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another—an important consideration
in antilock braking systems. And though
friction may seem like something
that should be eliminated, we show 
that it is actually essential to life as 
we know it.

Next, we investigate the forces
exerted by strings and springs, and 
show how these forces can safely
suspend a mountain climber over 
a chasm, or cushion the ride of a
locomotive. Finally, we consider the 
key role that force plays in making
circular motion possible.

6–1 Frictional Forces 148

6–2 Strings and Springs 156

6–3 Translational Equilibrium 161

6–4 Connected Objects 165

6–5 Circular Motion 169

Applications of Newton’s Laws

The climber in this photograph may not be thinking about
Newton’s laws, but they are involved in every aspect of his
endeavor. He relies on the forces transmitted through
the ropes to support his weight, and on the pulleys
through which the ropes are threaded to give those
forces the desired directions. His forward progress is
made possible by the substantial frictional force
between his hands and the rope. These are but a
few of the many real-world applications of
Newton’s laws that are explored in this
chapter.

Newton’s laws of motion can
be applied to an immense
variety of systems, a

sampling of which was discussed in
Chapter 5. In this chapter we extend 
our discussion of Newton’s laws by
introducing new types of forces and by
considering new classes of systems.

For example, we begin by considering
the forces due to friction between two
surfaces. As we shall see, the force of
friction is different depending on
whether the surfaces are in static
contact, or are moving relative to one
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▲ FIGURE 6–1 The origin of friction
Even “smooth” surfaces have irregulari-
ties when viewed at the microscopic
level. This type of roughness contributes
to friction.

Viewed at a
microscopic scale ...

... even a “smooth” surface is rough.

FIGURE 6–2 The force of kinetic
friction depends on the normal force
In the top part of the figure, a force F is
required to pull the brick with constant
speed v. Thus the force of kinetic friction
is In the bottom part of the fig-
ure, the normal force has been doubled,
and so has the force of kinetic friction, 
to fk = 2F.

fk = F.

▲
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Adding a second
brick doubles the
normal force ...

... which doubles the
force of kinetic friction.

6–1 Frictional Forces
In Chapter 5 we always assumed that surfaces were smooth and that objects could
slide without resistance to their motion. No surface is perfectly smooth, however.
When viewed on the atomic level, even the “smoothest” surface is actually rough
and jagged, as indicated in Figure 6–1. To slide one such surface across another re-
quires a force large enough to overcome the resistance of microscopic hills and
valleys bumping together. This is the origin of the force we call friction.

We often think of friction as something that should be reduced, or even elim-
inated if possible. For example, roughly 20% of the gasoline you buy does nothing
but overcome friction within your car’s engine. Clearly, reducing that friction
would be most desirable.

On the other hand, friction can be helpful—even indispensable—in other sit-
uations. Suppose, for example, that you are standing still and then decide to begin
walking forward. The force that accelerates you is the force of friction between
your shoes and the ground. We simply couldn’t walk or run without friction—it’s
hard enough when friction is merely reduced, as on an icy sidewalk. Similarly,
starting or stopping a car, or even turning a corner, all require friction. Friction is
an important and common feature of everyday life.

Since friction is caused by the random, microscopic irregularities of a surface,
and since it is greatly affected by other factors such as the presence of lubricants,
there is no simple “law of nature” for friction. There are, however, some very useful
rules of thumb that give us rather accurate, approximate results for calculating fric-
tional forces. In what follows, we describe these rules of thumb for the two types of
friction most commonly used in this text—kinetic friction and static friction.

Kinetic Friction
As its name implies, kinetic friction is the friction encountered when surfaces
slide against one another with a finite relative speed. The force generated by this
friction, which will be designated with the symbol acts to oppose the sliding
motion at the point of contact between the surfaces.

A series of simple experiments illustrates the main characteristics of kinetic
friction. First, imagine attaching a spring scale to a rough object, like a brick, and
pulling it across a table, as shown in Figure 6–2. If the brick moves with constant
velocity, Newton’s second law tells us that the net force on the brick must be zero.
Hence, the force read on the scale, F, has the same magnitude as the force of ki-
netic friction, Now, if we repeat the experiment, but this time put a second
brick on top of the first, we find that the force needed to pull the brick with con-
stant velocity is doubled, to 2F.

