2

Xcm =
m1x1 + m2x2

m1 + m2
=
m1x1 + m2x2

M

Xcm,x2,
m2x1,m1

m2m1

▲ FIGURE 9–9 Balancing a mobile
Consider a portion of a mobile with
masses and at the locations and

respectively. The object balances
when a string is attached at the center of
mass. Since the center of mass is closer to

than to it follows that is
greater than m2.

m1m2,m1

x2,
x1m2m1

The mobile balances
when suspended from
the center of mass (CM)

x
x1 Xcm

CM
m1 m2

x20
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▲ FIGURE 9–10 The center of mass of
two objects
The center of mass is closest to the larger
mass, or equidistant between the masses
if they are equal.

The center of mass
(CM) is closer to the
more massive object.

CM
m1 m2

CM
m1 m2

CM
m1 m2

▲ Mobiles like Myxomatose by Alexander
Calder illustrate the concept of center of
mass with artistic flair. Each arm of the
mobile is in balance because it is suspended
at its center of mass.
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E X E R C I S E  9 – 4
Suppose the masses in Figure 9–9 are separated by 0.500 m, and that and

What is the distance from to the center of mass of the system?

S O L U T I O N

Letting and in Figure 9–9, we have

Thus, the center of mass is closer to (the larger mass) than to m2.m1

Xcm =
m1x1 + m2x2

m1 + m2
=
10.260 kg2 # 0 + 10.170 kg210.500 m2

0.260 kg + 0.170 kg
= 0.198 m

x2 = 0.500 mx1 = 0

m1m2 = 0.170 kg.
m1 = 0.260 kg

▲ FIGURE 9–11 Locating the center
of mass
In an object of continuous, uniform mass
distribution, the center of mass is located
at the geometric center of the object. In
some cases, this means that the center of
mass is not located within the object.

The center of mass is at the geometric center
of a uniform object ...

... even if there is no mass at that location.

E X A M P L E  9 – 8 C E N T E R  O F  M A S S  O F  T H E  A R M

A person’s arm is held with the upper arm vertical, the lower arm and hand horizontal. (a) Find the
center of mass of the arm in this configuration, given the following data: The upper arm has a mass of
2.5 kg and a center of mass 0.18 m above the elbow; the lower arm has a mass of 1.6 kg and a center of
mass 0.12 m to the right of the elbow; the hand has a mass of 0.64 kg and a center of mass 0.40 m to the

right of the elbow. (b) A 0.14-kg baseball is placed on the palm of the hand. If the diameter of the ball is 7.4 cm, find the center of
mass of the arm–ball system.

P I C T U R E  T H E  P R O B L E M

We place the origin at the elbow, with the x and y axes pointing
along the lower and upper arms, respectively. The center of
mass of each of the three parts of the arm is indicated by an x;
the center of mass of the entire arm is at the point labeled CM.
The inset shows the baseball on the palm of the hand.

CONTINUED ON NEXT PAGE

x

y

0.18 m

0.12 m

0.40 m

1.6 kg

2.5 kg

0.64 kg

CM

x

0.074 m

0.14 kg

R E A L - W O R L D
P H Y S I C S :  B I O

To extend the definition of to more general situations, first consider a
system that contains many objects, not just two. In that case, is the sum of m
times x for each object, divided by the total mass of the system, M. If, in addition,
the objects in the system are not in a line, but are distributed in two dimensions, the
center of mass will have both an x coordinate, and a y coordinate, As
one would expect, is simply the sum of m times y for each object, divided by
M. Thus, the x coordinate of the center of mass is

X Coordinate of the Center of Mass

9–14

Similarly, the y coordinate of the center of mass is

Y Coordinate of the Center of Mass

9–15

In systems with a continuous, uniform distribution of mass, the center of mass
is at the geometric center of the object, as illustrated in Figure 9–11. Note that it is
common for the center of mass to be located in a position where no mass exists, as
in a life preserver, where the center of mass is precisely in the center of the hole.

Ycm =
m1y1 + m2y2 + Á

m1 + m2 + Á = a
my

M

Xcm =
m1x1 + m2x2 + Á

m1 + m2 + Á = a
mx

M

Ycm

Ycm.Xcm,

Xcm

Xcm



Motion of the Center of Mass
Another reason the center of mass is of such importance is that its motion often dis-
plays a remarkable simplicity when compared with the motion of other parts of a
system. To analyze this motion, we consider both the velocity and the acceleration
of the center of mass. Each of these quantities is defined in complete analogy with
the definition of the center of mass itself.

For example, to find the velocity of the center of mass, we first multiply the
mass of each object in a system, m, by its velocity, to give and so on.
Next, we add all these products together, and divide by the
total mass, The result, by definition, is the velocity of the
center of mass, 

Velocity of the Center of Mass

9–16

Comparing with Equation 9–14, we see that is the same as with each po-
sition x replaced with a velocity vector In addition, note that the total mass ofv

!
.

XcmV
!
cm

V
!
cm =

m1v
!
1 + m2v

!
2 + Á

m1 + m2 + Á = a
mv

!

M

V
!
cm:

M = m1 + m2 + Á .
m1v

!
1 + m2v

!
2 + Á ,

m1v
!
1, m2v

!
2,v

!
,
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S T R A T E G Y

a. Using the information given in the problem statement, we can treat the arm as a system of three point masses placed as fol-
lows: 2.5 kg at (0, 0.18 m); 1.6 kg at (0.12 m, 0); 0.64 kg at (0.40 m, 0). We substitute these masses and locations into Equa-
tions 9–14 and 9–15 to find the x and y coordinates of the center of mass, respectively.

b. Treat the center of mass found in part (a) as a point particle with a mass 2.5 kg � 1.6 kg � 0.64 kg � 4.7 kg at the location
(Xcm, Ycm). The baseball can be treated as a point particle of mass 0.14 kg at the location (0.40 m, (0.074)/2 m).

S O L U T I O N

Part (a)

1. Calculate the x coordinate of the center of mass:

2. Do the same calculation for the y coordinate of the
center of mass:

Part (b)

3. Calculate the new x coordinate of the center of mass:

4. Calculate the new y coordinate of the center of mass:

I N S I G H T

As is often the case, the center of mass of an arm held in this position is in a location where no mass exists—you might say the
center of mass is having an out-of-body experience. This effect can sometimes be put to good use, as when the center of mass of
a high jumper passes beneath the horizontal bar while the body passes above it. See Conceptual Question 18 for a photo of this
technique in action, in the famous “Fosbury flop.”

P R A C T I C E  P R O B L E M

Suppose the mass of the baseball is increased to 0.25 kg. (a) Does Xcm increase, decrease, or stay the same? (b) Does Ycm increase,
decrease, or stay the same? (c) Check your answers to parts (a) and (b) by finding the center of mass of the arm–ball system in
this case. [Answer: (a) increases; (b) decreases; (c) ]

Some related homework problems: Problem 51, Problem 53

Xcm = 0.11 m, Ycm = 0.092 m

= 0.093 m

Ycm =
(4.7 kg)(0.095 m) + (0.14 kg)(0.037 m)

4.7 kg + 0.14 kg

= 0.10 m

Xcm =
(4.7 kg)(0.095 m) + (0.14 kg)(0.40 m)

4.7 kg + 0.14 kg

= 0.095 m

Ycm =
(2.5 kg)(0.18 m) + (1.6 kg)(0) + (0.64 kg)(0)

2.5 kg + 1.6 kg + 0.64 kg

= 0.095 m

Xcm =
(2.5 kg)(0) + (1.6 kg)(0.12 m) + (0.64 kg)(0.40 m)

2.5 kg + 1.6 kg + 0.64 kg
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the system, M, times the velocity of the center of mass, is simply the total
momentum of the system:

To gain more information on how the center of mass moves, we next consider
its acceleration, As expected by analogy with the acceleration of the
center of mass is defined as follows:

Acceleration of the Center of Mass

9–17

Note that the vector contains terms like and so on, for each ob-
ject in the system. From Newton’s second law, however, we know that is 
simply the net force acting on mass 1. The same conclusion applies to each
of the masses. Therefore, we find that the total mass of the system, M, times the
acceleration of the center of mass, is simply the total force acting on the
system:

Recall, however, that the total force acting on a system is the same as the net exter-
nal force, since the internal forces cancel. Therefore, is the net exter-
nal force acting on the system:

Newton’s Second Law for a System of Particles

9–18

Zero Net External Force For systems in which is zero, it follows that the
acceleration of the center of mass is zero. Hence, if the center of mass is initially at
rest, it remains at rest. Similarly, if the center of mass is moving initially, it contin-
ues to move with the same velocity. For example, in a collision between two air-
track carts, the velocity of each cart changes as a result of the collision. The veloc-
ity of the center of mass of the two carts, however, is the same before and after the
collision. We explore cases in which in the following Example and
Active Example.

