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The concept of force is one of
the foundations of physics, as
we have seen in the previous

two chapters. Equally fundamental,
though less obvious, is the idea that a
force times the displacement through
which it acts is also an important physical
quantity. We refer to this quantity as the
work done by a force.

Now, we all know what work means
in everyday life: We get up in the
morning and go to work, or we “work up
a sweat” as we hike a mountain trail. Later

in the day we eat lunch, which gives us
the “energy” to continue working or to
continue our hike. In this chapter we
give a precise physical definition of work,
and show how it is related to another
important physical quantity—the energy
of motion, or kinetic energy. When these
concepts are extended in the next
chapter, we are led to the rather
sweeping observation that the total
amount of energy in the universe remains
constant at all times.
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Work and Kinetic Energy

We all know intuitively that motion, energy, and work are somehow related. 
For example, the chemical energy stored in this pitcher’s muscles enables him 
to do work on a baseball. This means, basically, that he exerts a force on it over 
a distance. The work done on the ball appears as kinetic energy—the energy of
motion—and when the ball is caught, its kinetic energy can in turn do work on
the catcher. In this chapter we’ll give precise definitions of the concepts of work,
kinetic energy, and power, and explore the physical relationships among them.
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7–1 Work Done by a Constant Force
In this section we define work—in the physics sense of the word—and apply our
definition to a variety of physical situations. We start with the simplest case;
namely, the work done when force and displacement are in the same direction.
Later in the section we generalize our definition to include cases where the force
and displacement are in arbitrary directions. We conclude with a discussion of the
work done on an object when it is acted on by more than one force.

Force in the Direction of Displacement
When we push a shopping cart in a store or pull a suitcase through an airport, we
do work. The greater the force, the greater the work; the greater the distance, the
greater the work. These simple ideas form the basis for our definition of work.

To be specific, suppose we push a box with a constant force as shown in
Figure 7–1. If we move the box in the direction of through a displacement the
work W we have done is Fd:

Definition of Work, W, When a Constant Force Is in the Direction of Displacement

7–1

SI unit: newton-meter 1N # m2 = joule, J

W = Fd

d
!
,F

! F
!
,

A constant force of
magnitude F, ...

... acting in the direction of a
displacement of magnitude d, ...

... does work W = Fd
on the object.

F F

d

FIGURE 7–1 Work: constant force in the
direction of motion
A constant force pushes a box through
a displacement In this special case,
where the force and displacement are in
the same direction, the work done on the
box by the force is W = Fd.

d
!
.
F
!

▲

Note that work is the product of two magnitudes, and hence it is a scalar. In addi-
tion, notice that a small force acting over a large distance gives the same work as
a large force acting over a small distance. For example, 

The dimensions of work are newtons (force) times meters (distance), or 
This combination of dimensions is called the joule (rhymes with “school,” as
commonly pronounced) in honor of James Prescott Joule (1818–1889), a dedicated
physicist who is said to have conducted physics experiments even while on his
honeymoon. We define a joule as follows:

Definition of the Joule, J

7–2

To get a better feeling for work and the associated units, suppose you exert a
force of 82.0 N on the box in Figure 7–1 and move it in the direction of the force
through a distance of 3.00 m. The work you have done is

Similarly, if you do 5.00 J of work to lift a book through a vertical distance of 0.750 m,
the force you exerted on the book is

F =
W
d

=
5.00 J

0.750 m
=

5.00 N # m
0.750 m

= 6.67 N

W = Fd = 182.0 N213.00 m2 = 246 N # m = 246 J

1 joule = 1 J = 1 N # m = 11kg # m/s22 # m = 1 kg # m2/s2

N # m.
1400 N211 m2.

W = 11 N21400 m2 =
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E X E R C I S E  7 – 1
One species of Darwin’s finch, Geospiza magnirostris, can exert a force of 205 N with its
beak as it cracks open a Tribulus seed case. If its beak moves through a distance of 0.40 cm
during this operation, how much work does the finch do to get the seed?

S O L U T I O N

Just how much work is a joule, anyway? Well, you do one joule of work when
you lift a gallon of milk through a height of about an inch, or lift an apple a meter.
One joule of work lights a 100-watt lightbulb for 0.01 seconds or heats a glass of
water 0.00125 degrees Celsius. Clearly, a joule is a modest amount of work in
everyday terms. Additional examples of work are listed in Table 7–1.

W = Fd = 1205 N210.0040 m2 = 0.82 J

TABLE 7–1 Typical Values of Work

Equivalent
Activity work (J)

Annual U.S. energy use
Mt. St. Helens eruption
Burning one gallon of gas
Human food intake/day
Melting an ice cube
Lighting a 100-W bulb 
for 1 minute 6000

Heartbeat 0.5
Turning page of a book
Hop of a flea
Breaking a bond in DNA 10-20

10-7
10-3

104
107
108

1018
8 * 1019

E X A M P L E  7 – 1 H E A D I N G  F O R  T H E  E R

An intern pushes a 72-kg patient on a 15-kg gurney, producing an acceleration of . (a) How much work does the intern
do by pushing the patient and gurney through a distance of 2.5 m? Assume the gurney moves without friction. (b) How far must
the intern push the gurney to do 140 J of work?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the physical situation for this problem. Note
that the force exerted by the intern is in the same direction 
as the displacement of the gurney; therefore, we know that

.

S T R A T E G Y

We are not given the magnitude of the force F, so we cannot
apply Equation 7–1 directly. However, we are given the mass
and acceleration of the patient and gurney, from which we can
calculate the force with . The work done by the intern
is then .

S O L U T I O N

Part (a)

1. First, find the force F exerted by the intern: 

2. The work done by the intern, W, is the force 
times the distance:

Part (b)

3. Use W � Fd to solve for the distance d: therefore d

I N S I G H T

You might wonder whether the work done by the intern depends on the speed of the gurney. The answer is no. The work done
on an object, doesn’t depend on whether the object moves through the distance d quickly or slowly. What does depend
on the speed of the gurney is the rate at which work is done, as we discuss in detail in Section 7–4.

P R A C T I C E  P R O B L E M

If the total mass of the gurney plus patient is halved and the acceleration is doubled, does the work done by the intern increase,
decrease, or remain the same? [Answer: The work remains the same.]

Some related homework problems: Problem 4, Problem 5

W = Fd,

=
W
F

=
140 J
52 N

= 2.7 mW = Fd

W = Fd = 152 N212.5 m2 = 130 J

F = ma = 172 kg + 15 kg210.60 m/s22 = 52 N

W = Fd
F = ma

W = Fd

0.60 m/s2

F

d = 2.5 m

a = 0.60 m/s2

Before moving on, let’s note an interesting point about our definition of work.
It’s clear from Equation 7–1 that the work W is zero if the distance d is zero—and this
is true regardless of how great the force might be. For example, if you push
against a solid wall you do no work on it, even though you may become tired
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from your efforts. Similarly, if you stand in one place holding a 50-pound suitcase
in your hand, you do no work on the suitcase. The fact that we become tired when
we push against a wall or hold a heavy object is due to the repeated contraction
and expansion of individual cells within our muscles. Thus, even when we are “at
rest,” our muscles are doing mechanical work on the microscopic level.

The weightlifter at left does more work
in raising 150 kilograms above her head
than Atlas, who is supporting the entire
world. Why?

▲

F cos

F
�

� F cos

F
�

�

d

The component of force in the direction of displacement is F cos   .
This is the only component of the force that does work.

�

The work in this case is W = (F cos   )d.�

FIGURE 7–2 Work: force at an angle to
the direction of motion
A person pulls a suitcase with a strap at
an angle to the direction of motion. The
component of force in the direction of
motion is and the work done by
the person is W = 1F cos u2d.

F cos u,

u

▲

Force at an Angle to the Displacement
In Figure 7–2 we see a person pulling a suitcase on a level surface with a strap that
makes an angle with the horizontal—in this case the force is at an angle to the
direction of motion. How do we calculate the work now? Well, instead of force
times distance, we say that work is the component of force in the direction of dis-
placement times the magnitude of the displacement. In Figure 7–2, the compo-
nent of force in the direction of the displacement is and the magnitude of
the displacement is d. Therefore, the work is times d:

Definition of Work When the Angle Between a Constant Force and the Displacement Is 

7–3

SI unit: joule, J

Of course, in the case where the force is in the direction of motion, the angle is
zero; then in agreement with Equation 7–1.

Equally interesting is a situation in which the force and the displacement are
at right angles to one another. In this case and the work done by the force
F is zero; 

This result leads naturally to an alternative way to think about the expression
In Figure 7–3 we show the displacement and the force for the suitcase

in Figure 7–2. Notice that the displacement is equivalent to a displacement in the
W = Fd cos u.

W = Fd cos 90° = 0.
u = 90°

W = Fd cos u° = Fd # 1 = Fd,
u

W = 1F cos u2d = Fd cos u

U

F cos u
F cos u

u

˚



194 C H A P T E R  7 W O R K  A N D  K I N E T I C  E N E R G Y

direction of the force of magnitude plus a displacement at right angles to
the force of magnitude Since the displacement at right angles to the force
corresponds to zero work and the displacement in the direction of the force corre-
sponds to a work it follows that the work done in this case is

as given in Equation 7–3. Thus, the work done by a force can be thought
of in the following two equivalent ways:

(i) Work is the component of force in the direction of the displacement times the mag-
nitude of the displacement.

(ii) Work is the component of displacement in the direction of the force times the mag-
nitude of the force.

In either of these interpretations, the mathematical expression for work is exactly
the same, where is the angle between the force vector and the dis-
placement vector when they are placed tail-to-tail. This definition of is illus-
trated in Figure 7–3.

Finally, we can also express work as the dot product between the vectors 
and that is, Note that the dot product, which is always a
scalar, is simply the magnitude of one vector times the magnitude of the second
vector times the cosine of the angle between them. We discuss the dot product in
greater detail in Appendix A.

W = F
! # d

!
= Fd cos u.d

!
;

F
!

u

uW = Fd cos u,

Fd cos u,
W = F1d cos u2,
1d sin u2.

1d cos u2
F

�

d cos � d sin �

d

▲ FIGURE 7–3 Force at an angle to 
direction of motion: another look
The displacement of the suitcase in 
Figure 7–2 is equivalent to a displacement
of magnitude in the direction of 
the force , plus a displacement of mag-
nitude perpendicular to the force.
Only the displacement parallel to the
force results in nonzero work, hence the
total work done is as expected.F1d cos u2

d sin u
F
! d cos u

E X A M P L E  7 – 2 G R A V I T Y  E S C A P E  S Y S T E M

In a gravity escape system (GES), an enclosed lifeboat on a large ship is deployed by letting it slide
down a ramp and then continuing in free fall to the water below. Suppose a 4970-kg lifeboat slides a dis-

tance of 5.00 m on a ramp, dropping through a vertical height of 2.50 m. How much work does gravity do on the boat?