ƒk.

fk,
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TABLE 6–1 Typical Coefficients of Friction

Materials Kinetic, Static, 

Rubber on concrete (dry) 0.80 1–4
Steel on steel 0.57 0.74
Glass on glass 0.40 0.94
Wood on leather 0.40 0.50
Copper on steel 0.36 0.53
Rubber on concrete (wet) 0.25 0.30
Steel on ice 0.06 0.10
Waxed ski on snow 0.05 0.10
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.003 0.01

MsMk

From this experiment we see that when we double the normal force—by
stacking up two bricks, for example—the force of kinetic friction is also doubled.
In general, the force of kinetic friction is found to be proportional to the magni-
tude of the normal force, N. Stated mathematically, this observation can be writ-
ten as follows:

6–1

The constant of proportionality, (pronounced “mew sub k”), is referred to as
the coefficient of kinetic friction. In Figure 6–2 the normal force is equal to the
weight of the bricks, but this is a special case. The normal force is greater than the
weight if someone pushes down on the bricks, and this would cause more fric-
tion, or less than the weight if the bricks are placed on an incline. The former case
is considered in several homework problems, and the latter case is considered in
Examples 6–2 and 6–3.

Since and N are both forces, and hence have the same units, we see that 
is a dimensionless number. The coefficient of kinetic friction is always positive,
and typical values range between 0 and 1, as indicated in Table 6–1. The interpre-
tation of is simple: If for example, the force of kinetic friction is one-
tenth of the normal force. Simply put, the greater the greater the friction; the
smaller the smaller the friction.mk

mk

mk = 0.1,mk

mkfk

mk

fk = mkN

As we know from everyday experience, the force of kinetic friction tends to
oppose motion, as shown in Figure 6–2. Thus, is not a vector equation,
because N is perpendicular to the direction of motion. When doing calculations
with the force of kinetic friction, we use to find its magnitude, and we
draw its direction so that it is opposite to the direction of motion.

There are two more friction experiments of particular interest. First, suppose
that when we pull a brick, we initially pull it at the speed v, then later at the speed
2v. What forces do we measure? It turns out that the force of kinetic friction is ap-
proximately the same in each case—it certainly does not double when we double
the speed. Second, let’s try standing the brick on end, so that it has a smaller area in
contact with the table. If this smaller area is half the previous area, is the force
halved? No, the force remains essentially the same, regardless of the area of contact.

We summarize these observations with the following three rules of thumb for
kinetic friction:

Rules of Thumb for Kinetic Friction
The force of kinetic friction between two surfaces is:

1. Proportional to the magnitude of the normal force, N, between the
surfaces:

2. Independent of the relative speed of the surfaces.

3. Independent of the area of contact between the surfaces.

fk = mkN

fk = mkN

fk = mkN

▲ Friction plays an important role in
almost everything we do. Sometimes it is
desirable to reduce friction; in other cases
we want as much friction as possible. For
example, it is more fun to ride on a water
slide (upper) if the friction is low. Similarly,
an engine operates more efficiently when it
is oiled. When running, however, we need
friction to help us speed up, slow down,
and make turns. The sole of this running
shoe (lower), like a car tire, is designed to
maximize friction.
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Again, these rules are useful and fairly accurate, though they are still only ap-
proximate. For simplicity, when we do calculations involving kinetic friction in
this text, we will use these rules as if they were exact.

Before we show how to use in calculations, we should make a comment re-
garding rule 3. This rule often seems rather surprising and counterintuitive. How
is it that a larger area of contact doesn’t produce a larger force? One way to think
about this is to consider that when the area of contact is large, the normal force is
spread out over a large area, giving a small force per area, F/A. As a result, the mi-
croscopic hills and valleys are not pressed too deeply against one another. On the
other hand, if the area is small, the normal force is concentrated in a small region,
which presses the surfaces together more firmly, due to the large force per area.
The net effect is roughly the same in either case.