F
!
net,ext = 0

F
!
net,ext

MA
!
cm = F

!
net,ext

MA
!
cmF
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MA
!
cm = m1a
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2 + Á = F
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1 + F

!
2 + Á = F
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total

A
!
cm,

F
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1,

m1a
!
1

m1a
!
1, m2a

!
2,A

!
cm

A
!
cm =

m1a
!
1 + m2a

!
2 + Á

m1 + m2 + Á = a
ma

!

M

V
!
cm,A

!
cm.

MV
!
cm = m1v

!
1 + m2v

!
2 + Á = p

!
1 + p

!
2 + Á = p

!
total

V
!
cm,
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An air cart of mass m and speed moves toward a second,
identical air cart that is at rest. When the carts collide they stick
together and move as one. Find the velocity of the center of
mass of this system (a) before and (b) after the carts collide.

P I C T U R E  T H E  P R O B L E M

We choose the positive x direction to be the direction of motion
of the incoming cart, whose initial speed is Note that the
carts have wads of putty on their bumpers; this ensures that
they stick together when they collide and thereafter move as a
unit. Their final speed is 

CONTINUED ON NEXT PAGE

vf.

v0.

v0 v0

Before

v = 0

mm

vf

After mm

x



CONTINUED FROM PREVIOUS PAGE

S T R A T E G Y

a. We can find the velocity of the center of mass by applying Equation 9–16 to the case of just two masses; 
In this case, and 

b. After the collision the two masses have the same velocity, which is given by momentum conservation (Equa-
tions 9–10 and 9–11). Hence, 

S O L U T I O N

Part (a)

1. Use to find the velocity of the
center of mass before the collision:

Part (b)

2. Use momentum conservation in the x direction to find
the speed of the carts after the collision:

3. Calculate the velocity of the center of mass of the two carts
after the collision:

I N S I G H T

As expected, the velocity of each cart changes when they collide. On the other
hand, the velocity of the center of mass is completely unaffected by the colli-
sion. This is illustrated to the right, where we show a sequence of equal-time
snapshots of the system just before and just after the collision. First, we note
that the incoming cart moves two distance units for every time interval until
it collides with the second cart. From that point on, the two carts are locked
together, and move one distance unit per time interval. In contrast, the center
of mass (CM), which is centered between the two equal-mass carts, pro-
gresses uniformly throughout the sequence, advancing one unit of distance
for each time interval.

P R A C T I C E  P R O B L E M

If the mass of the cart that is moving initially is doubled to 2m, does the veloc-
ity of the center of mass increase, decrease, or stay the same? Verify your an-
swer by calculating the velocity of the center of mass in this case. [Answer:
The velocity of the center of mass increases. We find that both
before and after the collision.]

Some related homework problems: Problem 54, Problem 57, Problem 81

V
!
cm = 12v0/32xN ,

V
!
cm =

1m1v
!
1 + m2v

!
22
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=
1mvf xN + mvf xN 2
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= vf xN = 1
2 v0xN
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2v0

mv0 = mvf + mvf

V
!
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1m1v
!
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!
22

m1 + m2
=
1mv0xN + m # 02
m + m

= 1
2v0xNV
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!
22/M

V
!
cm = 1m1v

!
f + m2v

!
f2/M.

v
!
f = vfxN ,

m1 = m2 = m.v
!
1 = v0xN , v

!
2 = 0,(m1v

!
1 + m2v

!
22/M.

V
!
cm =

v0 v = 0

mm

CM

v0 v = 0

mm

CM

vf

mm

CM

vf

mm

CM

x

282 C H A P T E R  9 L I N E A R  M O M E N T U M  A N D  C O L L I S I O N S

A C T I V E  E X A M P L E  9 – 3 F I N D  T H E  V E L O C I T Y  O F  T H E  C E N T E R  O F  M A S S

In Active Example 9–2 we found that as a 0.150-g bee runs with a speed of 3.80 cm/s in one direction, the 4.75-g popsicle stick
on which it floats moves with a speed of 0.120 cm/s in the opposite direction. Find the velocity of the center of mass of the bee
and the stick.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Write the velocity of the bee:

2. Write the velocity of the stick:

3. Use these velocities to calculate V
!
cm = 1mbv

!
b + msv

!
s2/1mb + ms2 = 0V

!
cm:

v
!
s = 1-0.120 cm/s2xN

v
!
b = 13.80 cm/s2xN
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I N S I G H T

is zero, and hence the center of mass stays at rest as the bee and the stick move. This is as expected, since the net external
force is zero for this system, and the bee and stick started at rest initially.

Y O U R  T U R N

If the bee increases its speed, will the velocity of the center of mass be nonzero?

(Answers to Your Turn problems are given in the back of the book.)

V
!
cm

Nonzero Net External Force Recall that Newton’s second law, as expressed in
Equation 9–18, states that the acceleration of the center of mass is related to the net
external force as follows:

This is completely analogous to the relationship between the acceleration of an
object of mass m and the net force applied to it:

Therefore, when is nonzero, we can conclude the following:

The center of mass of a system accelerates precisely as if it were a
point particle of mass M acted on by the force 

For this reason, the motion of the center of mass can be quite simple compared
to the motion of its constituent parts. For example, a hammer tossed into the air
with a rotation is shown in Figure 9–12. The motion of one part of the hammer, the
tip of the handle, let’s say, follows a complicated path in space. On the other hand,
the path of the center of mass is a simple parabola, precisely the same path that a
point mass would follow.

Similarly, consider a fireworks rocket launched into the sky, as illustrated in
Figure 9–13. The center of mass of the rocket follows a parabolic path, ignoring air
resistance. At some point in its path it explodes into numerous individual
pieces. The explosion is due to internal forces, however, which must therefore
sum to zero. Hence, the net external force acting on the pieces of the rocket is the
same before, during, and after the explosion. As a result, the center of mass has
a constant downward acceleration and continues to follow the original para-
bolic path. It is only when an additional external force acts on the system, as
when one of the pieces of the rocket hits the ground, that the path of the center
of mass changes.

F
!
net,ext.

F
!
net,ext

ma
!
= F

!
net

F
!
net

MA
!
cm = F

!
net,ext

▲ FIGURE 9–12 Simple Motion of the Center of Mass
As this hammer flies through the air, its motion is quite complex. Some parts of the hammer
follow wild trajectories with strange loops and turns. There is one point on the hammer,
however, that travels on a smooth, simple parabolic path—the center of mass. The center of
mass (red path on the left) travels as if all the mass of the hammer were concentrated there;
other points (yellow path on the right) follow complex paths that depend on the detailed
shape and rotation of the hammer.

▲ FIGURE 9–13 Center of mass of an
exploding rocket
A fireworks rocket follows a parabolic
path, ignoring air resistance, until it
explodes. After exploding, its center of
mass continues on the same parabolic
path until some of the fragments start 
to land.

Path of
center of mass

R E A L - W O R L D  P H Y S I C S

An exploding rocket



To see how to apply consider the system shown in Figure 9–14.
Here we see a box of mass inside of which is a ball of mass suspended
from a light string. The entire system rests on a scale reading its weight. The
scale exerts an upward force on the box of magnitude Initially, of course,

Now, suppose the string breaks, allowing the ball to fall with constant acceler-
ation g toward the bottom of the box. What is the reading on the scale while the
ball falls? We can guess that the answer should be simply the weight of the
box alone, but let’s analyze the problem from the point of view of the center of
mass.

Taking upward as the positive direction, the net external force acting on the
box and the ball is

The acceleration of the center of mass is

Setting yields

Finally, canceling the term and solving for the weight read by the scale, 
we find, as expected, that

*9–8 Systems with Changing Mass: 
Rocket Propulsion

We close this chapter by considering systems in which the mass can change. A
rocket, for example, changes its mass as its engines operate because it ejects part
of the fuel as it burns. The burning process is produced by internal forces, hence
the total momentum of the rocket and its fuel remains constant.