P I C T U R E  T H E  P R O B L E M

From our sketch, we see that the force of gravity and the displacement are at
an angle relative to one another when placed tail-to-tail, and that is also the
angle the ramp makes with the vertical. In addition, we note that the vertical height
of the ramp is and the length of the ramp is 

S T R A T E G Y

By definition, the work done on the lifeboat by gravity is where
and is the angle between and We are not given in

the problem statement, but from the right triangle that forms the ramp we see that
Once is determined from the geometry of our sketch, it is straightfor-

ward to calculate W.

S O L U T I O N

1. First, find the component of in the direction 
of motion: 

2. Multiply by distance to find the work: 

3. Alternatively, cancel d algebraically before 
substituting numerical values: 

I N S I G H T

The work is simply , exactly the same as if the lifeboat had fallen straight down through the height h.

Notice that working the problem symbolically, as in Step 3, results in two distinct advantages. First, it makes for a simpler ex-
pression for the work. Second, and more importantly, it shows that the distance d cancels; hence the work depends on the height
h but not on d. Such a result is not apparent when we work solely with numbers, as in Steps 1 and 2.

P R A C T I C E  P R O B L E M

Suppose the lifeboat slides halfway to the water, gets stuck for a moment, and then starts up again and continues to the end of
the ramp. What is the work done by gravity in this case? [Answer: The work done by gravity is exactly the same, 
independent of how the boat moves down the ramp.]

Some related homework problems: Problem 11, Problem 12

W = mgh,

W = mgh

= mgh = (4970 kg)(9.81 m / s2)(2.50 m) = 122,000 J

W = Fd cos u = (mg)(d)ah
d
b

W = 1F cos u2d = 124,400 N215.00 m2 = 122,000 J

= (4970 kg)(9.81 m / s2)a2.50 m
5.00 m

b = 24,400 N

 F cos u = 1mg2ah
d
bF

!
= mg

!

ucos u = h/d.

ud
!
.mg

!
uF = mg, d = 5.00 m,

W = Fd cos u,

d = 5.00 m.h = 2.50 m

uu

d
!

mg
!

h = 2.50 m
d

d

mg

mg

�

�

�

R E A L - W O R L D
P H Y S I C S
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Next, we present a Conceptual Checkpoint that compares the work required
to move an object along two different paths.

L

W1

h

F1

mg

φ

W2

L

F2

mg
φ

φ

mg sinφ

mg cos φ h

� d

F
� d

F �

d
F

< 90°–90° < � < 270°90° < �= ± 90°�

(a) Positive work (b) Zero work (c) Negative work

FIGURE 7–4 Positive, negative, and 
zero work
Work is positive when the force is in the
same general direction as the displace-
ment and is negative if the force is gener-
ally opposite to the displacement. Zero
work is done if the force is at right angles
to the displacement.

▲

C O N C E P T U A L  C H E C K P O I N T  7 – 1 P A T H  D E P E N D E N C E  O F  W O R K

You want to load a box into the back of a truck. One way is to lift it straight up through a height h, as shown, doing a work W1. Al-
ternatively, you can slide the box up a loading ramp a distance L, doing a work W2. Assuming the box slides on the ramp without
friction, which of the following is correct: (a) W1 � W2, (b) W1 � W2, (c) W1 	 W2?

R E A S O N I N G  A N D  D I S C U S S I O N

You might think that W2 is less than W1, since the force needed to slide the box up the ramp, F2, is less than the force needed to lift
it straight up. On the other hand, the distance up the ramp, L, is greater than the vertical distance, h, so perhaps W2 should be greater
than W1. In fact, these two effects cancel exactly, giving W1 � W2.

To see this, we first calculate W1. The force needed to lift the box with constant speed is F1 � mg, and the height is h, therefore
W1 � mgh.

Next, the work to slide the box up the ramp with constant speed is W2 � F2L, where F2 is the force required to push against the tangen-
tial component of gravity. In the figure we see that F2 � mg sin . The figure also shows that sin � h/L; thus W2 � (mg sin )L �
(mg)(h/L)L � mgh � W1.

Clearly, the ramp is a useful device—it reduces the force required to move the box upward from F1 � mg to F2 � mg(h/L). Even so,
it doesn’t decrease the amount of work we need to do. As we have seen, the reduced force on the ramp is offset by the increased dis-
tance.

A N S W E R

(b) W1 � W2

fff

Negative Work and Total Work
Work depends on the angle between the force, and the displacement (or direction 
of motion), This dependence gives rise to three distinct possibilities, as shown
in Figure 7–4:

d
!
.

F
!
,

(i) Work is positive if the force has a component in the direction of motion

(ii) Work is zero if the force has no component in the direction of motion 
(iii) Work is negative if the force has a component opposite to the direction of motion

Thus, whenever we calculate work, we must be careful about its sign and not just
assume it to be positive.

190° 6 u 6 270°2.
1u = ;90°2.

1-90° 6 u 6 90°2.
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When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aW

W2,
F
!
2W1,F

!
1

E X A M P L E  7 – 3 A  C O A S T I N G  C A R  I

A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal 
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

P I C T U R E  T H E  P R O B L E M

Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, 
as was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows 
that the angle between and is and the angle between and is 

S T R A T E G Y

For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

S O L U T I O N

1. We start with the work done by the normal force, 
From the figure we see that for this force: 

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A): 

4. The total work is the sum of the individual works: 

I N S I G H T

The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

P R A C T I C E  P R O B L E M

Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with . Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 15, Problem 81

= 0 - 306 J + 2.70 * 104 J = 2.67 * 104 JWtotal = WN + Wair + Wmg = 0 - Fair d + mgd sin f
f = 5.00°

Wtotal = WN + Wair + Wmg = 0 - Fair d + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Fair d cos 180° = Fair d1-12 = -Fair du = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N

!
.

d
!
.

uW = Fd cos u,

u = 180°.d
!

F
!
airu = 90°,d

!
N

! u = 90° - f.d
!

mg
!

mg
!

f

mg
!
.F

!
air,N

! f

�

�

�

N

Fair d

mg

N

d

Fair d

�

d

mg

 = 90°�

 = 180°�

� = 90° –  �

P R O B L E M - S O L V I N G  N O T E

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U
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In the previous Example, we showed that the total work can be calculated by
finding the work done by each force separately, and then summing the individual
works. In the next Example, we take a different approach. We first sum the forces
acting on the car to find Once the total force is determined, we calculate the
total work using Wtotal = Ftotald cos u.

Ftotal.

E X A M P L E  7 – 4 A  C O A S T I N G  C A R  I I

Consider the car described in Example 7–3. Calculate the total work done on the car using 

P I C T U R E  T H E  P R O B L E M

First, we choose the x axis to point down the slope, and the 
y axis to be at right angles to the slope. With this choice, there
is no acceleration in the y direction, which means that the total
force in that direction must be zero. As a result, the total force
acting on the car is in the x direction. The magnitude of the
total force is as can be seen in our sketch.

S T R A T E G Y

We begin by finding the x component of each force vector and
then summing them to find the total force acting on the car. As
can be seen from the figure, the total force points in the posi-
tive x direction; that is, in the same direction as the displace-
ment. Therefore, the angle in is zero.

S O L U T I O N

1. Referring to the figure above, we see that the magnitude of 
the total force is minus 

2. The direction of is the same as the direction of thus 
We can now calculate 

I N S I G H T

Note that we were careful to calculate both the magnitude and the direction of the total force. The magnitude (which is always
positive) gives and the direction gives allowing us to use 

P R A C T I C E  P R O B L E M

Suppose the total work done on a 1620-kg car as it coasts 25.0 m down a hill with is Find the
magnitude of the force due to air resistance. [Answer: thus ]

Some related homework problems: Problem 15, Problem 81

Fair = 14030 J2>d = 161 NFair d = -Wtotal + mgd sin f = 4030 J,
Wtotal = 3.75 * 104 J.f = 6.00°

Wtotal = Ftotald cos u.u = 0°,Ftotal

 = mgd sin f - FairdWtotal:u = 0°.
Wtotal = Ftotald cos u = 1mg sin f - Fair2d cos 0°d

!
,F

!
total

Fair:mg sin f
Ftotal = mg sin f - Fair

W = Ftotald cos uu

mg sin f - Fair,

Wtotal = Ftotald cos u.

N
Fair

�

mg

�mg cos

�mg sin

Ftotal =
– Fair�mg sin

x

y
Fair

�mg sin

x force components

(Enlarged)

The full significance of positive versus negative work is seen in the next sec-
tion, where we relate the work done on an object to the change in its speed.

7–2 Kinetic Energy and the Work–Energy Theorem
Suppose you drop an apple. As it falls, gravity does positive work on it, as indi-
cated in Figure 7–5, and its speed increases. If you toss the apple upward, gravity
does negative work, and the apple slows down. In general, whenever the total
work done on an object is positive, its speed increases; when the total work is neg-
ative, its speed decreases. In this section we derive an important result, the
work–energy theorem, which makes this connection between work and change
in speed precise.

To begin, consider an apple of mass m falling through the air, and suppose that
two forces act on the apple—gravity, and the average force of air resistance, 
The total force acting on the apple, gives the apple a constant downward ac-
celeration of magnitude

Since the total force is downward and the motion is downward, the work done on
the apple is positive.

a = Ftotal/m

F
!
total,

F
!
air.mg

!
,
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Now, suppose the initial speed of the apple is and that after falling a dis-
tance d its speed increases to The apple falls with constant acceleration a, hence
constant-acceleration kinematics (Equation 2–12) gives

or, with a slight rearrangement,

Next, substitute into this equation:

Multiplying both sides by m and dividing by 2 yields

where is simply the total work done on the apple. Thus we find

showing that total work is directly related to change in speed, as just mentioned.
Note that means means and im-
plies that 

The quantity in the equation for has a special significance in
physics, as we shall see. We call it the kinetic energy, K:

Definition of Kinetic Energy, K

7–6

In general, the kinetic energy of an object is the energy due to its motion. We mea-
sure kinetic energy in joules, the same units as work, and both kinetic energy and
work are scalars. Unlike work, however, kinetic energy is never negative. Instead,
K is always greater than or equal to zero, independent of the direction of motion
or the direction of any forces.

To get a feeling for typical values of kinetic energy, consider your kinetic en-
ergy when jogging. Assuming a mass of about 62 kg and a speed of 2.5 m/s, your
kinetic energy is Additional examples of kinetic
energy are given in Table 7–2.

K = 1
2162 kg212.5 m/s22 = 190 J.