Now, let’s consider a commonly encountered situation in which kinetic fric-
tion plays a decisive role.

fk

E X A M P L E  6 – 1 P A S S  T H E  S A L T — P L E A S E

Someone at the other end of the table asks you to pass the salt. Feeling quite dashing, you slide the 50.0-g salt shaker in their di-
rection, giving it an initial speed of 1.15 m/s. (a) If the shaker comes to rest with constant acceleration in 0.840 m, what is the co-
efficient of kinetic friction between the shaker and the table? (b) How much time is required for the shaker to come to rest if you
slide it with an initial speed of 1.32 m/s?

P I C T U R E  T H E  P R O B L E M

We choose the positive x direction to be the direction of motion,
and the positive y direction to be upward. Two forces act in the
y direction; the shaker’s weight, and the 
normal force, Only one force acts in the x direction:
the force of kinetic friction, Note that the shaker
moves through a distance of 0.840 m with an initial speed

S T R A T E G Y

a. Since the frictional force has a magnitude of , it
follows that . Therefore, we need to find the magni-
tudes of the frictional force, , and the normal force, N. To 
find we set , and find with the kinematic
equation . To find N we set (since
there is no motion in the y direction) and solve for N using

.

b. The coefficient of kinetic friction is independent of the sliding
speed, and hence the acceleration of the shaker is also indepen-
dent of the speed. As a result, we can use the acceleration from
part (a) in the relation to find the sliding time.

S O L U T I O N

Part (a)

1. Set to find in terms of or

2. Determine by using the kinematic equation
relating velocity to position, 

3. Set to find the normal force, N: or

4. Substitute and (with
) into to find mk:mk = fk/Nax = -0.787 m/s2

 mk =
fk
N

=
-max
mg

=
-ax
g

=
-1-0.787 m/s22

9.81 m/s2
= 0.0802fk = -maxN = mg

N = W = mgaFy = N + 1-W2 = may = 0©Fy = may = 0

 ax =
vx 

2 - v0x 

2

2¢x
=

0 - 11.15 m/s22
210.840 m2 = -0.787 m/s2

vx 

2 = v0x 

2 + 2ax¢x:
 vx 

2 = v0x 

2 + 2ax¢xax

fk = -maxaFx = -fk = maxax:fk©Fx = max

vx = v0x + axt

gFy = may = 0

ay = 0vx 

2 = v0x 

2 + 2ax¢x
axgFx = maxfk

fk

mk = fk>N
fk = mkN

v0x = 1.15 m/s.

f
!
k = -mkNxN .

N
!
= NyN .

W
!
= -WyN = -mgyN ,

x

y

fk

fk
N

W

v0x = 1.15 m/s v = 0

0.840 m

W

N

Physical picture

Free-body
diagram

x

y



6 – 1 F R I C T I O N A L  F O R C E S 151

Part (b)

5. Use ax = -0.787 m/s2, v0x = 1.32 m/s, and vx = 0 in or 
to solve for the time, t: 

I N S I G H T

Note that m canceled in Step 4, so our result for the coefficient of friction is independent of the shaker’s mass. For example, if we
were to slide a shaker with twice the mass, but with the same initial speed, it would slide the same distance. It is unlikely this in-
dependence would have been apparent if we had worked the problem numerically rather than symbolically. Part (b) shows that
the same comments apply to the sliding time—it too is independent of the shaker’s mass.

P R A C T I C E  P R O B L E M

Given the same initial speed and a coefficient of kinetic friction equal to 0.120, what are (a) the acceleration of the shaker, and
(b) the distance it slides? [Answer: (a) , (b) 0.560 m]

Some related homework problems: Problem 3, Problem 18

ax = -1.18 m/s2

 t =
vx - v0x

ax
=

0 - (1.32 m/s)

-0.787 m/s2
= 1.68 s

vx = v0x + axt
 vx = v0x + axt

In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u

E X A M P L E  6 – 2 M A K I N G  A  B I G  S P L A S H

A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

P I C T U R E  T H E  P R O B L E M

As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In
our sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose
the initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and W

!
= 1mg sin u2xN + 1-mg cos u2yN .N

!
= NyN , f

!
k = -mkNxN ,

ay = 0.x0 = 0.
v0x = 0.1ax 7 02,

+y

+x x

y

fk

N

fk
N

W = mg
mg cos

�

Free-body
diagram

Physical picture

W
� �

mg sin �

�

S T R A T E G Y

We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ). 
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of forces
in the x direction, allows us to solve for and, finally, for the time.