Consider, then, a rocket in outer space, far from any large, massive objects.
When the rocket’s engine is fired, it expels a certain mass of fuel out the back with
a speed v. If the mass of the ejected fuel is then the momentum of the ejected
fuel has a magnitude equal to Since the total momentum of the system
must still be zero, the rocket acquires an equivalent amount of momentum in the
forward direction. Hence, the momentum increase of the rocket is

If the mass of fuel is ejected in the time the force exerted on the rocket is
the change in its momentum divided by the time interval (Equation 9–3); that is,

The force exerted on the rocket by the ejected fuel is referred to as the thrust.
Thus, the thrust of a rocket is

Thrust

9–19

SI unit: newton, N

thrust = a¢m
¢t
bv

F =
¢p
¢t

= a¢m
¢t
bv

¢t,¢m

¢p = 1¢m2v

1¢m2v.
¢m,

Fs = m1g

Fs,-m2g

MAcm = Ma -m2

M
bg = -m2g = Fnet,ext = Fs - m1g - m2g

MAcm = Fnet,ext

Acm =
m1 # 0 - m2g

M
= -
m2

M
g

Fnet,ext = Fs - m1g - m2g

m1g,

Fs = 1m1 + m22g.
Fs.

m2m1,
MA

!
cm = F

!
net,ext,When center of

mass is at rest ...

When center of
mass accelerates
downward ...

... scale has a smaller
reading.

... scale reads weight
of box and ball.

m2

a = gm1

▲ FIGURE 9–14 Weight and acceleration
of the center of mass
A box with a ball suspended from a
string is weighed on a scale. The scale
reads the weight of the box and the ball.
When the string breaks and the ball falls
with the acceleration of gravity, the scale
reads only the weight of the box.
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By we simply mean the amount of mass per time coming out of the
rocket. For example, on the Saturn V rocket, the one used on the manned missions
to the Moon, the main engines eject fuel at the rate of 13,800 kg/s with a speed of
2440 m/s. As a result, the thrust produced by these engines is

Since this is about 7.60 million pounds, and the weight of the rocket at liftoff is
only 6.30 million the thrust is sufficient to launch the
rocket and give it an upward acceleration. In fact, the initial net force acting on the
rocket is

The rocket’s initial weight is and hence its initial mass 
is Therefore, the rocket lifts off with an upward accel-
eration of

This is a rather gentle acceleration. The gentleness lasts only a matter of sec-
onds, however, since the decreasing mass of the rocket results in an increasing
acceleration.

E X E R C I S E  9 – 5
The ascent stage of the lunar lander was designed to produce 15,500 N of thrust at
liftoff. If the speed of the ejected fuel is 2500 m/s, what is the rate at which the fuel must
be burned?

S O L U T I O N

The rate of fuel consumption is

A common question regarding rockets is: “How can a rocket accelerate in
outer space when it has nothing to push against?” The answer is that rockets, in
effect, push against their own fuel. The situation is similar to firing a gun. When a
bullet is ejected by the internal combustion of the gunpowder, the person firing
the gun feels a recoil. If the person were in space, or standing on a frictionless sur-
face, the recoil would give him or her a speed in the direction opposite to the bul-
let. The burning of a rocket engine provides a continuous recoil, almost as if the
rocket were firing a steady stream of bullets out the back.

¢m
¢t

=
thrust
v

=
15,500 N
2500 m/s

= 6.2 kg/s

a =
Fnet

m
=

5.7 * 106 N
2.85 * 106 kg

= 2.0 m/s2 L 0.20g

m = W/g = 2.85 * 106 kg.
W = mg = 28.0 * 106 N,

Fnet = thrust - mg = 33.7 * 106 N - 28.0 * 106 N = 5.7 * 106 N

pounds = 28.0 * 106 N,

thrust = a¢m
¢t
bv = 113,800 kg/s212440 m/s2 = 33.7 * 106 N

¢m/¢t,

▲ A rocket (top) makes use of the princi-
ple of conservation of momentum: mass
(the products of explosive burning of fuel)
is ejected at high speed in one direction,
causing the rocket to move in the opposite
direction. The same method of propulsion
has evolved in octopi (bottom) and some
other animals. When danger threatens and
a quick escape is needed, powerful muscles
contract to create a jet of water that propels
the animal to safety.

R E A L - W O R L D  P H Y S I C S

Saturn V rocket



T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

We see in Section 9–1 that momentum is a vector quantity.
Thus, the vector tools introduced in Chapter 3 again become
important. In particular, we use vector components in our
analysis of momentum conservation in Sections 9–5 and 9–6.

The concept of momentum is used again in Chapter 11, when
we study the dynamics of rotational motion. In particular, we
introduce angular momentum in Section 11–6 as an extension
of the linear momentum introduced in this chapter.

The connection between force (Chapter 5) and momentum
is developed in Section 9–2. Newton’s second law is central
to impulse (Section 9–3), and Newton’s third law is the key
to conservation of momentum (Section 9–4).

Angular momentum is used in our analysis of planetary
orbits, and especially in the discussion of Kepler’s second
law in Section 12–3.

Kinetic energy (Chapter 7) plays a key role in analyzing
collisions, leading to the distinction between elastic and
inelastic collisions. Potential energy (Chapter 8) enters into
our analysis of the ballistic pendulum in Example 9–5.

In this chapter we see that force times the time over which
it acts is related to a change in energy; in Chapters 7 and 8
we saw that force times the distance over which it acts leads
to a change in energy.

The idea of angular momentum having only certain
allowed values is one of the key assumptions of the Bohr
model of the hydrogen atom, as we show in Section 31–3.

Linear momentum plays an important role in quantum
physics. For example, the momentum of a particle is related
to its de Broglie wavelength (Section 30–5) and to the
uncertainty principle (Section 30–6).

C H A P T E R  S U M M A RY

9 – 1 L I N E A R  M O M E N T U M

The linear momentum of an object of mass m moving with velocity is

9–1

Momentum Is a Vector
Linear momentum is a vector, pointing in the same direction as the velocity
vector, 

Momentum of a System of Objects
In a system of several objects, the total linear momentum is the vector sum of
the individual momenta:

9–2

9 – 2 M O M E N T U M  A N D  N E W T O N ’ S  S E C O N D  L AW

In terms of momentum, Newton’s second law is

9–3

That is, the net force acting on an object is equal to the rate of change of its
momentum.

Constant Mass
For cases in which the mass is constant, Newton’s second law reduces to the
familiar form

9–4

9 – 3 I M P U L S E

The impulse delivered to an object by an average force acting for a time is

9–5

Impulse Is a Vector
Impulse is a vector, proportional to the force vector.

Impulse and Momentum
By Newton’s second law, the impulse delivered to an object is equal to the
change in its momentum:

9–6I
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Magnitude of the Impulse and Force
Since an impulse is often delivered in a very short time interval, the average
force can be large.

9 – 4 C O N S E R VAT I O N  O F  L I N E A R  M O M E N T U M

The momentum of an object is conserved (remains constant) if the net force act-
ing on it is zero.

Internal/External Forces
In a system of objects, internal forces always sum to zero. The net force acting on
a system of objects, then, is the sum of the external forces.

Conservation of Momentum in a System
In a system of objects, the net momentum is conserved if the net external force
acting on the system is zero.

9 – 5 I N E L A ST I C  C O L L I S I O N S

In collisions, we assume that external forces either sum to zero or are small
enough to be ignored. Hence, momentum is conserved in all collisions.

Inelastic Collision
In an inelastic collision, the final kinetic energy is different from the initial
kinetic energy. The kinetic energy is usually less after a collision, but it can 
also be more than the initial kinetic energy.

Completely Inelastic Collision
A collision in which objects hit and stick together is referred to as completely
inelastic.

Collisions in One Dimension
A one-dimensional collision occurs along a line, which we can choose to be the
x axis. After the collision, the x component of momentum is equal to the x com-
ponent of momentum before the collision; that is, the x component of momen-
tum is conserved.

If two objects, of mass and and with initial velocities and collide
and stick, the final velocity is

9–10

Collisions in Two Dimensions
In a two-dimensional collision, there are two separate momentum relations to be
satisfied: (i) the x component of momentum is conserved, and (ii) the y compo-
nent of momentum is conserved.

9 – 6 E L A ST I C  C O L L I S I O N S

In collisions, we assume that external forces either sum to zero or are small
enough to be ignored. Hence, momentum is conserved in all collisions.

Elastic Collision
In an elastic collision, the final kinetic energy is equal to the initial kinetic energy.

Collisions in One Dimension
In an elastic collision in one dimension where mass is moving with an initial
velocity and mass is initially at rest, the velocities of the masses after the
collision are:

and 9–12

Collisions in Two Dimensions
In elastic collisions in two dimensions, three separate conditions are satisfied:
(i) kinetic energy is conserved, (ii) the x component of momentum is conserved,
and (iii) the y component of momentum is conserved.

v2,f = a 2m1

m1 + m2
bv0

v1,f = am1 - m2

m1 + m2
bv0

m2v0,
m1

vf =
m1v1,i + m2v2,i

m1 + m2

v2,i,v1,im2m1

F1 F2

x

y

v1

vf

v2

�
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The location of the center of mass of a two-dimensional system of objects is de-
fined as follows:

9–14

and

9–15

Motion of the Center of Mass
The velocity of the center of mass is

9–16

Note that If a system’s momentum is con-
served, its center of mass has constant velocity. Similarly, the acceleration of the
center of mass is

9–17

Note that (net external force). That is,

9–18

The center of mass accelerates as if the net external force acted on a single object
of mass 

* 9 – 8 SYST E M S  W I T H  C H A N G I N G  M A S S :  R O C K E T  P R O P U L S I O N

The mass of a rocket changes because its engines expel fuel when they are fired.
If fuel is expelled with the speed v and at the rate the thrust experi-
enced by the rocket is

9–19thrust = a¢m
¢t
bv

¢m/¢t,

M = m1 + m2 + Á .