SI unit: kg # m2/s2 = joule, J

K = 1
2 mv2

Wtotal
1
2 mv2

vf = vi.
Wtotal = 0vf 6 vi,vf 7 vi, Wtotal 6 0Wtotal 7 0

Wtotal = 1
2 mvf

2 - 1
2 mvi

2

Ftotald

Ftotald = 1
2 mvf

2 - 1
2 mvi

2

2aFtotal

m
bd = vf

2 - vi
2

a = Ftotal/m

2ad = vf
2 - vi

2

vf
2 = vi

2 + 2ad

vf.
vi,

Force is in the
direction of
displacement ...

... so positive
work is done
on the apple.

This causes
the apple to
speed up.

Negative work done on
the apple ...

... causes it to
slow down.

d
d

mg

mg

Apple falling: W > 0, speed increases Apple tossed upward: W < 0, speed decreases

FIGURE 7–5 Gravitational work
The work done by gravity on an apple
that moves downward is positive. If the
apple is in free fall, this positive work
will result in an increase in speed. On the
other hand, the work done by gravity on
an apple that moves upward is negative.
If the apple is in free fall, the negative
work done by gravity will result in a
decrease of speed.

▲

P R O B L E M - S O L V I N G  N O T E

Work Can Be Positive, Negative, 
or Zero

When you calculate work, be sure to keep
track of whether it is positive or negative.
The distinction is important, since posi-
tive work increases speed, whereas nega-
tive work decreases speed. Zero work, of
course, has no effect on speed.

TABLE 7–2 Typical Kinetic Energies

Approximate
kinetic

Source energy (J)

Jet aircraft at 500 mi/h
Car at 60 mi/h
Home-run baseball
Person at walking speed 50
Housefly in flight 10-3

103
106
109
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E X E R C I S E  7 – 2
A truck moving at 15 m/s has a kinetic energy of (a) What is the mass of the
truck? (b) By what multiplicative factor does the kinetic energy of the truck increase if
its speed is doubled?

S O L U T I O N

(a) therefore (b) Kinetic energy depends on the
speed squared, and hence doubling the speed increases the kinetic energy by a factor of
four.

In terms of kinetic energy, the work–energy theorem can be stated as follows:

Work–Energy Theorem
The total work done on an object is equal to the change in its kinetic energy:

7–7

Thus, the work–energy theorem says that when a force acts on an object over a
distance—doing work on it—the result is a change in the speed of the object, and
hence a change in its energy of motion. Equation 7–7 is the quantitative expres-
sion of this connection.

Finally, though we have derived the work–energy theorem for a force that is
constant in direction and magnitude, it is valid for any force, as can be shown
using the methods of calculus. In fact, the work–energy theorem is completely
general, making it one of the more important and fundamental results in physics.
It is also a very handy tool for problem solving, as we shall see many times
throughout this text.

E X E R C I S E  7 – 3
How much work is required for a 74-kg sprinter to accelerate from rest to 2.2 m/s?

S O L U T I O N

Since we have 

We now present a variety of Examples showing how the work–energy theo-
rem is used in practical situations.

W = 1
2 
mvf  

2 - 1
2 
mvi  

2 = 1
2  

mvf  

2 = 1
2 (74 kg)(2.2 m/s)2 = 180 J.vi = 0,

Wtotal = ¢K = 1
2 
mvf 

2 - 1
2 
mvi 

2

m = 2K/v2 = 3700 kg.K = 1
2 
mv2;

4.2 * 105 J.

E X A M P L E  7 – 5 H I T  T H E  B O O K S

A 4.10-kg box of books is lifted vertically from rest a distance of 1.60 m with a constant, upward applied force of 52.7 N. Find 
(a) the work done by the applied force, (b) the work done by gravity, and (c) the final speed of the box.

P I C T U R E  T H E  P R O B L E M

Our sketch shows that the direction of motion of the box is
upward. In addition, we see that the applied force, is 
upward and the force of gravity, is downward. Finally,
the box is lifted from rest through a distance

S T R A T E G Y

The applied force is in the direction of motion, so the work
it does, , is positive. Gravity is opposite in direction to
the motion; thus its work, , is negative. The total work is
the sum of and , and the final speed of the box is
found by applying the work–energy theorem, .Wtotal = ¢K

WgWapp

Wg

Wapp

¢y = 1.60 m.
1vi = 02

mg
!
,

F
!
app,

mg

Fapp

vi = 0

vf = ?

y

Δy = 1.60 m

P R O B L E M - S O L V I N G  N O T E

Starts from Rest Means vi � 

A problem statement that uses a phrase
like “starts from rest” or “is raised from
rest” is telling you that vi = 0.

0

CONTINUED ON NEXT PAGE
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In the previous Example the initial speed was zero. This is not always the case,
of course. The next Example illustrates how to use the work–energy theorem
when the initial velocity is nonzero.

S O L U T I O N

Part (a)

1. First we find the work done by the applied force. 
In this case, and the distance is 

Part (b)

2. Next, we calculate the work done by gravity. The 
distance is as before, but now 

Part (c)

3. The total work done on the box, is the sum of 
and 

4. To find the final speed, , we apply the work–energy 
theorem. Recall that the box started at rest, thus : 

I N S I G H T

As a check on our result, we can find in a completely different way. First, calculate the acceleration of the box with the 
result Next, use this result in the kinematic equation With and

, we find in agreement with the results using the work–energy theorem.

P R A C T I C E  P R O B L E M

If the box is lifted only a quarter of the distance, is the final speed 1/8, 1/4, or 1/2 of the value found in Step 4? Calculate in
this case as a check on your answer. [Answer: Since work depends linearly on and depends on the square root of the 
work, it follows that the final speed is the value in Step 4. Letting , we find 

]

Some related homework problems: Problem 19, Problem 24, Problem 25

1.56 m/s.1
2 
13.12 m/s2 =

vf =¢y = 11.60 m2/4 = 0.400 m21/4 = 1
2

vf¢y,
vf

v = 3.12 m/s,¢y = 1.60 m
v0 = 0v2 = v0  

2 + 2a¢y.a = 1Fapp - mg2/m = 3.04 m/s2.
vf

vf = C2Wtotal

m
= C2(19.9 J)

4.10 kg
= 3.12 m/s

vi = 0
Wtotal = 1

2 
mvf

2 - 1
2 
mvi

2 = 1
2 
mvf

2vf

Wg:Wapp

Wtotal = Wapp + Wg = 84.3 J - 64.4 J = 19.9 JWtotal,

= 14.10 kg219.81 m/s221-1211.60 m2 = -64.4 J
u = 180°:¢y = 1.60 m,

Wg = mg cos 180° ¢y

¢y = 1.60 m:u = 0°
Wapp = Fapp cos 0° ¢y = 152.7 N211211.60 m2 = 84.3 J

E X A M P L E  7 – 6 P U L L I N G  A  S L E D

A boy exerts a force of 11.0 N at 29.0° above the horizontal on a 6.40-kg sled. Find (a) the work done by the boy and (b) the final
speed of the sled after it moves 2.00 m, assuming the sled starts with an initial speed of 0.500 m/s and slides horizontally with-
out friction.

P I C T U R E  T H E  P R O B L E M

Our sketch shows the direction of motion and the directions of
each of the forces. Note that the normal force and the force due
to gravity are vertical, whereas the displacement is horizontal.
The force exerted by the boy has both a vertical component,

and a horizontal component, 

S T R A T E G Y

a. The forces and do no work because they are at right
angles to the horizontal displacement. The force exerted by
the boy, however, has a horizontal component that does
positive work on the sled. Therefore, the total work is sim-
ply the work done by the boy.

b. After calculating this work, we find by applying the work–energy theorem with .

S O L U T I O N

Part (a)

1. The work done by the boy is 
where This is also the total work 
done on the sled:  

 = 111.0 N21cos 29.0°2(2.00 m2 = 19.2 J = Wtotalu = 29.0°.

 Wboy = 1F cos u2d1F cos u2d,

vi = 0.500 m / svf

mg
!

N
!

F cos u.F sin u,

F = 11.0 N

N
mg

d = 2.00 m
29.0°

CONTINUED FROM PREVIOUS PAGE
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The final speeds in the previous Examples could have been found using
Newton’s laws and the constant-acceleration kinematics of Chapter 2, as indi-
cated in the Insight following Example 7–5. The work–energy theorem provides
an alternative method of calculation that is often much easier to apply than
Newton’s laws. We return to this point in Chapter 8.

Part (b)

2. Use the work–energy theorem to solve for the 
final speed: 

3. Substitute numerical values to get the final answer: 

I N S I G H T

If the sled had started from rest, instead of with an initial speed of 0.500 m/s, would its final speed be 

No. If the initial speed is zero, then Why don’t the speeds add and subtract in a

straightforward way? The reason is that the work–energy theorem depends on the square of the speeds rather than on and 
directly.

P R A C T I C E  P R O B L E M

Suppose the sled starts with a speed of 0.500 m/s and has a final speed of 2.50 m/s after the boy pulls it through a distance of
3.00 m. What force did the boy exert on the sled? [Answer: ]

Some related homework problems: Problem 28, Problem 61

F = Wtotal/(d cos u) = ¢K/(d cos u) = 7.32 N

vfvi

vf = C2Wtotal

m
= C2119.2 J2

6.40 kg
= 2.45 m/s.

2.00 m/s?
2.50 m/s - 0.500 m/s =

= 2.50 m >  s

vf = C2(19.2 J)
6.40 kg

+ (0.500 m/s)2

vf = C2Wtotal

m
+ vi

2

1
2 
mvf

2 = Wtotal + 1
2 
mvi

2

Wtotal = ¢K = 1
2 
mvf

2 - 1
2 
mvi  

2

C O N C E P T U A L  C H E C K P O I N T  7 – 2 C O M P A R E  T H E  
W O R K

To accelerate a certain car from rest to the speed v requires the work W1. The work
needed to accelerate the car from v to 2v is W2. Which of the following is correct: 
(a) W2 � W1, (b) W2 � 2 W1, (c) W2 � 3W1, (d) W2 � 4W1?

R E A S O N I N G  A N D  D I S C U S S I O N

A common mistake is to reason that since we increase the speed by the same amount in
each case, the work required is the same. It is not, and the reason is that work depends
on the speed squared rather than on the speed itself.

To see how this works, first calculate the work needed to go from rest to a speed v.

From the work–energy theorem, with vi � 0 and vf � v, we find 

Similarly, the work needed to go from rest, vi � 0, to a speed vf � 2v, is simply

Therefore, the work needed to increase the speed from v to

2v is the difference: 

A N S W E R

(c) W2 � 3W1

W2 = 4W1 - W1 = 3W1.

1
2 
m12v22 = 4 A12 

mv2 B = 4W1.

1
2 
mv2.