CONTINUED ON NEXT PAGE

ax©Fx = max,
fkfk = mkN.

ay = 0©Fy = mayax

ax.
x = x0 + v0xt + 1

2axt
2,

P R O B L E M - S O L V I N G  N O T E

Choice of Coordinate System:
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.
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CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

1. We begin by resolving each of the three force vectors
into x and y components:

2. Set to find N: 

We see that N is less than the weight, mg:

3. Next, set 

Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the
sea lion reaches the bottom. We choose and
we are given that hence we set

and solve for t:x = 1
2 axt

2 = 3.0 m
v0x = 0,

x0 = 0,
x = 1

2 axt
2x = x0 + v0xt + 1

2 axt
2

 = 1.5 m/s2
 = 19.81 m/s22[sin 23° - 10.262 cos 23°]

 ax = g1sin u - mk cos u2ax:

 = mg sin u - mkmg cos u = max

 aFx = mg sin u - mk©Fx = max:

aFy = N - mg cos u = may = 0©Fy = may = 0

Nx = 0  Ny = N

fk,x = -fk = -mkN fk,y = 0

Wx = mg sin u
 
Wy = -mg cos u

Static Friction
Static friction tends to keep two surfaces from moving relative to one another. It,
like kinetic friction, is due to the microscopic irregularities of surfaces that are in
contact. In fact, static friction is typically stronger than kinetic friction because
when surfaces are in static contact, their microscopic hills and valleys can nestle
down deeply into one another, thus forming a strong connection between the sur-
faces that may even include molecular bonding. In kinetic friction, the surfaces
bounce along relative to one another and don’t become as firmly enmeshed.

As we did with kinetic friction, let’s use the results of some simple experiments
to determine the rules of thumb for static friction. We start with a brick at rest on a
table, with no horizontal force pulling on it, as in Figure 6–3. Of course, in this case
the force of static friction is zero; no force is needed to keep the brick from sliding.

Next, attach a spring scale to the brick and pull with a small force of magni-
tude a force small enough that the brick doesn’t move. Since the brick is still at
rest, it follows that the force of static friction, is equal in magnitude to the ap-
plied force; that is, Now, increase the applied force to a new value, 
which is still small enough that the brick stays at rest. In this case, the force of sta-
tic friction has also increased so that If we continue increasing the applied
force, we eventually reach a value beyond which the brick starts to move and
kinetic friction takes over, as shown in the figure. Thus, there is an upper limit to
the force that can be exerted by static friction, and we call this upper limit fs,max.

fs = F2.

F2,fs = F1.
fs,

F1,

I N S I G H T

Note that we don’t need the sea lion’s mass to find the time. On the other hand, if we wanted the magnitude of the force of
kinetic friction, the mass would be needed.

It is useful to compare the sliding salt shaker in Example 6–1 with the sliding sea lion in this Example. In the case of the salt
shaker, friction is the only force acting along the direction of motion (opposite to the direction of motion, in fact), and it brings
the object to rest. Because of the slope on which the sea lion slides, however, it experiences both a component of its weight in the
forward direction and the friction force opposite to the motion. Since the component of the weight is the larger of the two forces,
the sea lion accelerates down the slope—friction only acts to slow its progress.