MA
!
cm = F

!
net,ext

MA
!
cm = m1a

!
1 + m2a

!
2 + Á =

A
!
cm =

m1a
!
1 + m2a

!
2 + Á

m1 + m2 + Á = a
ma

!

M

MV
!
cm = m1v

!
1 + m2v

!
2 + Á = p

!
total.

V
!
cm =

m1v
!
1 + m2v

!
2 + Á

m1 + m2 + Á = a
mv

!

M

Ycm =
m1y1 + m2y2 + Á

m1 + m2 + Á = a
my

M

Xcm =
m1x1 + m2x2 + Á

m1 + m2 + Á = a
mx

M

CM

CM

CM
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Type of Calculation Relevant Physical Concepts Related Examples

Calculate the momentum of a system. Each object in a system has a momentum of magnitude mv
that points in the direction of its velocity vector. The total
momentum is the vector sum of the individual momenta.

Example 9–1

Relate force and time to the impulse. The impulse acting on a system is the average force, 
times the time interval, ¢t.

Fav,

Apply momentum conservation.

Example 9–2
Active Example 9–1

Momentum is conserved when the net external force acting
on a system is zero.

Examples 9–3, 9–4,
9–5, 9–6, 9–7
Active Example 9–2

Find the center of mass. The location of the center of mass is given by Equations 9–14
and 9–15.

Example 9–8

Determine the motion of the center 
of mass.

The center of mass moves the same as if it were a point par-
ticle of mass M (the total mass of the system) acted on by the
net external force, F

!
net,ext.

Example 9–9
Active Example 9–3
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1. If you drop your keys, their momentum increases as they fall. Why
is the momentum of the keys not conserved? Does this mean that
the momentum of the universe increases as the keys fall? Explain.

2. By what factor does an object’s kinetic energy change if its
speed is doubled? By what factor does its momentum change?

3. A system of particles is known to have zero kinetic energy.
What can you say about the momentum of the system?

4. A system of particles is known to have zero momentum. Does it
follow that the kinetic energy of the system is also zero? Explain.

5. On a calm day you connect an electric fan to a battery on your
sailboat and generate a breeze. Can the wind produced by the
fan be used to power the sailboat? Explain.

6. In the previous question, can you use the wind generated by
the fan to move a boat that has no sail? Explain why or why not.

7. Crash statistics show that it is safer to be riding in a heavy car
in an accident than in a light car. Explain in terms of physical
principles.

8. (a) As you approach a stoplight, you apply the brakes and bring
your car to rest. What happened to your car’s initial momen-
tum? (b) When the light turns green, you accelerate until you
reach cruising speed. What force was responsible for increasing
your car’s momentum?

9. An object at rest on a frictionless surface is struck by a second
object. Is it possible for both objects to be at rest after the colli-
sion? Explain.

10. In the previous question, is it possible for one of the two objects
to be at rest after the collision? Explain.

11. (a) Can two objects on a horizontal frictionless surface have a
collision in which all the initial kinetic energy of the system is
lost? Explain, and give a specific example if your answer is yes.
(b) Can two such objects have a collision in which all the initial
momentum of the system is lost? Explain, and give a specific
example if your answer is yes.

12. Two cars collide at an intersection. If the cars do not stick to-
gether, can we conclude that their collision was elastic? Explain.

13. At the instant a bullet is fired from a gun, the bullet and the gun
have equal and opposite momenta. Which object—the bullet or

the gun—has the greater kinetic energy? Explain. How does
your answer apply to the observation that it is safe to hold a
gun while it is fired, whereas the bullet is deadly?

14. An hourglass is turned over, and the sand is allowed to pour from
the upper half of the glass to the lower half. If the hourglass is rest-
ing on a scale, and the total mass of the hourglass and sand is M,
describe the reading on the scale as the sand runs to the bottom.

15. In the classic movie The Spirit of St. Louis, Jimmy Stewart por-
trays Charles Lindbergh on his history-making transatlantic
flight. Lindbergh is concerned about the weight of his fuel-
laden airplane. As he flies over Newfoundland he notices a fly
on the dashboard. Speaking to the fly, he wonders aloud, “Does
the plane weigh less if you fly inside it as it’s flying? Now that’s
an interesting question.” What do you think?

16. A tall, slender drinking glass with a thin base is initially empty.
(a) Where is the center of mass of the glass? (b) Suppose the
glass is now filled slowly with water until it is completely full.
Describe the position and motion of the center of mass during
the filling process.

17. Lifting one foot into the air, you balance on the other foot. What
can you say about the location of your center of mass?

18. In the “Fosbury flop” method of high jumping, named for the
track and field star Dick Fosbury, an athlete’s center of mass
may pass under the bar while the athlete’s body passes over the
bar. Explain how this is possible.

The “Fosbury flop.” (Conceptual Question 18)

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both concep-
tual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for two
responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used to
indicate the level of difficulty.

S E C T I O N  9 – 1    L I N E A R  M O M E N T U M

1. • Referring to Exercise 9–1, what speed must the baseball have
if its momentum is to be equal in magnitude to that of the car?
Give your result in miles per hour.

2. • Find the total momentum of the birds in Example 9–1 if the
goose reverses direction.

3. •• A 26.2-kg dog is running northward at 2.70 m/s, while a
5.30-kg cat is running eastward at 3.04 m/s. Their 74.0-kg
owner has the same momentum as the two pets taken together.
Find the direction and magnitude of the owner’s velocity.

4. •• IP Two air-track carts move toward one another on an air
track. Cart 1 has a mass of 0.35 kg and a speed of 1.2 m/s. 
Cart 2 has a mass of 0.61 kg. (a) What speed must cart 2 have if

the total momentum of the system is to be zero? (b) Since the
momentum of the system is zero, does it follow that the kinetic
energy of the system is also zero? (c) Verify your answer to part
(b) by calculating the system’s kinetic energy.

5. •• A 0.150-kg baseball is dropped from rest. If the magnitude of
the baseball’s momentum is just before it lands
on the ground, from what height was it dropped?

6. •• IP A 285-g ball falls vertically downward, hitting the floor
with a speed of 2.5 m/s and rebounding upward with a speed
of 2.0 m/s. (a) Find the magnitude of the change in the ball’s
momentum. (b) Find the change in the magnitude of the ball’s
momentum. (c) Which of the two quantities calculated in parts
(a) and (b) is more directly related to the net force acting on the
ball during its collision with the floor? Explain.

0.780 kg # m/s

For instructor-assigned homework, go to www.masteringphysics.com
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7. ••• Object 1 has a mass and a velocity .
Object 2 has a mass and a velocity . The
total momentum of these two objects has a magnitude of

and points in a direction 66.5° above the positive
x axis. Find and .

S E C T I O N  9 – 3    I M P U L S E

8. • CE Your car rolls slowly in a parking lot and bangs into the
metal base of a light pole. In terms of safety, is it better for your
collision with the light pole to be elastic, inelastic, or is the
safety risk the same for either case? Explain.

9. • CE Predict/Explain A net force of 200 N acts on a 100-kg
boulder, and a force of the same magnitude acts on a 100-g peb-
ble. (a) Is the change of the boulder’s momentum in one second
greater than, less than, or equal to the change of the pebble’s
momentum in the same time period? (b) Choose the best
explanation from among the following:

I. The large mass of the boulder gives it the greater momen-
tum.

II. The force causes a much greater speed in the 100-g pebble,
resulting in more momentum.

III. Equal force means equal change in momentum for a given
time.

10. • CE Predict/Explain Referring to the previous question, (a) is
the change in the boulder’s speed in one second greater than,
less than, or equal to the change in speed of the pebble in the
same time period? (b) Choose the best explanation from among
the following:

I. The large mass of the boulder results in a small acceleration.
II. The same force results in the same change in speed for a

given time.
III. Once the boulder gets moving it is harder to stop than the

pebble.