1
2 
mvi 

2  =1
2 
mvf 

2 -W1 =

W1,

v 2vv = 0

W1 W2

P R O B L E M - S O L V I N G  N O T E

Be Careful About Linear Reasoning

Though some relations are linear—if you
double the mass, you double the kinetic 
energy—others are not. For example, if
you double the speed, you quadruple the 
kinetic energy. Be careful not to jump to
conclusions based on linear reasoning.
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7–3 Work Done by a Variable Force
Thus far we have calculated work only for constant forces, yet most forces in na-
ture vary with position. For example, the force exerted by a spring depends on
how far the spring is stretched, and the force of gravity between planets depends
on their separation. In this section we show how to calculate the work for a force
that varies with position.

First, let’s review briefly the case of a constant force, and develop a graphical
interpretation of work. Figure 7–6 shows a constant force plotted versus position, x.
If the force acts in the positive x direction and moves an object a distance d, from 
to the work it does is Referring to the figure, we see that
the work is equal to the shaded area1 between the force line and the x axis.

Next, consider a force that has the value from to and a dif-
ferent value from to as in Figure 7–7 (a). The work in this case is
the sum of the works done by and Therefore, 
which, again, is the area between the force lines and the x axis. Clearly, this
type of calculation can be extended to a force with any number of different val-
ues, as indicated in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a se-
ries of constant values that follow the shape of the curve, as shown in Figure 7–8 (a).
It follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the

W = F1x1 + F21x2 - x12F2.F1

x = x2,x = x1F2

x = x1x = 0F1

W = Fd = F1x2 - x12.x2,
x1

Fo
rc

e

Position

F
d

x1 x2
O

Area = Fd = W

▲ FIGURE 7–6 Graphical representation
of the work done by a constant force
A constant force F acting through a dis-
tance d does a work Note that
Fd is also equal to the shaded area be-
tween the force line and the x axis.

W = Fd.
Fo

rc
e

Position

F2

F1

x1 x2

F2(x2 – x1)

F1x1

(a)

O

Fo
rc

e

Position

(b)

O

FIGURE 7–7 Work done by a 
nonconstant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).

W = F1x1 + F21x2 - x12.
x2x1F2

x1F1

▲

Position

x1 x2

(c) A better approximation

Fo
rc

e

Fo
rc

e

Position

x1 x2

(b) Approximating the work done by a
continuous force

Fo
rc

e

Position

x1 x2

(a) Approximating a continuous force

O O O

▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2,

length2.1length2 * 1length2,
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limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the
work done by the continuous force. To summarize:

The work done by a force in moving an object from to is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also
show that the corresponding force curve is a straight line extending from the ori-
gin. Therefore, the work we do in stretching a spring from (equilibrium) to
the general position x is the shaded, triangular area shown in Figure 7–10. This area 
is equal to where in this case the base is x and the height is kx. As 
a result, the work is Similar reasoning shows that the work 
needed to compress a spring a distance x is also Therefore,

Work to Stretch or Compress a Spring a Distance x from Equilibrium

7–8

SI unit: joule, J

We can get a feeling for the amount of work required to compress a typical
spring in the following Exercise.

E X E R C I S E  7 – 4
The spring in a pinball launcher has a force constant of 405 N/m. How much work is
required to compress the spring a distance of 3.00 cm?

S O L U T I O N

Note that the work done in compressing or expanding a spring varies with the
second power of x, the displacement from equilibrium. The consequences of this
dependence are explored throughout the rest of this section.

Before we consider a specific example, however, recall that the results for a
spring apply to more than just the classic case of a helical coil of wire. In fact, any
flexible structure satisfies the relations and given the appro-
priate value of the force constant, k, and small enough displacements, x. Several
examples were mentioned in Section 6–2.

Here we consider an example from the field of nanotechnology; namely, the
cantilevers used in atomic-force microscopy (AFM). As we show in Example 7–7,
a typical atomic-force cantilever is basically a thin silicon bar about 250 μm in
length, supported at one end like a diving board, with a sharp, hanging point at
the other end. When the point is pulled across the surface of a material—like an
old-fashioned phonograph needle in the groove of a record—individual atoms on
the surface cause the point to move up and down, deflecting the cantilever. These
deflections, which can be measured by reflecting a laser beam from the top of the
cantilever, are then converted into an atomic-level picture of the surface, as shown
in the accompanying photograph.

A typical force constant for an AFM cantilever is on the order of 1 N/m, much
smaller than the 100–500 N/m force constant of a common lab spring. The impli-
cations of this are discussed in the following Example.

W = 1
2 
kx2,Fx = -kx

W = 1
2 
kx2 = 1

2 
1405 N/m210.0300 m22 = 0.182 J

W = 1
2 
kx2

1
2 
kx2.

1
2 
1x21kx2 = 1

2  
kx2.

1
2 
1base21height2,

x = 0

+kx.
Fx = -kx

x2x1

Force of spring Applied force

Equilibrium
position of
spring

x

–kx +kx

F = kx

x = 0 x

A
pp

lie
d

 fo
rc

e

PositionO

▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus, ap-
plied force versus position for a spring is
a straight line of slope k.

+kx.

Fo
rc

e
Position

Area = W

kx

O x

▲ FIGURE 7–10 Work needed to stretch a
spring a distance x
The work done is equal to the shaded
area, which is a right triangle. The area of 
the triangle is 12 

1x21kx2 = 1
2 
kx2.

▲ Human chromosomes, as imaged by an
atomic-force microscope.

E X A M P L E  7 – 7 F L E X I N G  A N  A F M  C A N T I L E V E R

The work required to deflect a typical AFM cantilever by 0.10 nm is (a) What is the force constant of the cantilever,
treating it as an ideal spring? (b) How much work is required to increase the deflection of the cantilever from 0.10 nm to 0.20 nm?

CONTINUED ON NEXT PAGE

1.2 * 10-20 J.
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P I C T U R E  T H E  P R O B L E M

The sketch on the left shows the cantilever and its sharp point being dragged across the surface of a material. In the sketch to the
right, we show an exaggerated view of the cantilever’s deflection, and indicate that it is equivalent to the stretch of an “effective”
ideal spring with a force constant k.

S T R A T E G Y

a. Given that for a deflection of we can find the effective force constant k using 

b. To find the work required to deflect from to we calculate the work to deflect from to
and then subtract the work needed to deflect from to (Note that we cannot

simply assume the work to go from to is the same as the work to go from to .)

S O L U T I O N

Part (a)

1. Solve for the force constant k:

Part (b)

2. First, calculate the work needed to deflect the  
cantilever from to 

3. Subtract from the above result the work to 
deflect from to , which the 
problem statement gives as : 

I N S I G H T

Our results show that more energy is needed to deflect the cantilever the
second 0.10 nm than to deflect it the first 0.10 nm. Why? The reason is that
the force of the cantilever increases with distance; thus, the average force
over the second 0.10 nm is greater than the average force over the first
0.10 nm. In fact, we can see from the adjacent figure that the average force
between 0.10 nm and 0.20 nm (3.6 nN) is three times the average force be-
tween 0 and 0.10 nm (1.2 nN). It follows, then, that the work required for
the second 0.10 nm is three times the work required for the first 0.10 nm.

P R A C T I C E  P R O B L E M

A second cantilever has half the force constant of the cantilever in this Example. Is the work required to deflect the second can-
tilever by 0.20 nm greater than, less than, or equal to the work required to deflect the cantilever in this Example by 0.10 nm?
[Answer: Halving the force constant halves the work, but doubling the deflection quadruples the work. The net effect is that the
work increases by a factor of two, to ]

Some related homework problems: Problem 32, Problem 38

2.4 * 10-20 J.

= 4.8 * 10-20 J - 1.2 * 10-20 J = 3.6 * 10-20 J
1.2 * 10-20 J

x = 0.10 nmx = 0
W1:2 = W0:2 - W0:1

 = 1
212.4 N>m210.2 * 10-9 m22 = 4.8 * 10-20 Jx = 0.20 nm:x = 0

 W0:2 = 1
2kx2

k =
2W

x2
=

211.2 * 10-20 J2
10.10 * 10-9 m22 = 2.4 N>mW = 1

2kx2

x = 0.10 nmx = 0x = 0.20 nmx = 0.10 nm
x = 0.10 nm, W0:1.x = 0x = 0.20 nm, W0:2,

x = 0x = 0.20 nm, W1:2,x = 0.10 nm

W = 1
2kx2.x = 0.10 nm,W = 1.2 * 10-20 J

204 C H A P T E R  7 W O R K  A N D  K I N E T I C  E N E R G Y

An equivalent way to calculate the work for a variable force is to multiply the
average force, by the distance, d:

7–9W = Favd

Fav,

Silicon rod

x = 0.10 nm

k
Effective

ideal
spring

F

2.4 nN

1.2 nN

0.20 nmO
x

3.6 nN

4.8 nN

0.10 nm

k = 2.4 N/m
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For a spring that is stretched a distance x from equilibrium the force varies lin-
early from 0 to kx. Thus, the average force is as indicated in Figure 7–11.
Therefore, the work is

As expected, our result agrees with Equation 7–8.
Finally, when you stretch or compress a spring from its equilibrium position,

the work you do is always positive. The work done by a spring, however, may be
positive or negative, depending on the situation. For example, consider a block
sliding to the right with an initial speed on a smooth, horizontal surface, as
shown in Figure 7–12 (a). When the block begins to compress the spring, as in Figure
7–12 (b), the spring exerts a force on the block to the left—that is, opposite to the
block’s direction of motion. As a result, the spring does negative work on the
block, which causes the block’s speed to decrease. Eventually the negative work
done by the spring, is equal in magnitude to the initial kinetic energy
of the block. At this point, Figure 7–12 (c), the block comes to rest momentarily, and

We apply this result in
Active Example 7–1.
W = ¢K = Kf - Ki = 0 - Ki = -Ki = -1

2 
mv0 

2 = -1
2 
kx2.

W = -1
2 
kx2,

v0

W = 1
2 kx1x2 = 1

2 kx2

Fav = 1
2 
kx,

Fo
rc

e

Position
x

kx

Fav =    kx1–2

O

▲ FIGURE 7–11 Work done in stretching 
a spring: average force
The average force of a spring from 
to x is and the work done is 

W = Favd = 1
2 
kx1x2 = 1

2 
kx2.

Fav = 1
2 
kx,

x = 0

Spring is doing negative work on
the block – force and displacement
are in opposite directions.

Equilibrium position
of spring

Initial speed of
block is v0.

Equilibrium position
of spring

Final speed of
block is again v0.

F2

F2

F1

F1

v = 0

(e) (d)

(c)(b)

v

v

(a)

v0

(f)

v0

v = 0

Spring is doing positive work on
the block – force and displacement
are in the same direction.