P R A C T I C E  P R O B L E M

How long would it take the sea lion to reach the water if there were no friction in this system? [Answer: 1.3 s]

Some related homework problems: Problem 11, Problem 72

fk = mkN = mkmg cos u,

t = B2x
ax

= C213.0 m2
1.5 m/s2

= 2.0 s

N = mg cos u
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To summarize, the force of static friction, can have any value between zero
and This can be written mathematically as follows:

6–2

Imagine repeating the experiment, only now with a second brick on top of the
first. This doubles the normal force and it also doubles the maximum force of
static friction. Thus, the maximum force is proportional to the magnitude of the
normal force, or

6–3

The constant of proportionality is called (pronounced “mew sub s”), the
coefficient of static friction. Note that like is dimensionless. Typical values
are given in Table 6–1. In most cases, is greater than indicating that the force
of static friction is greater than the force of kinetic friction, as mentioned. In fact,
it is not uncommon for to be greater than 1, as in the case of rubber in contact
with dry concrete.

Finally, two additional comments regarding the nature of static friction: (i) Ex-
periments show that static friction, like kinetic friction, is independent of the area
of contact. (ii) The force of static friction is not in the direction of the normal force,
thus is not a vector relation. The direction of is parallel to the sur-
face of contact, and opposite to the direction the object would move if there were
no friction.

These observations are summarized in the following rules of thumb:

Rules of Thumb for Static Friction
The force of static friction between two surfaces has the following properties:

1. It takes on any value between zero and the maximum possible force of
static friction, 

2. It is independent of the area of contact between the surfaces.

3. It is parallel to the surface of contact, and in the direction that opposes
relative motion.

0 … fs … msN

fs,max = msN:

fsfs,max = msN

ms

mk,ms

mk,ms,
ms

fs,max = msN

0 … fs … fs,max

fs,max.
fs,

FIGURE 6–3 The maximum limit 
of static friction
As the force applied to an object
increases, so does the force of static
friction—up to a certain point. Beyond
this maximum value, static friction can
no longer hold the object, and it begins 
to slide. Now kinetic friction takes over.

▲Static friction can have a magnitude of zero ...

... or greater than zero ...

... up to a maximum value.

Once sliding begins, however, the friction is kinetic and has a magnitude less
than the maximum value
for static friction.

v = 0

v = 0

v = 0
F1

= –F2 F2

v

fk F

F1

0

0

fs

= –fs

fs = 0

0

▲ The coefficient of static friction between
two surfaces depends on many factors,
including whether the surfaces are dry or
wet. On the desert floor of Death Valley,
California, occasional rains can reduce 
the friction between rocks and the sandy
ground to such an extent that strong winds
can move the rocks over considerable dis-
tances. This results in linear “rock trails,”
which record the direction of the winds at
different times.



154 C H A P T E R  6 A P P L I C A T I O N S  O F  N E W T O N ’ S  L A W S

Next, we consider a practical method of determining the coefficient of static
friction. As with the last Example, we begin by resolving all relevant force vectors
into their x and y components.

E X A M P L E  6 – 3 S L I G H T L Y  T I L T E D

A flatbed truck slowly tilts its bed upward to dispose of a 95.0-kg crate. For small angles of tilt the crate stays put, but when the
tilt angle exceeds 23.2°, the crate begins to slide. What is the coefficient of static friction between the bed of the truck and the crate?

P I C T U R E  T H E  P R O B L E M

We align our coordinate system with the incline, and choose the positive x direction to point down the slope. Note that 
three forces act on the crate: the normal force, the force of static friction, and the weight,

1-mg cos u2yN .W
!
= 1mg sin u2xN  +

f
!
s = -msNxN ,N

!
= NyN ,

�

fs

N

Truck bed

W

Physical picture

+x

+y

W=mg

fs
N

Free-body diagram

�mg sin  

mg cos  � x

y

�

S T R A T E G Y

When the crate is on the verge of slipping, but has not yet slipped, its acceleration is zero in both the x and y directions. In addi-
tion, “verge of slipping” means that the magnitude of the static friction is at its maximum value, Thus, we set

to find N, then use to find 

S O L U T I O N

1. Resolve the three force vectors acting on the
crate into x and y components:

2. Set since 

Solve for the normal force, N:

3. Set since the crate is at rest, and use
the result for N obtained in Step 2:

4. Solve the expression for the coefficient of static
friction, 

I N S I G H T

In general, if an object is on the verge of slipping when the surface on which it rests is tilted at an angle , the coefficient of 
static friction between the object and the surface is . Note that this result is independent of the mass of the object. In
particular, the critical angle for this crate is precisely the same whether it is filled with feathers or lead bricks.