11. • CE Predict/Explain A friend tosses a ball of mass m to you
with a speed v. When you catch the ball, you feel a noticeable
sting in your hand, due to the force required to stop the ball.
(a) If you now catch a second ball, with a mass 2m and speed
v/2, is the sting you feel greater than, less than, or equal to the
sting you felt when you caught the first ball? The time re-
quired to stop the two balls is the same. (b) Choose the best
explanation from among the following:

I. The second ball has less kinetic energy, since kinetic energy
depends on v2, and hence it produces less sting.

II. The two balls have the same momentum, and hence they
produce the same sting.

III. The second ball has more mass, and hence it produces the
greater sting.

12. • CE Force A has a magnitude F and acts for the time , 
force B has a magnitude 2F and acts for the time , force C
has a magnitude 5F and acts for the time , and force D has
a magnitude 10F and acts for the time . Rank these forces
in order of increasing impulse. Indicate ties where appropriate.

13. • Find the magnitude of the impulse delivered to a soccer ball
when a player kicks it with a force of 1250 N. Assume that the
player’s foot is in contact with the ball for 

14. • In a typical golf swing, the club is in contact with the ball for
about 0.0010 s. If the 45-g ball acquires a speed of 67 m/s, esti-
mate the magnitude of the force exerted by the club on the ball.

15. • A 0.50-kg croquet ball is initially at rest on the grass. When the
ball is struck by a mallet, the average force exerted on it is 230 N.
If the ball’s speed after being struck is 3.2 m/s, how long was
the mallet in contact with the ball?

5.95 * 10-3 s.

¢t/100
¢t/10

¢t/3
¢t

m2m1

17.6 kg # m/s

v
!
2 = (3.10 m/s)yNm2

v
!
1 = (2.80 m/s)xNm1 16. • When spiking a volleyball, a player changes the velocity of the

ball from 4.2 m/s to along a certain direction. If the
impulse delivered to the ball by the player is ,
what is the mass of the volleyball?

17. •• IP A 15.0-g marble is dropped from rest onto the floor 1.44 m
below. (a) If the marble bounces straight upward to a height of
0.640 m, what are the magnitude and direction of the impulse de-
livered to the marble by the floor? (b) If the marble had bounced
to a greater height, would the impulse delivered to it have been
greater or less than the impulse found in part (a)? Explain.

18. •• To make a bounce pass, a player throws a 0.60-kg basketball
toward the floor. The ball hits the floor with a speed of 5.4 m/s
at an angle of 65° to the vertical. If the ball rebounds with the
same speed and angle, what was the impulse delivered to it by
the floor?

19. •• IP A 0.14-kg baseball moves toward home plate with a ve-
locity . After striking the bat, the ball moves
vertically upward with a velocity . (a) Find the
direction and magnitude of the impulse delivered to the ball by
the bat. Assume that the ball and bat are in contact for 1.5 ms.
(b) How would your answer to part (a) change if the mass of
the ball were doubled? (c) How would your answer to part (a)
change if the mass of the bat were doubled instead?

20. •• A player bounces a 0.43-kg soccer ball off her head, changing
the velocity of the ball from to

. If the ball is in contact with the
player’s head for 6.7 ms, what are (a) the direction and (b) the
magnitude of the impulse delivered to the ball?

S E C T I O N  9 – 4    C O N S E R VAT I O N  O F  L I N E A R
M O M E N T U M

21. • In a situation similar to Example 9–3, suppose the speeds of
the two canoes after they are pushed apart are 0.58 m/s for
canoe 1 and 0.42 m/s for canoe 2. If the mass of canoe 1 is 320 kg,
what is the mass of canoe 2?

22. • Two ice skaters stand at rest in the center of an ice rink. When
they push off against one another the 45-kg skater acquires a
speed of 0.62 m/s. If the speed of the other skater is 0.89 m/s,
what is this skater’s mass?

23. • Suppose the bee in Active Example 9–2 has a mass of 0.175 g.
If the bee walks with a speed of 1.41 cm/s relative to the still
water, what is the speed of the 4.75-g stick relative to the water?

24. •• An object initially at rest breaks into two pieces as the result
of an explosion. One piece has twice the kinetic energy of the
other piece. What is the ratio of the masses of the two pieces?
Which piece has the larger mass?

25. •• A 92-kg astronaut and a 1200-kg satellite are at rest relative to
the space shuttle. The astronaut pushes on the satellite, giving it a
speed of 0.14 m/s directly away from the shuttle. Seven and a half
seconds later the astronaut comes into contact with the shuttle.
What was the initial distance from the shuttle to the astronaut?

26. •• IP An 85-kg lumberjack stands at one end of a 380-kg floating
log, as shown in Figure 9–15. Both the log and the lumberjack are
at rest initially. (a) If the lumberjack now trots toward the other
end of the log with a speed of 2.7 m/s relative to the log, what is
the lumberjack’s speed relative to the shore? Ignore friction be-
tween the log and the water. (b) If the mass of the log had been
greater, would the lumberjack’s speed relative to the shore be
greater than, less than, or the same as in part (a)? Explain. (c)
Check your answer to part (b) by calculating the lumberjack’s
speed relative to the shore for the case of a 450-kg log.

v
!
f = (5.2 m/s)xN + (3.7 m/s)yN

v
!
i = (8.8 m/s)xN + (-2.3 m/s)yN

v
!
f = (18 m/s)yN

v
!
i = (-36 m/s)xN

-9.3 kg # m/s
-24 m/s
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27. ••• A plate drops onto a smooth floor and shatters into three
pieces of equal mass. Two of the pieces go off with equal speeds
v at right angles to one another. Find the speed and direction of
the third piece.

S E C T I O N  9 – 5    I N E L A ST I C  C O L L I S I O N S

28. • A cart of mass m moves with a speed v on a frictionless air
track and collides with an identical cart that is stationary. If the
two carts stick together after the collision, what is the final ki-
netic energy of the system?

29. • Suppose the car in Example 9–6 has an initial speed of 20.0 m/s
and that the direction of the wreckage after the collision is 40.0°
above the x axis. Find the initial speed of the minivan and the
final speed of the wreckage.

30. • Two 72.0-kg hockey players skating at 5.45 m/s collide and
stick together. If the angle between their initial directions was
115°, what is their speed after the collision?

31. •• IP (a) Referring to Exercise 9–2, is the final kinetic energy of
the car and truck together greater than, less than, or equal to the
sum of the initial kinetic energies of the car and truck sepa-
rately? Explain. (b) Verify your answer to part (a) by calculating
the initial and final kinetic energies of the system.

32. •• IP A bullet with a mass of 4.0 g and a speed of 650 m/s is
fired at a block of wood with a mass of 0.095 kg. The block rests
on a frictionless surface, and is thin enough that the bullet
passes completely through it. Immediately after the bullet exits
the block, the speed of the block is 23 m/s. (a) What is the
speed of the bullet when it exits the block? (b) Is the final ki-
netic energy of this system equal to, less than, or greater than
the initial kinetic energy? Explain. (c) Verify your answer to
part (b) by calculating the initial and final kinetic energies of
the system.

33. •• IP A 0.420-kg block of wood hangs from the ceiling by a
string, and a 0.0750-kg wad of putty is thrown straight upward,
striking the bottom of the block with a speed of 5.74 m/s. The
wad of putty sticks to the block. (a) Is the mechanical energy of
this system conserved? (b) How high does the putty–block sys-
tem rise above the original position of the block?

34. •• A 0.430-kg block is attached to a horizontal spring that is at
its equilibrium length, and whose force constant is 20.0 N/m.
The block rests on a frictionless surface. A 0.0500-kg wad of
putty is thrown horizontally at the block, hitting it with a speed
of 2.30 m/s and sticking. How far does the putty–block system
compress the spring?

35. ••• Two objects moving with a speed v travel in opposite direc-
tions in a straight line. The objects stick together when they col-
lide, and move with a speed of v/4 after the collision. (a) What
is the ratio of the final kinetic energy of the system to the initial
kinetic energy? (b) What is the ratio of the mass of the more
massive object to the mass of the less massive object?
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36. • The collision between a hammer and a nail can be considered
to be approximately elastic. Calculate the kinetic energy acquired
by a 12-g nail when it is struck by a 550-g hammer moving with
an initial speed of 4.5 m/s.

37. • A 732-kg car stopped at an intersection is rear-ended by a
1720-kg truck moving with a speed of 15.5 m/s. If the car was
in neutral and its brakes were off, so that the collision is ap-
proximately elastic, find the final speed of both vehicles after
the collision.

38. • CE Suppose you throw a rubber ball at an elephant that is
charging directly at you (not a good idea). When the ball
bounces back toward you, is its speed greater than, less than, or
equal to the speed with which you threw it? Explain.