▲ FIGURE 7–12 The work done by a spring can be positive or negative
(a) A block slides to the right on a frictionless surface with a speed until it encounters a spring. (b) The spring now exerts a
force to the left—opposite to the block’s motion—and hence it does negative work on the block. This causes the block’s speed to
decrease. (c) The negative work done by the spring eventually is equal in magnitude to the block’s initial kinetic energy, at which
point the block comes to rest momentarily. As the spring expands, (d) and (e), it does positive work on the block and increases its
speed. (f) When the block leaves the spring its speed is again equal to .v0

v0

A C T I V E  E X A M P L E  7 – 1 A  B L O C K  C O M P R E S S E S  A  S P R I N G

Suppose the block in Figure 7–12 (a) has a mass of 1.5 kg and moves with an initial speed of Find the compres-
sion of the spring, whose force constant is 475 N/m, when the block momentarily comes to rest.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Calculate the initial and final kinetic energies of the block: 

2. Calculate the change in kinetic energy of the block: 

3. Set the negative work done by the spring equal 
to the change in kinetic energy of the block: 

4. Solve for the compression, x, and substitute numerical values: x = 0.12 m

-1
2kx2 = ¢K = -3.6 J

¢K = -3.6 J

Ki = 3.6 J,  Kf = 0

v0 = 2.2 m>s.

CONTINUED ON NEXT PAGE
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7–4 Power
Power is a measure of how quickly work is done. To be precise, suppose the work
W is performed in the time t. The average power delivered during this time is de-
fined as follows:

Definition of Average Power, P

7–10

For simplicity of notation we drop the usual subscript av for an average quantity
and simply understand that the power P refers to an average power unless stated
otherwise.

Note that the dimensions of power are joules (work) per second (time). We de-
fine one joule per second to be a watt (W), after James Watt (1736–1819), the Scottish
engineer and inventor who played a key role in the development of practical steam
engines:

7–11

Of course, the watt is the unit of power used to rate the output of lightbulbs. An-
other common unit of power is the horsepower (hp), which is used to rate the out-
put of car engines. It is defined as follows:

7–12

Though it sounds like a horse should be able to produce one horsepower, in fact,
a horse can generate only about 2/3 hp for sustained periods. The reason for the
discrepancy is that when James Watt defined the horsepower—as a way to char-
acterize the output of his steam engines—he purposely chose a unit that was
overly generous to the horse, so that potential investors couldn’t complain he was
overstating the capability of his engines.

To get a feel for the magnitude of the watt and the horsepower, consider the
power you might generate when walking up a flight of stairs. Suppose, for ex-
ample, that an 80.0-kg person walks up a flight of stairs in 20.0 s, and that the
altitude gain is 12.0 ft (3.66 m). Referring to Example 7–2 and Conceptual
Checkpoint 7–1, we find that the work done by the person is 

To find the power, we simply divide by
the time: Thus, a leisurely
stroll up the stairs requires about 1/5 hp or 150 W. Similarly, the power produced
by a sprinter bolting out of the starting blocks is about 1 hp, and the greatest
power most people can produce for sustained periods of time is roughly 1/3 to
1/2 hp. Further examples of power are given in Table 7–3.

Human-powered flight is a feat just barely within our capabilities, since the
most efficient human-powered airplanes require a steady power output of about
1/3 hp. On August 23, 1977, the Gossamer Condor, designed by Paul MacCready
and flown by Bryan Allen, became the first human-powered airplane to complete
a prescribed one-mile, figure-eight course and claim the Kremer Prize of £50,000.
Allen, an accomplished bicycle racer, used bicycle-like pedals to spin the pro-

P = W/t = 12870 J2/120.0 s2 = 144 W = 0.193 hp.
180.0 kg219.81 m/s2213.66 m2 = 2870 J.

W = mgh =

1 horsepower = 1 hp = 746 W

1 watt = 1 W = 1 J/s

SI unit: J/s = watt, W

P =
W
t

I N S I G H T

After the block comes to rest, the spring expands back to its equilibrium position, as shown in Figures 7–12 (d)–(f). During this
expansion the force exerted by the spring is in the same direction as the block’s motion, and hence it does positive work in the
amount As a result, the block leaves the spring with the same speed it had initially.

Y O U R  T U R N

Find the compression of the spring for the case where the mass of the block is doubled to 3.0 kg.

(Answers to Your Turn problems are given in the back of the book.)

W = 1
2 
kx2.

TABLE 7–3 Typical Values of Power

Approximate
Source power (W)

Hoover Dam
Car moving at 40 mi/h
Home stove
Sunlight falling on 
one square meter 1380

Refrigerator 615
Television 200
Person walking 
up stairs 150

Human brain 20

1.2 * 104
7 * 104

1.34 * 109

▲ The Gossamer Albatross on its record-
breaking flight across the English Channel
in 1979. On two occasions the aircraft actu-
ally touched the surface of the water, but
the pilot was able to maintain control and
complete the 22.25-mile flight.

R E A L - W O R L D  P H Y S I C S :  B I O

Human power output and flight

CONTINUED FROM PREVIOUS PAGE
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peller. Controlling the slow-moving craft while pedaling at full power was no
easy task. Allen also piloted the Gossamer Albatross, which, in 1979, became the
first (and so far the only) human-powered aircraft to fly across the English Chan-
nel. This 22.25-mile flight—from Folkestone, England, to Cap Gris-Nez, France—
took 2 hours 49 minutes and required a total energy output roughly equivalent to
climbing to the top of the Empire State Building 10 times.

Power output is also an important factor in the performance of a car. For ex-
ample, suppose it takes a certain amount of work, W, to accelerate a car from 0 to
60 mi/h. If the average power provided by the engine is P, then according to
Equation 7–10 the amount of time required to reach 60 mi/h is Clearly,
the greater the power P, the less the time required to accelerate. Thus, in a loose
way of speaking, we can say that the power of a car is a measure of “how fast it
can go fast.”

t = W/P.

E X A M P L E  7 – 8 P A S S I N G  F A N C Y

To pass a slow-moving truck, you want your fancy car to accelerate from 13.4 m/s (30.0 mi/h) to 17.9 m/s (40.0 mi/h)
in 3.00 s. What is the minimum power required for this pass?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the car accelerating from an initial speed of
to a final speed of We assume the

road is level, so that no work is done against gravity, and that
friction and air resistance may be ignored.

S T R A T E G Y

Power is work divided by time, and work is equal to the
change in kinetic energy as the car accelerates. We can deter-
mine the change in kinetic energy from the given mass of
the car and its initial and final speeds. With this information
at hand, we can determine the power with the relation 

.

S O L U T I O N

1. First, calculate the change in kinetic energy:

2. Divide by time to find the minimum power. (The actual 
power would have to be greater to overcome frictional losses.): 

I N S I G H T

Suppose that your fancy car continues to produce the same of power as it accelerates from (40.0 mi/h)
to (50.0 mi/h). Is the time required more than, less than, or equal to 3.00 s? It will take more than 3.00 s. The reason
is that is greater for a change in speed from 40.0 mi/h to 50.0 mi/h than for a change in speed from 30.0 mi/h to 40.0 mi/h,
because K depends on speed squared. Since is greater, the time is also greater.

P R A C T I C E  P R O B L E M

Find the time required to accelerate from 40.0 mi/h to 50.0 mi/h with of power. [Answer: First, 
Second, can be solved for time to give Thus, ]

Some related homework problems: Problem 44, Problem 59

t = 3.87 s.t = ¢K/P.P = ¢K/t
¢K = 1.18 * 105 J.3.05 * 104 W

t = ¢K/P¢K
¢K

v = 22.4 ms
v = 17.9 m/s3.05 * 104 W

P =
W
t

=
¢K

t
=

9.16 * 104 J
3.00 s

= 3.05 * 104 W = 40.9 hp

 = 9.16 * 104 J

 -  12 
11.30 * 103 kg2113.4 m/s22

 ¢K = 1
2 mvf 

2 - 1
2 mvi 

2 = 1
2 11.30 * 103 kg2117.9 m/s22

W >  t = ¢K >  t
P =

vf = 17.9 m/s.vi = 13.4 m/s

1.30 * 103-kg

13.4 m/s

17.9 m/s

Finally, consider a system in which a car, or some other object, is moving with
a constant speed v. For example, a car might be traveling uphill on a road inclined
at an angle above the horizontal. To maintain a constant speed, the engine must
exert a constant force F equal to the combined effects of friction, gravity, and air

u



208 C H A P T E R  7 W O R K  A N D  K I N E T I C  E N E R G Y

resistance, as indicated in Figure 7–13. Now, as the car travels a distance d, the work
done by the engine is and the power it delivers is

Since the car has a constant speed, it follows that

7–13

Note that power is directly proportional to both the force and the speed. For ex-
ample, suppose you push a heavy shopping cart with a force F. You produce twice
as much power when you push at 2 m/s than when you push at 1 m/s, even
though you are pushing no harder. It’s just that the amount of work you do in a
given time period is doubled.

P =
Fd
t

= Fad
t
b = Fv

v = d/t,

P =
W
t

=
Fd
t

W = Fd,

N

F

Fair res

Ffriction

mg

N

F

Fair res

Ffriction

mg

�

�

mg cos �

mg sin �

x

y

▲ FIGURE 7–13 Driving up a hill
A car traveling uphill at constant speed requires a constant force, F, of magnitude applied in
the direction of motion.

mg sin u + Fair res + Ffriction,

A C T I V E  E X A M P L E  7 – 2 F I N D  T H E  M A X I M U M  S P E E D

It takes a force of 1280 N to keep a 1500-kg car moving with constant speed up a slope
of 5.00°. If the engine delivers 50.0 hp to the drive wheels, what is the maximum
speed of the car?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Convert the power of 50.0 hp to watts: 

2. Solve Equation 7–13 for the speed v: 

3. Substitute numerical values for the power and force: 

I N S I G H T

Thus, the maximum speed of the car on this slope is approximately 65 mi/h.

Y O U R  T U R N

How much power is required for a maximum speed of 32.0 m/s?

(Answers to Your Turn problems are given in the back of the book.)

v = 29.1 m/s

v = P/F

P = 3.73 * 104 W
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7 – 1 W O R K  D O N E  BY  A  C O N STA N T  F O R C E

A force exerted through a distance performs mechanical work.

Force in Direction of Motion
In this, the simplest case, work is force times distance:

7–1

Force at an Angle to Motion
Work is the component of force in the direction of motion, times distance, d:

7–3

Negative and Total Work
Work is negative if the force opposes the motion; that is, if If more than
one force does work, the total work is the sum of the works done by each force
separately:

7–4

Equivalently, sum the forces first to find then

7–5

Units
The SI unit of work and energy is the joule, J:

7–2

7 – 2 K I N E T I C  E N E R GY  A N D  T H E  W O R K – E N E R GY  T H E O R E M

Total work is equal to the change in kinetic energy:

7–7

Note: To apply this theorem correctly, you must use the total work. Kinetic en-
ergy is one-half mass times speed squared:

7–6

It follows that kinetic energy is always positive or zero.