P R A C T I C E  P R O B L E M

Find the magnitude of the force of static friction acting on the crate. [Answer: ]

Some related homework problems: Problem 12, Problem 82

fs,max = msN = 367 N

ms = tan uc
uc

 ms =
mg sin u

mg cos u
= tan u = tan 23.2° = 0.429

ms:
 msmg cos u = mg sin u

 = 0 - msmg cos u + mg sin u

 = 0 - msN + mg sin u

 aFx = Nx + fs,x + Wx = max = 0©Fx = max = 0,

N = mg cos u

aFy = Ny + fs,y + Wy = N + 0 - mg cos u = may = 0ay = 0.©Fy = may = 0,

Wx = mg sin u   Wy = -mg cos u

 fs,x = -fs,max = -msN   fs,y = 0

Nx = 0   Ny = N

ms.©Fx = max = 0©Fy = may = 0
fs = fs,max = msN.
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Recall that static friction can have magnitudes less than its maximum possible
value. This point is emphasized in the following Active Example.

A C T I V E  E X A M P L E  6 – 1 T H E  F O R C E  O F  S T A T I C  F R I C T I O N

In the previous Example, what is the magnitude of the force of static friction acting on the crate when the truck bed is tilted at
an angle of 20.0°?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Sum the x components of force acting on the crate:

2. Set this sum equal to zero (since ) and solve
for the magnitude of the static friction force, 

3. Substitute numerical values, including 

I N S I G H T

Notice that the force of static friction in this case has a magnitude (319 N) that is less than the value of 367 N found in the Practice
Problem of Example 6–3, even though the coefficient of static friction is precisely the same.

Y O U R  T U R N

At what tilt angle will the force of static friction have a magnitude of 225 N?

(Answers to Your Turn problems are given in the back of the book.)

fs = 319 Nu = 20.0°:

fs:
fs = mg sin uax = 0

aFx = 0 - fs + mg sin u

Finally, friction often enters into problems dealing with vehicles with rolling
wheels. In Conceptual Checkpoint 6–1, we consider which type of friction is ap-
propriate in such cases.

C O N C E P T U A L  C H E C K P O I N T  6 – 1 F R I C T I O N  F O R  R O L L I N G  T I R E S

A car drives with its tires rolling freely. Is the friction between the tires and the road
(a) kinetic or (b) static?

R E A S O N I N G  A N D  D I S C U S S I O N

A reasonable-sounding answer is that because the car is moving, the friction between its
tires and the road must be kinetic friction—but this is not the case.
Actually, the friction is static because the bottom of the tire is in static contact with the
road. To understand this, watch your feet as you walk. Even though you are moving,
each foot is in static contact with the ground once you step down on it. Your foot doesn’t
move again until you lift it up and move it forward for the next step. A tire can be
thought of as a succession of feet arranged in a circle, each of which is momentarily in
static contact with the ground.

A N S W E R

(b) The friction between the tires and the road is static friction.

The angle that the sloping sides of a
sand pile (left) make with the horizontal is
determined by the coefficient of static
friction between grains of sand, in much
the same way that static friction deter-
mines the angle at which the crate in
Example 6–3 begins to slide. The same
basic mechanism determines the angle 
of the cone-shaped mass of rock debris 
at the base of a cliff, known as a talus
slope (right).

▲
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30 mi/h
Skidding, 38 feet

Skidding, 150 feet

Antilock braking, 30 feet

Antilock braking, 120 feet

60 mi/h

Braking
starts here

▲ FIGURE 6–4 Stopping distance with and without ABS
Antilock braking systems (ABS) allow a car to stop with static friction rather
than kinetic friction—even in a case where a person slams on the brakes. As
a result, the braking distance is reduced, due to the fact that is typically
greater than Professional drivers can beat the performance of ABS by
carefully adjusting the force they apply to the brake pedal during a stop, but
ABS provides essentially the same performance—within a few percent—for
a person who simply pushes the brake pedal to the floor and holds it there.