39. •• IP A charging bull elephant with a mass of 5240 kg comes di-
rectly toward you with a speed of 4.55 m/s. You toss a 0.150-kg
rubber ball at the elephant with a speed of 7.81 m/s. (a) When the
ball bounces back toward you, what is its speed? (b) How do you
account for the fact that the ball’s kinetic energy has increased?

40. •• Moderating a Neutron In a nuclear reactor, neutrons re-
leased by nuclear fission must be slowed down before they can
trigger additional reactions in other nuclei. To see what sort of
material is most effective in slowing (or moderating) a neutron,
calculate the ratio of a neutron’s final kinetic energy to its ini-
tial kinetic energy, , for a head-on elastic collision with
each of the following stationary target particles. (Note: The
mass of a neutron is , where the atomic mass unit,
u, is defined as follows: .) (a) An electron

. (b) A proton . (c) The nu-
cleus of a lead atom .

41. •• In the apple-orange collision in Example 9–7, suppose the
final velocity of the orange is 1.03 m/s in the negative y direction.
What are the final speed and direction of the apple in this case?

42. •• The three air carts shown in Figure 9–16 have masses, reading
from left to right, of 4m, 2m, and m, respectively. The most mas-
sive cart has an initial speed of ; the other two carts are at rest
initially. All carts are equipped with spring bumpers that give
elastic collisions. (a) Find the final speed of each cart. (b) Verify
that the final kinetic energy of the system is equal to the initial
kinetic energy. (Assume the air track is long enough to accom-
modate all collisions.)

v0

(M = 207.2 u)
(M = 1.007 u)(M = 5.49 * 10-4 u)

1 u = 1.66 * 10-27 kg
m = 1.009 u

Kf/Ki

v = 2.7 m/s

▲ FIGURE 9–15 Problem 26

v0
v = 0

4m 2m

v = 0

m

▲ FIGURE 9–16 Problem 42

43. •• In this problem we show that when one ball is pulled to the
left in the photo on page 275, only a single ball recoils to the
right—under ideal elastic-collision conditions. To begin, suppose
that each ball has a mass m, and that the ball coming in from the
left strikes the other balls with a speed . Now, consider the hy-
pothetical case of two balls recoiling to the right. Determine the
speed the two recoiling balls must have in order to satisfy (a) mo-
mentum conservation and (b) energy conservation. Since these
speeds are not the same, it follows that momentum and energy
cannot be conserved simultaneously with a recoil of two balls.
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44. • CE Predict/Explain A stalactite in a cave has drops of water
falling from it to the cave floor below. The drops are equally

v0



x
O

L

L–
4

L–
2

▲ FIGURE 9–17 Problem 45

M/2 M/2

▲ FIGURE 9–18 Problem 48

spaced in time and come in rapid succession, so that at any
given moment there are many drops in midair. (a) Is the cen-
ter of mass of the midair drops higher than, lower than, or
equal to the halfway distance between the tip of the stalactite
and the cave floor? (b) Choose the best explanation from among
the following:

I. The drops bunch up as they near the floor of the cave.
II. The drops are equally spaced as they fall, since they are re-

leased at equal times.
III. Though equally spaced in time, the drops are closer to-

gether higher up.

45. • Find the x coordinate of the center of mass of the bricks
shown in Figure 9–17.

upward. (a) During the pencil’s fall, is the x component of the
contact force positive, negative, or zero? Explain. (b) Is the y
component of the contact force greater than, less than, or equal
to the weight of the pencil? Explain.

50. •• A cardboard box is in the shape of a cube with each side of
length L. If the top of the box is missing, where is the center of
mass of the open box? Give your answer relative to the geomet-
ric center of the box.

51. •• The location of the center of mass of the partially eaten,
12-inch-diameter pizza shown in Figure 9–19 is .
and . Assuming each quadrant of the pizza to be
the same, find the center of mass of the uneaten pizza above the
x axis (that is, the portion of the pizza in the second quadrant).

Ycm = -1.4 in
Xcm = -1.4 in

46. • You are holding a shopping basket at the grocery store with
two 0.56-kg cartons of cereal at the left end of the basket. The
basket is 0.71 m long. Where should you place a 1.8-kg half gal-
lon of milk, relative to the left end of the basket, so that the cen-
ter of mass of your groceries is at the center of the basket?

47. • Earth–Moon Center of Mass The Earth has a mass of
, the Moon has a mass of , and their

center-to-center distance is . How far from the cen-
ter of the Earth is the Earth–Moon center of mass? Is the
Earth–Moon center of mass above or below the surface of the
Earth? By what distance? (As the Earth and Moon orbit one an-
other, their centers orbit about their common center of mass.)

48. •• CE Predict/Explain A piece of sheet metal of mass M is cut
into the shape of a right triangle, as shown in Figure 9–18. A ver-
tical dashed line is drawn on the sheet at the point where the
mass to the left of the line (M/2) is equal to the mass to the right
of the line (also M/2). The sheet is now placed on a fulcrum just
under the dashed line and released from rest. (a) Does the metal
sheet remain level, tip to the left, or tip to the right? (b) Choose
the best explanation from among the following:

I. Equal mass on either side will keep the metal sheet level.
II. The metal sheet extends for a greater distance to the left,

which shifts the center of mass to the left of the dashed line.
III. The center of mass is to the right of the dashed line because

the metal sheet is thicker there.

3.85 * 108 m
7.35 * 1022 kg5.98 * 1024 kg

52. •• The Center of Mass of Sulfur Dioxide Sulfur dioxide
consists of two oxygen atoms (each of mass 16 u, where u

is defined in Problem 40) and a single sulfur atom (of mass 32 u).
The center-to-center distance between the sulfur atom and either
of the oxygen atoms is 0.143 nm, and the angle formed by the
three atoms is 120°, as shown in Figure 9–20. Find the x and y
coordinates of the center of mass of this molecule.

(SO2)
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x
O

y

r = 6.0 in.

▲ FIGURE 9–19
Problem 51

▲ FIGURE 9–20 Problem 52

Sulfur

0.143 nm0.143 nm

Oxygen Oxygen

120°

y

x

49. •• CE A pencil standing upright on its eraser end falls over and
lands on a table. As the pencil falls, its eraser does not slip. The
following questions refer to the contact force exerted on the
pencil by the table. Let the positive x direction be in the direc-
tion the pencil falls, and the positive y direction be vertically

53. •• IP Three uniform metersticks, each of mass m, are placed on
the floor as follows: stick 1 lies along the y axis from to

, stick 2 lies along the x axis from to ,
stick 3 lies along the x axis from to . (a) Find
the location of the center of mass of the metersticks. (b) How
would the location of the center of mass be affected if the mass
of the metersticks were doubled?

54. •• A 0.726-kg rope 2.00 meters long lies on a floor. You grasp
one end of the rope and begin lifting it upward with a constant
speed of 0.710 m/s. Find the position and velocity of the rope’s
center of mass from the time you begin lifting the rope to the
time the last piece of rope lifts off the floor. Plot your results.
(Assume the rope occupies negligible volume directly below
the point where it is being lifted.)

55. •• Repeat the previous problem, this time lowering the rope
onto a floor instead of lifting it.

56. •• Consider the system shown in Figure 9–21. Assume that after
the string breaks the ball falls through the liquid with constant
speed. If the mass of the bucket and the liquid is 1.20 kg, and the

x = 2.0 mx = 1.0 m
x = 1.0 mx = 0y = 1.0 m
y = 0
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mass of the ball is 0.150 kg, what is the reading on the scale
(a) before and (b) after the string breaks?

57. ••• A metal block of mass m is attached to the ceiling by a
spring. Connected to the bottom of this block is a string that sup-
ports a second block of the same mass m, as shown in Figure 9–22.
The string connecting the two blocks is now cut. (a) What is the
net force acting on the two-block system immediately after the
string is cut? (b) What is the acceleration of the center of mass of
the two-block system immediately after the string is cut?

60. • A 57.8-kg person holding two 0.880-kg bricks stands on a
2.10-kg skateboard. Initially, the skateboard and the person are
at rest. The person now throws the two bricks at the same time
so that their speed relative to the person is 17.0 m/s. What is
the recoil speed of the person and the skateboard relative to the
ground, assuming the skateboard moves without friction?

61. •• In the previous problem, calculate the final speed of the per-
son and the skateboard relative to the ground if the person
throws the bricks one at a time. Assume that each brick is
thrown with a speed of 17.0 m/s relative to the person.

62. •• A 0.540-kg bucket rests on a scale. Into this bucket you pour
sand at the constant rate of 56.0 g/s. If the sand lands in the
bucket with a speed of 3.20 m/s, (a) what is the reading of the
scale when there is 0.750 kg of sand in the bucket? (b) What is
the weight of the bucket and the 0.750 kg of sand?