7 – 3 W O R K  D O N E  BY  A  VA R I A B L E  F O R C E

Work is equal to the area between the force curve and the displacement on the x
axis. For the case of a spring force, the work to stretch or compress a distance x
from equilibrium is

7–8W = 1
2 kx2

K = 1
2 mv2

Wtotal = ¢K = 1
2 mvf

2 - 1
2 mvi

2

1 J = 1 N # m

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

Ftotal,

Wtotal = W1 + W2 + W3 + Á

u 7 90°.

W = 1F cos u2d = Fd cos u

F cos u,
U

W = Fd

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

Even though work and kinetic energy are scalar quantities,
the idea of vectors, and vector components in particular
(Chapter 3), was used in the definition of work in 
Section 7–1.

The kinematic equations of motion for constant acceleration
(Chapters 2 and 4) were used in the derivation of kinetic
energy in Section 7–2. In particular, we used the relation
between the speed of an object and the distance through
which it accelerates.

The basic concepts of force, mass, and acceleration
(Chapters 5 and 6) were used throughout this chapter. One
particular force, the force exerted by a spring (Chapter 6),
played a key role in Section 7–3.

In Chapter 8 we introduce the concept of potential energy.
The combination of kinetic and potential energy is referred
to as the mechanical energy, which will play a central role in
our discussion of the conservation of energy.

Collisions are studied in Chapter 9. As we shall see, the
kinetic energy before and after a collision is an important
characterizing feature. Look for the discussion of elastic
versus inelastic collision in particular.

The concept of kinetic energy plays a significant role in
many areas of physics. Look for it to reappear when we
study rotational motion in Chapter 10, and in Section 10–5
in particular. Kinetic energy is also important when we
study ideal gases in Chapter 17—in fact, Section 17–2 is
titled Kinetic Theory.

v 2vv = 0

Fo
rc

e

Position

Area = W
kx

O x
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7 – 4 P O W E R

Average power is work divided by the time required to do the work:

7–10

Equivalently, power is force times speed:

7–13

Units
The SI unit of power is the watt, W:

7–11

7–12 746 W = 1 hp

 1 W = 1 J/s

P = Fv

P =
W
t 13.4 m/s

17.9 m/s

P R O B L E M - S O L V I N G  S U M M A RY

Type of Calculation Relevant Physical Concepts Related Examples

Find the work done by a
constant force. 

Work is defined as force times displacement, when F is in
the direction of motion. Use when there is an angle 
between the force and the direction of motion. 

uW = 1F cos u2d
W = Fd, Examples 7–1 

through 7–6

Calculate the change 
in speed. 

The change in kinetic energy is given by the work–energy theorem,
From this, the change in speed can be found by 

recalling that Be sure is the total work and that it
has the correct sign. 

WtotalK = 1
2 mv2.

Wtotal = ¢K.
Examples 7–5, 7–6

Calculate the power. Find the work done, then divide by time: Alternatively,
find the force, then multiply by the speed: P = Fv.

P = W/t. Example 7–8 
Active Example 7–2

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. Is it possible to do work on an object that remains at rest?
2. A friend makes the statement, “Only the total force acting on an

object can do work.” Is this statement true or false? If it is true,
state why; if it is false, give a counterexample.

3. A friend makes the statement, “A force that is always perpen-
dicular to the velocity of a particle does no work on the parti-
cle.” Is this statement true or false? If it is true, state why; if it is
false, give a counterexample.

4. The net work done on a certain object is zero. What can you say
about its speed?

5. To get out of bed in the morning, do you have to do work?
Explain.

6. Give an example of a frictional force doing negative work.
7. Give an example of a frictional force doing positive work.

8. A ski boat moves with constant velocity. Is the net force acting
on the boat doing work? Explain.

9. A package rests on the floor of an elevator that is rising with
constant speed. The elevator exerts an upward normal force on
the package, and hence does positive work on it. Why doesn’t
the kinetic energy of the package increase?

10. An object moves with constant velocity. Is it safe to conclude
that no force acts on the object? Why, or why not?

11. Engine 1 does twice the work of engine 2. Is it correct to con-
clude that engine 1 produces twice as much power as engine 2?
Explain.

12. Engine 1 produces twice the power of engine 2. Is it correct to
conclude that engine 1 does twice as much work as engine 2?
Explain.

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both concep-
tual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for two
responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used to
indicate the level of difficulty.

S E C T I O N  7 – 1    W O R K  D O N E  BY  A  C O N STA N T
F O R C E

1. • CE The International Space Station orbits the Earth in an ap-
proximately circular orbit at a height of above the
Earth’s surface. In one complete orbit, is the work done by the
Earth on the space station positive, negative, or zero? Explain.

h = 375 km

2. • CE Apendulum bob swings from point I to point II along the cir-
cular arc indicated in Figure 7–14. (a) Is the work done on the bob
by gravity positive, negative, or zero? Explain. (b) Is the work
done on the bob by the string positive, negative, or zero? Explain.

3. • CE A pendulum bob swings from point II to point III along
the circular arc indicated in Figure 7–14. (a) Is the work done on

For instructor-assigned homework, go to www.masteringphysics.com
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I III

II

▲ FIGURE 7–14 Problems 2 and 3

14. •• A small plane tows a glider at constant speed and altitude.
If the plane does of work to tow the glider 145 m
and the tension in the tow rope is 2560 N, what is the angle be-
tween the tow rope and the horizontal?

15. •• A young woman on a skateboard is pulled by a rope at-
tached to a bicycle. The velocity of the skateboarder is 

and the force exerted on her by the rope is 
. (a) Find the work done on the skate-

boarder by the rope in 25 seconds. (b) Assuming the velocity of
the bike is the same as that of the skateboarder, find the work
the rope does on the bicycle in 25 seconds.

16. •• To keep her dog from running away while she talks to a
friend, Susan pulls gently on the dog’s leash with a constant
force given by How much work 
does she do on the dog if its displacement is (a)
(b) or (c)

17. •• Water skiers often ride to one side of the center line of a boat,
as shown in Figure 7–15. In this case, the ski boat is traveling at
15 m/s and the tension in the rope is 75 N. If the boat does 3500 J
of work on the skier in 50.0 m, what is the angle between the
tow rope and the center line of the boat?

u

d
!

= 1-0.50 m2xN + 1-0.25 m2yN?d
!

= 10.25 m2yN ,
d
!

= 10.25 m2xN ,
F
!

= 12.2 N2xN + 11.1 N2yN .

F
!

= (17 N)xN + (12 N)yN
= (4.1 m/s)xNv

!

2.00 * 105 J

▲ FIGURE 7–15 Problems 17 and 69

v
�

the bob by gravity positive, negative, or zero? Explain. (b) Is the
work done on the bob by the string positive, negative, or zero?
Explain.

4. • A farmhand pushes a 26-kg bale of hay 3.9 m across the floor
of a barn. If she exerts a horizontal force of 88 N on the hay, how
much work has she done?

5. • Children in a tree house lift a small dog in a basket 4.70 m up
to their house. If it takes 201 J of work to do this, what is the
combined mass of the dog and basket?

6. • Early one October, you go to a pumpkin patch to select your
Halloween pumpkin. You lift the 3.2-kg pumpkin to a height of
1.2 m, then carry it 50.0 m (on level ground) to the check-out
stand. (a) Calculate the work you do on the pumpkin as you lift
it from the ground. (b) How much work do you do on the
pumpkin as you carry it from the field?

7. • The coefficient of kinetic friction between a suitcase and the
floor is 0.272. If the suitcase has a mass of 71.5 kg, how far can it
be pushed across the level floor with 642 J of work?

8. •• You pick up a 3.4-kg can of paint from the ground and lift it
to a height of 1.8 m. (a) How much work do you do on the can
of paint? (b) You hold the can stationary for half a minute, wait-
ing for a friend on a ladder to take it. How much work do you
do during this time? (c) Your friend decides against the paint, so
you lower it back to the ground. How much work do you do on
the can as you lower it?

9. •• IP A tow rope, parallel to the water, pulls a water skier di-
rectly behind the boat with constant velocity for a distance of 
65 m before the skier falls. The tension in the rope is 120 N. (a) Is
the work done on the skier by the rope positive, negative, or zero?
Explain. (b) Calculate the work done by the rope on the skier.

10. •• IP In the situation described in the previous problem, (a) is the
work done on the boat by the rope positive, negative, or zero?
Explain. (b) Calculate the work done by the rope on the boat.

11. •• A child pulls a friend in a little red wagon with constant
speed. If the child pulls with a force of 16 N for 10.0 m, and the
handle of the wagon is inclined at an angle of 25° above the hor-
izontal, how much work does the child do on the wagon?

12. •• A 51-kg packing crate is pulled with constant speed across a
rough floor with a rope that is at an angle of 43.5° above the
horizontal. If the tension in the rope is 115 N, how much work
is done on the crate to move it 8.0 m?

13. •• IP To clean a floor, a janitor pushes on a mop handle with a
force of 50.0 N. (a) If the mop handle is at an angle of 55° above
the horizontal, how much work is required to push the mop
0.50 m? (b) If the angle the mop handle makes with the horizon-
tal is increased to 65°, does the work done by the janitor in-
crease, decrease, or stay the same? Explain.

S E C T I O N  7 – 2    K I N E T I C  E N E R GY  A N D  T H E
W O R K – E N E R GY  T H E O R E M

18. • CE A pitcher throws a ball at 90 mi/h and the catcher stops it
in her glove. (a) Is the work done on the ball by the pitcher pos-
itive, negative, or zero? Explain. (b) Is the work done on the ball
by the catcher positive, negative, or zero? Explain.

19. • How much work is needed for a 73-kg runner to accelerate
from rest to 7.7 m/s?

20. • Skylab’s Reentry When Skylab reentered the Earth’s atmos-
phere on July 11, 1979, it broke into a myriad of pieces. One of
the largest fragments was a 1770-kg lead-lined film vault, and it
landed with an estimated speed of 120 m/s. What was the ki-
netic energy of the film vault when it landed?

21. • IP A 9.50-g bullet has a speed of 1.30 km/s. (a) What is its ki-
netic energy in joules? (b) What is the bullet’s kinetic energy if
its speed is halved? (c) If its speed is doubled?

22. •• CE Predict/Explain The work accelerates a car from 0 to
50 km/h. (a) Is the work required to accelerate the car from 
50 km/h to 150 km/h equal to 2 , 3 , 8 , or 9 ? (b) Choose
the best explanation from among the following:

I. The work to accelerate the car depends on the speed
squared.

II. The final speed is three times the speed that was produced
by the work .

III. The increase in speed from 50 km/h to 150 km/h is twice
the increase in speed from 0 to 50 km/h.

W0

W0W0W0W0

W0
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23. •• CE Jogger A has a mass m and a speed v, jogger B has a mass
m/2 and a speed 3v, jogger C has a mass 3m and a speed 
v/2, and jogger D has a mass 4m and a speed v/2. Rank the
joggers in order of increasing kinetic energy. Indicate ties where
appropriate.