63. •• IP Holding a long rope by its upper end, you lower it onto a
scale. The rope has a mass of 0.13 kg per meter of length, and is
lowered onto the scale at the constant rate of 1.4 m/s. (a) Calcu-
late the thrust exerted by the rope as it lands on the scale. (b) At
the instant when the amount of rope at rest on the scale has a
weight of 2.5 N, does the scale read 2.5 N, more than 2.5 N, or
less than 2.5 N? Explain. (c) Check your answer to part (b) by
calculating the reading on the scale at this time.

G E N E R A L  P R O B L E M S

64. • CE Object A has a mass m, object B has a mass 2m, and object
C has a mass m/2. Rank these objects in order of increasing
kinetic energy, given that they all have the same momentum.
Indicate ties where appropriate.

65. • CE Object A has a mass m, object B has a mass 4m, and object
C has a mass m/4. Rank these objects in order of increasing mo-
mentum, given that they all have the same kinetic energy. Indi-
cate ties where appropriate.

66. • CE Predict/Explain A block of wood is struck by a bullet.
(a) Is the block more likely to be knocked over if the bullet is
metal and embeds itself in the wood, or if the bullet is rubber
and bounces off the wood? (b) Choose the best explanation from
among the following:

I. The change in momentum when a bullet rebounds is larger
than when it is brought to rest.

II. The metal bullet does more damage to the block.
III. Since the rubber bullet bounces off, it has little effect.

67. • CE A juggler performs a series of tricks with three bowling
balls while standing on a bathroom scale. Is the average reading
of the scale greater than, less than, or equal to the weight of the
juggler plus the weight of the three balls? Explain.

68. • A 72.5-kg tourist climbs the stairs to the top of the Washington
Monument, which is 555 ft high. How far does the Earth move
in the opposite direction as the tourist climbs?

69. •• CE Predict/Explain Figure 9–23 shows a block of mass 2m at
rest on a horizontal, frictionless table. Attached to this block by a
string that passes over a pulley is a second block, with a mass m.

▲ FIGURE 9–22 Problem 57

m

m

?

v

▲ FIGURE 9–21 Problems 56 and 79
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58. • Helicopter Thrust During a rescue operation, a 5300-kg he-
licopter hovers above a fixed point. The helicopter blades send
air downward with a speed of 62 m/s. What mass of air must
pass through the blades every second to produce enough thrust
for the helicopter to hover?

▲ FIGURE 9–23 Problem 69

2m

i

f m

The powerful downdraft from this helicopter’s
blades creates a circular wave pattern in the water
below. The thrust resulting from this downdraft is
sufficient to support the weight of the helicopter.

(Problem 58)

59. • Rocks for a Rocket Engine A child sits in a wagon with a
pile of 0.65-kg rocks. If she can throw each rock with a speed of
11 m/s relative to the ground, causing the wagon to move, how
many rocks must she throw per minute to maintain a constant
average speed against a 3.4-N force of friction?



The initial position of the center of mass of the blocks is indi-
cated by the point i. The blocks are now released and allowed to
accelerate; a short time later their center of mass is at the point
f. (a) Did the center of mass follow the red path, the green path,
or the blue path? (b) Choose the best explanation from among the
following:

I. The center of mass must always be closer to the 2m block
than to the m block.

II. The center of mass starts at rest, and moves in a straight
line in the direction of the net force.

III. The masses are accelerating, which implies parabolic
motion.

70. •• A car moving with an initial speed v collides with a second
stationary car that is one-half as massive. After the collision the
first car moves in the same direction as before with a speed v/3.
(a) Find the final speed of the second car. (b) Is this collision
elastic or inelastic?

71. •• A 1.35-kg block of wood sits at the edge of a table, 0.782 m
above the floor. A 0.0105-kg bullet moving horizontally with a
speed of 715 m/s embeds itself within the block. What hori-
zontal distance does the block cover before hitting the
ground?

72. •• IP The carton of eggs shown in Figure 9–24 is filled with a
dozen eggs, each of mass m. Initially, the center of mass of the
eggs is at the center of the carton. (a) Does the location of the
center of mass of the eggs change more if egg 1 is removed or if
egg 2 is removed? Explain. (b) Find the center of mass of the eggs
when egg 1 is removed. (c) Find the center of mass of the eggs if
egg 2 is removed instead.

73. •• The Force of a Storm During a severe storm in Palm
Beach, FL, on January 2, 1999, 31 inches of rain fell in a period
of nine hours. Assuming that the raindrops hit the ground with
a speed of 10 m/s, estimate the average upward force exerted
by one square meter of ground to stop the falling raindrops
during the storm. (Note: One cubic meter of water has a mass of
1000 kg.)

74. •• An apple that weighs 2.7 N falls vertically downward from
rest for 1.4 s. (a) What is the change in the apple’s momentum
per second? (b) What is the total change in its momentum dur-
ing the 1.4-second fall?

75. •• To balance a 35.5-kg automobile tire and wheel, a mechanic
must place a 50.2-g lead weight 25.0 cm from the center of the
wheel. When the wheel is balanced, its center of mass is exactly
at the center of the wheel. How far from the center of the wheel
was its center of mass before the lead weight was added?

76. •• A hoop of mass M and radius R rests on a smooth, level sur-
face. The inside of the hoop has ridges on either side, so that it
forms a track on which a ball can roll, as indicated in Figure 9–25.
If a ball of mass 2M and radius is released as shown,
the system rocks back and forth until it comes to rest with the
ball at the bottom of the hoop. When the ball comes to rest,
what is the x coordinate of its center?

r = R/4

6.0 cm

7.0 cm

1 2

x

y

▲ FIGURE 9–24 Problem 72

77. •• IP A 63-kg canoeist stands in the middle of her 22-kg canoe.
The canoe is 3.0 m long, and the end that is closest to land is 
2.5 m from the shore. The canoeist now walks toward the shore
until she comes to the end of the canoe. (a) When the canoeist
stops at the end of her canoe, is her distance from the shore
equal to, greater than, or less than 2.5 m? Explain. (b) Verify
your answer to part (a) by calculating the distance from the ca-
noeist to shore.

78. •• In the previous problem, suppose the canoeist is 3.4 m from
shore when she reaches the end of her canoe. What is the
canoe’s mass?

79. •• Referring to Problem 56, find the reading on the scale (a) be-
fore and (b) after the string breaks, assuming the ball falls
through the liquid with an acceleration equal to 0.250g.

80. •• A young hockey player stands at rest on the ice holding a
1.3-kg helmet. The player tosses the helmet with a speed of
6.5 m/s in a direction 11° above the horizontal, and recoils with
a speed of 0.25 m/s. Find the mass of the hockey player.

81. •• Suppose the air carts in Example 9–9 are both moving to the
right initially. The cart to the left has a mass m and an initial
speed ; the cart to the right has an initial speed . If the
center of mass of this system moves to the right with a speed

, what is the mass of the cart on the right?

82. •• A long, uniform rope with a mass of 0.135 kg per meter lies
on the ground. You grab one end of the rope and lift it at the
constant rate of 1.13 m/s. Calculate the upward force you must
exert at the moment when the top end of the rope is 0.525 m
above the ground.

83. •• The Center of Mass of Water Find the center of mass of a
water molecule, referring to Figure 9–26 for the relevant angles
and distances. The mass of a hydrogen atom is 1.0 u, and the
mass of an oxygen atom is 16 u, where u is the atomic mass unit
(see Problem 40). Use the center of the oxygen atom as the ori-
gin of your coordinate system.

2v0/3

v0/2v0
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r = R/4

R
r

x
x = 0

x
x = ?

▲ FIGURE 9–25 Problem 76

▲ FIGURE 9–26 Problem 83

d = 0.096 nm

y

x104.5°

Hydrogen

Hydrogen

Oxygen

d

d

84. •• The three air carts shown in Figure 9–27 have masses, read-
ing from left to right, of m, 2m, and 4m, respectively. Initially, the
cart on the right is at rest, whereas the other two carts are mov-
ing to the right with a speed . All carts are equipped with
putty bumpers that give completely inelastic collisions. (a) Find

v0
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v0 v0

4m2m

v = 0

m

▲ FIGURE 9–27 Problem 84

88. ••• Consider a one-dimensional, head-on elastic collision. One
object has a mass and an initial velocity ; the other has a
mass and an initial velocity . Use momentum conservation
and energy conservation to show that the final velocities of the
two masses are

89. ••• Two air carts of mass and are
placed on a frictionless track. Cart 1 is at rest initially, and has a
spring bumper with a force constant of 690 N/m. Cart 2 has a
flat metal surface for a bumper, and moves toward the bumper of
the stationary cart with an initial speed . (a) What is
the speed of the two carts at the moment when their speeds are
equal? (b) How much energy is stored in the spring bumper
when the carts have the same speed? (c) What is the final speed
of the carts after the collision?

v = 0.68 m/s

m2 = 0.42 kgm1 = 0.84 kg

v2,f = a 2m1

m1 + m2
bv1 + am2 - m1

m1 + m2
bv2

v1,f = am1 - m2

m1 + m2
bv1 + a 2m2

m1 + m2
bv2

v2m2

v1m1

the final speed of the carts. (b) Calculate the ratio of the final ki-
netic energy of the system to the initial kinetic energy.