24. •• IP A 0.14-kg pinecone falls 16 m to the ground, where it
lands with a speed of 13 m/s. (a) With what speed would the
pinecone have landed if there had been no air resistance? 
(b) Did air resistance do positive work, negative work, or zero
work on the pinecone? Explain.

25. •• In the previous problem, (a) how much work was done on
the pinecone by air resistance? (b) What was the average force
of air resistance exerted on the pinecone?

26. •• At , a 0.40-kg object is falling with a speed of 6.0 m/s.
At , it has a kinetic energy of 25 J. (a) What is the kinetic
energy of the object at ? (b) What is the speed of the ob-
ject at ? (c) How much work was done on the object be-
tween and ?

27. •• After hitting a long fly ball that goes over the right fielder’s
head and lands in the outfield, the batter decides to keep going
past second base and try for third base. The 62.0-kg player be-
gins sliding 3.40 m from the base with a speed of 4.35 m/s. If
the player comes to rest at third base, (a) how much work was
done on the player by friction? (b) What was the coefficient of
kinetic friction between the player and the ground?

28. •• IP A 1100-kg car coasts on a horizontal road with a speed of
19 m/s. After crossing an unpaved, sandy stretch of road 32 m
long, its speed decreases to 12 m/s. (a) Was the net work done
on the car positive, negative, or zero? Explain. (b) Find the
magnitude of the average net force on the car in the sandy
section.

29. •• IP (a) In the previous problem, the car’s speed decreased by
7.0 m/s as it coasted across a sandy section of road 32 m long. If
the sandy portion of the road had been only 16 m long, would
the car’s speed have decreased by 3.5 m/s, more than 3.5 m/s,
or less than 3.5 m/s? Explain. (b) Calculate the change in speed
in this case.

30. •• A 65-kg bicyclist rides his 8.8-kg bicycle with a speed of
14 m/s. (a) How much work must be done by the brakes to
bring the bike and rider to a stop? (b) How far does the bicycle
travel if it takes 4.0 s to come to rest? (c) What is the magnitude
of the braking force?

S E C T I O N  7 – 3    W O R K  D O N E  BY  A  VA R I A B L E
F O R C E

31. • CE A block of mass m and speed v collides with a spring, com-
pressing it a distance . What is the compression of the spring
if the force constant of the spring is increased by a factor of
four?

32. • A spring with a force constant of is initially at
its equilibrium length. (a) How much work must you do to
stretch the spring 0.050 m? (b) How much work must you do to
compress it 0.050 m?

33. • A 1.2-kg block is held against a spring of force constant
, compressing it a distance of 0.15 m. How fast is

the block moving after it is released and the spring pushes it
away?

34. • Initially sliding with a speed of 2.2 m/s, a 1.8-kg block col-
lides with a spring and compresses it 0.31 m before coming to
rest. What is the force constant of the spring?

1.0 * 104 N>m

3.5 * 104 N>m
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t = 2.0 st = 1.0 s
t = 2.0 s

t = 1.0 s
t = 2.0 s

t = 1.0 s

35. • The force shown in Figure 7–16 moves an object from to
. (a) How much work is done by the force? (b) How

much work is done by the force if the object moves from
to ?x = 0.60 mx = 0.15 m

x = 0.75 m
x = 0
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▲ FIGURE 7–16 Problem 35
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▲ FIGURE 7–17 Problems 36 and 40

36. • An object is acted on by the force shown in Figure 7–17. What
is the final position of the object if its initial position is

and the work done on it is equal to (a) 0.21 J, or 
(b) ?-0.19 J
x = 0.40 m

37. •• CE A block of mass m and speed v collides with a spring,
compressing it a distance . What is the compression of 
the spring if the mass of the block is halved and its speed is
doubled?

38. •• To compress spring 1 by 0.20 m takes 150 J of work. Stretch-
ing spring 2 by 0.30 m requires 210 J of work. Which spring is
stiffer?

39. •• IP It takes 180 J of work to compress a certain spring 0.15 m.
(a) What is the force constant of this spring? (b) To compress the
spring an additional 0.15 m, does it take 180 J, more than 180 J,
or less than 180 J? Verify your answer with a calculation.

40. •• The force shown in Figure 7–17 acts on a 1.7-kg object whose
initial speed is 0.44 m/s and initial position is . (a)
Find the speed of the object when it is at the location .
(b) At what location would the object’s speed be 0.32 m/s?

41. ••• A block is acted on by a force that varies as
for , and then remains con-

stant at 4200 N for larger x. How much work does the force do on
the block in moving it (a) from to , or (b) from

to ?

S E C T I O N  7 – 4    P O W E R

42. • CE Force does 5 J of work in 10 seconds, force does 3 J of
work in 5 seconds, force does 6 J of work in 18 seconds, and
force does 25 J of work in 125 seconds. Rank these forces in
order of increasing power they produce. Indicate ties where
appropriate.

43. • BIO Climbing the Empire State Building A new record
for running the stairs of the Empire State Building was set on
February 3, 2003. The 86 flights, with a total of 1576 steps, was
run in 9 minutes and 33 seconds. If the height gain of each step
was 0.20 m, and the mass of the runner was 70.0 kg, what was
his average power output during the climb? Give your answer
in both watts and horsepower.

F4

F3

F2F1

x = 0.40 mx = 0.10 m
x = 0.30 mx = 0

0 … x … 0.21 m(2.0 * 104 N/m)x

x = 0.99 m
x = 0.27 m

¢x



P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S 213

44. • How many joules of energy are in a kilowatt-hour?

45. • Calculate the power output of a 1.4-g fly as it walks straight
up a windowpane at 2.3 cm/s.

46. • An ice cube is placed in a microwave oven. Suppose the oven
delivers 105 W of power to the ice cube and that it takes 
32,200 J to melt it. How long does it take for the ice cube to melt?

47. • You raise a bucket of water from the bottom of a deep well. If
your power output is 108 W, and the mass of the bucket and the
water in it is 5.00 kg, with what speed can you raise the bucket?
Ignore the weight of the rope.

48. •• In order to keep a leaking ship from sinking, it is necessary
to pump 12.0 lb of water each second from below deck up a
height of 2.00 m and over the side. What is the minimum horse-
power motor that can be used to save the ship?

49. •• IP A kayaker paddles with a power output of 50.0 W to main-
tain a steady speed of 1.50 m/s. (a) Calculate the resistive force
exerted by the water on the kayak. (b) If the kayaker doubles her
power output, and the resistive force due to the water remains
the same, by what factor does the kayaker’s speed change?

50. •• BIO Human-Powered Flight Human-powered aircraft re-
quire a pilot to pedal, as in a bicycle, and produce a sustained
power output of about 0.30 hp. The Gossamer Albatross flew across
the English Channel on June 12, 1979, in 2 h 49 min. (a) How much
energy did the pilot expend during the flight? (b) How many
Snickers candy bars (280 Cal per bar) would the pilot have to
consume to be “fueled up” for the flight? [Note: The nutritional
calorie, 1 Cal, is equivalent to 1000 calories (1000 cal) as defined
in physics. In addition, the conversion factor between calories
and joules is as follows: .]

51. •• IP A grandfather clock is powered by the descent of a 4.35-kg
weight. (a) If the weight descends through a distance of 0.760 m
in 3.25 days, how much power does it deliver to the clock? (b) To
increase the power delivered to the clock, should the time it takes
for the mass to descend be increased or decreased? Explain.

52. •• BIO The Power You Produce Estimate the power you
produce in running up a flight of stairs. Give your answer in
horsepower.

53. ••• IP A certain car can accelerate from rest to the speed v in T
seconds. If the power output of the car remains constant, 
(a) how long does it take for the car to accelerate from v to 2v?
(b) How fast is the car moving at 2T seconds after starting?

G E N E R A L  P R O B L E M S

54. • CE As the three small sailboats shown in Figure 7–18 drift next
to a dock, because of wind and water currents, students pull on
a line attached to the bow and exert forces of equal magnitude
F. Each boat drifts through the same distance d. Rank the three
boats (A, B, and C) in order of increasing work done on the boat
by the force F. Indicate ties where appropriate.

1 Cal = 1000 cal = 1 kcal = 4186 J

speed v is . (a) Is the distance required to accelerate the car
from the speed v to the speed 2v equal to , 2 , 3 , or 4 ?
(b) Choose the best explanation from among the following:

I. The final speed is twice the initial speed.
II. The increase in speed is the same in each case.

III. Work is force times distance, and work depends on the
speed squared.

57. • CE Car 1 has four times the mass of car 2, but they both have
the same kinetic energy. If the speed of car 2 is v, is the speed of
car 1 equal to v/4, v/2, 2v, or 4v? Explain.

58. • BIO Muscle Cells Biological muscle cells can be thought of
as nanomotors that use the chemical energy of ATP to produce
mechanical work. Measurements show that the active proteins
within a muscle cell (such as myosin and actin) can produce a
force of about 7.5 pN and displacements of 8.0 nm. How much
work is done by such proteins?

59. • When you take a bite out of an apple, you do about 19 J of
work. Estimate (a) the force and (b) the power produced by
your jaw muscles during the bite.

60. • A Mountain bar has a mass of 0.045 kg and a calorie rating of
210 Cal. What speed would this candy bar have if its kinetic en-
ergy were equal to its metabolic energy? [See the note following
Problem 50.]

61. • A small motor runs a lift that raises a load of bricks weighing
836 N to a height of 10.7 m in 23.2 s. Assuming that the bricks
are lifted with constant speed, what is the minimum power the
motor must produce?

62. • You push a 67-kg box across a floor where the coefficient of ki-
netic friction is . The force you exert is horizontal. (a)
How much power is needed to push the box at a speed of 0.50 m/s?
(b) How much work do you do if you push the box for 35 s?

63. • BIO The Beating Heart The average power output of the
human heart is 1.33 watts. (a) How much energy does the heart
produce in a day? (b) Compare the energy found in part (a) with
the energy required to walk up a flight of stairs. Estimate the
height a person could attain on a set of stairs using nothing more
than the daily energy produced by the heart.

64. • The Atmos Clock The Atmos clock (the so-called perpetual
motion clock) gets its name from the fact that it runs off pres-
sure variations in the atmosphere, which drive a bellows
containing a mixture of gas and liquid ethyl chloride. Because
the power to drive these clocks is so limited, they must be very
efficient. In fact, a single 60.0-W lightbulb could power 
240 million Atmos clocks simultaneously. Find the amount of
energy, in joules, required to run an Atmos clock for one day.