85. •• IP A fireworks rocket is launched vertically into the night
sky with an initial speed of 44.2 m/s. The rocket coasts after
being launched, then explodes and breaks into two pieces of
equal mass 2.50 s later. (a) If each piece follows a trajectory that
is initially at 45.0° to the vertical, what was their speed immedi-
ately after the explosion? (b) What is the velocity of the rocket’s
center of mass before and after the explosion? (c) What is the ac-
celeration of the rocket’s center of mass before and after the ex-
plosion?

86. •• IP The total momentum of two cars approaching an
intersection is .
(a) If the momentum of car 1 is 

, what is the momentum of car 2? (b) Does
your answer to part (a) depend on which car is closer to the in-
tersection? Explain.

87. •• Unlimited Overhang Four identical textbooks, each of
length L, are stacked near the edge of a table, as shown in
Figure 9–28. The books are stacked in such a way that the dis-
tance they overhang the edge of the table, d, is maximized.
Find the maximum overhang distance d in terms of L. In par-
ticular, show that ; that is, the top book is completely to
the right of the table edge. (In principle, the overhang distance
d can be made as large as desired simply by increasing the
number of books in the stack.)

d 7 L

(-370 kg # m/s)yN
p
!
1 = (11,000 kg # m/s)xN +

p
!
total = (15,000 kg # m/s)xN + (2100 kg # m/s)yN

90. ••• Golden Earrings and the Golden Ratio A popular ear-
ring design features a circular piece of gold of diameter D with a
circular cutout of diameter d, as shown in Figure 9–29. If this ear-
ring is to balance at the point P, show that the diameters must sat-
isfy the condition , where 
is the famous “golden ratio.”

f = (1 + 25)/2 = 1.61803 ÁD = fd

d

L

▲ FIGURE 9–28 Problem 87

D

d

P

▲ FIGURE 9–29 Problem 90

▲ FIGURE 9–30
Problem 95

m2

m1

a

�

91. ••• Two objects with masses and and initial velocities
and move along a straight line and collide elastically. As-

suming that the objects move along the same straight line after
the collision, show that their relative velocities are unchanged;
that is, show that . (You can use the re-
sults given in Problem 88.)

92. ••• Amplified Rebound Height Two small rubber balls are
dropped from rest at a height h above a hard floor. When the
balls are released, the lighter ball (with mass m) is directly above
the heavier ball (with mass M). Assume the heavier ball reaches
the floor first and bounces elastically; thus, when the balls col-
lide, the ball of mass M is moving upward with a speed v and
the ball of mass m is moving downward with essentially the
same speed. In terms of h, find the height to which the ball of
mass m rises after the collision. (Use the results given in Problem
88, and assume the balls collide at ground level.)

93. ••• On a cold winter morning, a child sits on a sled resting on
smooth ice. When the 9.75-kg sled is pulled with a horizontal
force of 40.0 N, it begins to move with an acceleration of

. The 21.0-kg child accelerates too, but with a smaller
acceleration than that of the sled. Thus, the child moves forward
relative to the ice, but slides backward relative to the sled. Find
the acceleration of the child relative to the ice.

94. ••• An object of mass m undergoes an elastic collision with an
identical object that is at rest. The collision is not head-on. Show
that the angle between the velocities of the two objects after the
collision is 90°.

95. ••• IP Weighing a Block on an Incline A wedge of mass is
firmly attached to the top of a scale, as shown in Figure 9–30. The
inclined surface of the wedge makes an angle with the horizon-
tal. Now, a block of mass is placed on the inclined surface of the
wedge and allowed to accelerate without friction down the slope.
(a) Show that the reading on the scale while the block slides is

(m1 + m2 cos2 u)g

m2

u

m1

2.32 m/s2

v1,i - v2,i = v2,f - v1,f

v2,iv1,i

m2m1



(b) Explain why the reading on the scale is less than .
(c) Show that the expression in part (a) gives the expected re-
sults for and .

96. ••• IP A uniform rope of length L and mass M rests on a table.
(a) If you lift one end of the rope upward with a constant speed,
v, show that the rope’s center of mass moves upward with con-
stant acceleration. (b) Next, suppose you hold the rope sus-
pended in air, with its lower end just touching the table. If you
now lower the rope with a constant speed, v, onto the table, is
the acceleration of the rope’s center of mass upward or down-
ward? Explain your answer. (c) Find the magnitude and direc-
tion of the acceleration of the rope’s center of mass for the case
described in part (b). Compare with part (a).

PA S S A G E  P R O B L E M S

Navigating in Space: The Gravitational Slingshot
Many spacecraft navigate through space these days by using
the “gravitational slingshot” effect, in which a close encounter
with a planet results in a significant increase in magnitude and
change in direction of the spacecraft’s velocity. In fact, a space-
craft can attain a much greater speed with such a maneuver
than it could produce with its own rockets.

The first use of this effect was on February 5, 1974, as the
Mariner 10 probe—the first spacecraft to explore Mercury—
made a close flyby of the planet Venus on the way to its final
destination. More recently, the Cassini probe to Saturn, which
was launched on October 15, 1997, and arrived at Saturn on
July 1, 2004, made two close passes by Venus, followed by a
flyby of Earth and a flyby of Jupiter.

A simplified version of the slingshot maneuver is illustrated
in Figure 9–31, where we see a spacecraft moving to the left with
an initial speed , a planet moving to the right with a speed u,
and the same spacecraft moving to the right with a final speed

after the encounter. The interaction can be thought of as an
elastic collision in one dimension—as if the planet and space-
craft were two air carts on an air track. Both energy and
momentum are conserved in this interaction, and hence the

vf

vi

u = 90°u = 0

(m1 + m2)g following simple condition is satisfied (see Problem 91): The
relative speed of approach is equal to the relative speed of de-
parture. This condition, plus the fact that the speed of the mas-
sive planet is essentially unchanged, can be used to determine
the final speed of the spacecraft.

97. • From the perspective of an observer on the planet, what is the
spacecraft’s speed of approach?

A. vi � u B. vi � u

C. u � vi D. vf � u

98. • From the perspective of an observer on the planet, what is the
spacecraft’s speed of departure?

A. vf � u B. vf � u

C. u � vf D. vi � u

99. •• Set the speed of departure from Problem 98 equal to the
speed of approach from Problem 97. Solving this relation for
the final speed, vf, yields:

A. vf � vi � u B. vf � vi � u

C. vf � vi � 2u D. vf � vi � 2u

100. •• Consider the special case in which vi � u. By what factor
does the kinetic energy of the spacecraft increase as a result of
the encounter?

A. 4 B. 8

C. 9 D. 16

I N T E R A C T I V E  P R O B L E M S

101. •• Referring to Example 9–5 Suppose a bullet of mass
is fired into a ballistic pendulum whose bob has a

mass of . (a) If the bob rises to a height of 
0.128 m, what was the initial speed of the bullet? (b) What was
the speed of the bullet–bob combination immediately after the
collision takes place?

102. •• Referring to Example 9–5 A bullet with a mass
and an initial speed is fired into a bal-

listic pendulum. What mass must the bob have if the bullet–bob
combination is to rise to a maximum height of 0.125 m after the
collision?

103. •• Referring to Example 9–9 Suppose that cart 1 has a mass of
3.00 kg and an initial speed of 0.250 m/s. Cart 2 has a mass of 1.00
kg and is at rest initially. (a) What is the final speed of the carts?
(b) How much kinetic energy is lost as a result of the collision?

104. •• Referring to Example 9–9 Suppose the two carts have
equal masses and are both moving to the right before the colli-
sion. The initial speed of cart 1 (on the left) is and the initial
speed of cart 2 (on the right) is . (a) What is the speed of the
center of mass of this system? (b) What percentage of the initial
kinetic energy is lost as a result of the collision? (c) Suppose the
collision is elastic. What are the final speeds of the two carts in
this case?

v0/2
v0

v0 = 320 m/sm = 8.10 g

M = 0.675 kg
m = 6.75 g
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vi

u

vf

▲ FIGURE 9–31 Problems 97, 98, 99, and 100