65. •• CE The work is required to accelerate a car from rest to
the speed . How much work is required to accelerate the car
(a) from rest to the speed and (b) from to ?

66. •• CE A work is required to stretch a certain spring 2 cm from
its equilibrium position. (a) How much work is required to
stretch the spring 1 cm from equilibrium? (b) Suppose the spring
is already stretched 2 cm from equilibrium. How much addi-
tional work is required to stretch it to 3 cm from equilibrium?

67. •• After a tornado, a 0.55-g straw was found embedded 2.3 cm
into the trunk of a tree. If the average force exerted on the straw
by the tree was 65 N, what was the speed of the straw when it
hit the tree?

68. •• You throw a glove straight upward to celebrate a victory. Its
initial kinetic energy is K and it reaches a maximum height h.
What is the kinetic energy of the glove when it is at the height h/2?
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v0v0>2v0>2
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mk = 0.55
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▲ FIGURE 7–18 Problem 54

55. • CE A youngster rides on a skateboard with a speed of 2 m/s.
After a force acts on the youngster, her speed is 3 m/s. Was the
work done by the force positive, negative, or zero? Explain.

56. • CE Predict/Explain A car is accelerated by a constant force,
F. The distance required to accelerate the car from rest to the
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69. •• The water skier in Figure 7–15 is at an angle of 35° with re-
spect to the center line of the boat, and is being pulled at a con-
stant speed of 14 m/s. If the tension in the tow rope is 90.0 N,
(a) how much work does the rope do on the skier in 10.0 s? 
(b) How much work does the resistive force of water do on the
skier in the same time?

70. •• IP A sled with a mass of 5.80 kg is pulled along the ground
through a displacement given by (Let the x axis be
horizontal and the y axis be vertical.) (a) How much work is
done on the sled when the force acting on it is 

(b) How much work is done on the sled when the 
force acting on it is (c) If the 
mass of the sled is increased, does the work done by the forces in
parts (a) and (b) increase, decrease, or stay the same? Explain.

71. •• IP A 0.19-kg apple falls from a branch 3.5 m above the ground.
(a) Does the power delivered to the apple by gravity increase, de-
crease, or stay the same during the time the apple falls to the
ground? Explain. Find the power delivered by gravity to the
apple when the apple is (b) 2.5 m and (c) 1.5 m above the ground.

72. •• A juggling ball of mass m is thrown straight upward from an
initial height h with an initial speed . How much work has
gravity done on the ball (a) when it reaches its greatest height,

, and (b) when it reaches ground level? (c) Find an expres-
sion for the kinetic energy of the ball as it lands.

73. •• The force shown in Figure 7–19 acts on an object that moves
along the x axis. How much work is done by the force as the
object moves from (a) to , (b) to

, and (c) to ?x = 1.2 mx = 3.5 mx = 4.0 m
x = 1.0 mx = 2.0 mx = 0

hmax

v0

F
!

= 12.89 N2xN + 10.231 N2yN?
10.131 N2yN?

F
!

= 12.89 N2xN +

d
!

= 14.55 m2xN .

77. •• IP A pitcher accelerates a 0.14-kg hardball from rest to 
42.5 m/s in 0.060 s. (a) How much work does the pitcher do on
the ball? (b) What is the pitcher’s power output during the
pitch? (c) Suppose the ball reaches 42.5 m/s in less than 0.060 s.
Is the power produced by the pitcher in this case more than,
less than, or the same as the power found in part (b)? Explain.

78. •• Catapult Launcher A catapult launcher on an aircraft car-
rier accelerates a jet from rest to 72 m/s. The work done by the
catapult during the launch is . (a) What is the mass of
the jet? (b) If the jet is in contact with the catapult for 2.0 s, what
is the power output of the catapult?

79. •• BIO Brain Power The human brain consumes about 22 W
of power under normal conditions, though more power may be
required during exams. (a) How long can one Snickers bar (see
the note following Problem 50) power the normally functioning
brain? (b) At what rate must you lift a 3.6-kg container of milk
(one gallon) if the power output of your arm is to be 22 W?
(c) How long does it take to lift the milk container through a
distance of 1.0 m at this rate?

80. •• IP A 1300-kg car delivers a constant 49 hp to the drive wheels.
We assume the car is traveling on a level road and that all fric-
tional forces may be ignored. (a) What is the acceleration of this
car when its speed is 14 m/s? (b) If the speed of the car is doubled,
does its acceleration increase, decrease, or stay the same? Explain.
(c) Calculate the car’s acceleration when its speed is 28 m/s.

81. •• Meteorite On October 9, 1992, a 27-pound meteorite struck
a car in Peekskill, NY, creating a dent about 22 cm deep. If the
initial speed of the meteorite was 550 m/s, what was the aver-
age force exerted on the meteorite by the car?
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▲ FIGURE 7–19 Problem 73
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▲ FIGURE 7–20 Problem 74

An interplanetary fender bender (Problem 81)
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▲ FIGURE 7–21 Problem 83

74. •• Calculate the power output of a 1.8-g spider as it walks up a
windowpane at 2.3 cm/s. The spider walks on a path that is at
25° to the vertical, as illustrated in Figure 7–20.

75. •• The motor of a ski boat produces a power of 36,600 W to
maintain a constant speed of 14.0 m/s. To pull a water skier at
the same constant speed, the motor must produce a power of
37,800 W. What is the tension in the rope pulling the skier?

76. •• Cookie Power To make a batch of cookies, you mix half a
bag of chocolate chips into a bowl of cookie dough, exerting a
21-N force on the stirring spoon. Assume that your force is al-
ways in the direction of motion of the spoon. (a) What power is
needed to move the spoon at a speed of 0.23 m/s? (b) How
much work do you do if you stir the mixture for 1.5 min?

82. ••• BIO Powering a Pigeon A pigeon in flight experiences a
force of air resistance given approximately by , where v is
the flight speed and b is a constant. (a) What are the units of the
constant b? (b) What is the largest possible speed of the pigeon if
its maximum power output is P? (c) By what factor does the
largest possible speed increase if the maximum power is doubled?

83. ••• Springs in Series Two springs, with force constants 
and , are connected in series, as shown in Figure 7–21. How
much work is required to stretch this system a distance x from
the equilibrium position?

k2

k1

F = bv2
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v = 0
F = 45.0 N

v = 2.60 m/s�

1.50 m

▲ FIGURE 7–23 Problem 85
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▲ FIGURE 7–22 Problem 84
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Schematic cross-sections of upper and lower wings,
showing them positioned like the wings of a biplane.
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▲ FIGURE 7–24 Problems 86, 87, 88, and 89

86. • Estimate the range of flight speeds for Microraptor gui if its
power output is 9.8 W.

A. 0–7.7 m/s B. 7.7–15 m/s C. 15–30 m/s D. 0–15 m/s

87. • What approximate range of flight speeds would be possible if
Microraptor gui could produce 20 W of power?

A. 0–25 m/s B. 25–30 m/s C. 2.5–25 m/s D. 0–2.5 m/s

88. •• How much energy would Microraptor have to expend to fly
with a speed of 10 m/s for 1.0 minute?

A. 8.1 J B. 81 J C. 490 J D. 600 J

89. • Estimate the minimum force that Microraptor must exert to fly.

A. 0.65 N B. 1.3 N C. 1.0 N D. 10 N

I N T E R A C T I V E  P R O B L E M S

90. •• Referring to Figure 7–12 Suppose the block has a mass of
1.4 kg and an initial speed of 0.62 m/s. (a) What force constant
must the spring have if the maximum compression is to be
2.4 cm? (b) If the spring has the force constant found in part (a),
find the maximum compression if the mass of the block is dou-
bled and its initial speed is halved.

91. •• IP Referring to Figure 7–12 In the situation shown in Fig-
ure 7–12 (d), a spring with a force constant of 750 N/m is com-
pressed by 4.1 cm. (a) If the speed of the block in Figure 
7–12 (f) is 0.88 m/s, what is its mass? (b) If the mass of the
block is doubled, is the final speed greater than, less than, or
equal to 0.44 m/s? (c) Find the final speed for the case described
in part (b).

92. •• IP Referring to Example 7–8 Suppose the car has a mass
of 1400 kg and delivers 48 hp to the wheels. (a) How long does
it take for the car to increase its speed from 15 m/s to 25 m/s?
(b) Would the time required to increase the speed from 5.0 m/s
to 15 m/s be greater than, less than, or equal to the time found
in part (a)? (c) Determine the time required to accelerate from
5.0 m/s to 15 m/s.

PA S S A G E  P R O B L E M S

BIO Microraptor gui: The Biplane Dinosaur
The evolution of flight is a subject of intense interest in paleon-
tology. Some subscribe to the “cursorial” (or ground-up) hy-
pothesis, in which flight began with ground-dwelling animals
running and jumping after prey. Others favor the “arboreal” (or
trees-down) hypothesis, in which tree-dwelling animals, like
modern-day flying squirrels, developed flight as an extension
of gliding from tree to tree.

A recently discovered fossil from the Cretaceous period in
China supports the arboreal hypothesis and adds a new 
element—it suggests that feathers on both the wings and the
lower legs and feet allowed this dinosaur, Microraptor gui, to
glide much like a biplane, as shown in Figure 7–24 (a). Re-
searchers have produced a detailed computer simulation of
Microraptor, and with its help have obtained the power-versus-
speed plot presented in Figure 7–24 (b). This curve shows how
much power is required for flight at speeds between 0 and 
30 m/s. Notice that the power increases at high speeds, as ex-
pected, but is also high for low speeds, where the dinosaur is al-
most hovering. A minimum of 8.1 W is needed for flight at 
10 m/s. The lower horizontal line shows the estimated 9.8-W
power output of Microraptor, indicating the small range of
speeds for which flight would be possible. The upper horizon-
tal line shows the wider range of flight speeds that would be
available if Microraptor were able to produce 20 W of power.

Also of interest are the two dashed, straight lines labeled 1
and 2. These lines represent constant ratios of power to speed;
that is, a constant value for P/v. Referring to Equation 7–13, we
see that P/v � Fv/v � F, so the lines 1 and 2 correspond to lines
of constant force. Line 2 is interesting in that it has the smallest
slope that still touches the power-versus-speed curve.

84. ••• Springs in Parallel Two springs, with force constants 
and , are connected in parallel, as shown in Figure 7–22. How
much work is required to stretch this system a distance x from
the equilibrium position?

k2

k1

85. ••• A block rests on a horizontal frictionless surface. A string is
attached to the block, and is pulled with a force of 45.0 N at an
angle above the horizontal, as shown in Figure 7–23. After the
block is pulled through a distance of 1.50 m, its speed is 2.60 m/s,
and 50.0 J of work has been done on it. (a) What is the angle ?
(b) What is the mass of the block?
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