mk.
ms

▲ Static Versus Kinetic Friction Each of
the two photos above shows five images
of a toy car as it slides down an inclined
surface. (a) In this photo the front wheels
are locked, and skid on the surface, but
the rear wheels roll without slipping. This
means the front wheels experience kinetic
friction and the rear wheels experience
static friction. Because the force of kinetic
friction is usually less than the force of
static friction, the front wheels go down
the incline first, pulling the rear wheels
behind. (b) The situation is reversed in
this photo, and the rear wheels are the
ones that skid and experience a smaller
frictional force. As a result, the rear wheels
slide down the incline more quickly than
the front wheels, causing the car to spin
around. This change in behavior, which
could be dangerous in a real-life situation,
illustrates the significant differences
between static and kinetic friction.

To summarize, if a car skids, the friction acting on it is kinetic; if its wheels
are rolling, the friction is static. Since static friction is generally greater than ki-
netic friction, it follows that a car can be stopped in less distance if its wheels are
rolling (static friction) than if its wheels are locked up (kinetic friction). This is
the idea behind the antilock braking systems (ABS) that are available on many
cars. When the brakes are applied in a car with ABS, an electronic rotation sen-
sor at each wheel detects whether the wheel is about to start skidding. To pre-
vent skidding, a small computer automatically begins to modulate the hy-
draulic pressure in the brake lines in short bursts, causing the brakes to release
and then reapply in rapid succession. This allows the wheels to continue rotat-
ing, even in an emergency stop, and for static friction to determine the stopping
distance. Figure 6–4 shows a comparison of braking distances for cars with and
without ABS. An added benefit of ABS is that a driver is better able to steer and
control a braking car if its wheels are rotating.

R E A L - W O R L D  P H Y S I C S

Antilock braking systems

(a) Front wheels locked; rear wheels free
to turn

(b) Rear wheels locked; front wheels free
to turn

6–2 Strings and Springs
A common way to exert a force on an object is to pull on it with a string, a rope, a
cable, or a wire. Similarly, you can push or pull on an object if you attach it to a
spring. In this section we discuss the basic features of strings and springs and how
they transmit forces.

Strings and Tension
Imagine picking up a light string and holding it with one end in each hand. If
you pull to the right with your right hand with a force T and to the left with your
left hand with a force T, the string becomes taut. In such a case, we say that there
is a tension T in the string. To be more specific, if your friend were to cut the
string at some point, the tension T is the force pulling the ends apart, as illus-
trated in Figure 6–5—that is, T is the force your friend would have to exert with
each hand to hold the cut ends together. Note that at any given point, the tension
pulls equally to the right and to the left.
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As an example, consider a rope that is attached to the ceiling at one end, and
to a box with a weight of 105 N at the other end, as shown in Figure 6–6. In addi-
tion, suppose the rope is uniform, and that it has a total weight of 2.00 N. What
is the tension in the rope (i) where it attaches to the box, (ii) at its midpoint, and
(iii) where it attaches to the ceiling?

First, the rope holds the box at rest; thus, the tension where the rope attaches
to the box is simply the weight of the box, At the midpoint of the
rope, the tension supports the weight of the box, plus the weight of half the
rope. Thus, Similarly, at the ceiling the tension
supports the box plus all of the rope, giving a tension of Note that
the tension pulls down on the ceiling but pulls up on the box.

From this discussion, we can see that the tension in the rope changes slightly
from top to bottom because of the mass of the rope. If the rope had less mass, the
difference in tension between its two ends would also be less. In particular, if the
rope’s mass were to be vanishingly small, the difference in tension would vanish
as well. In this text, we will assume that all ropes, strings, wires, and so on are
practically massless—unless specifically stated otherwise—and, hence, that the
tension is the same throughout their length.

Pulleys are often used to redirect a force exerted by a string, as indicated in
Figure 6–7. In the ideal case, a pulley has no mass and no friction in its bearings.
Thus, an ideal pulley simply changes the direction of the tension in a string, without
changing its magnitude. If a system contains more than one pulley, however, it is
possible to arrange them in such a way as to “magnify a force,” even if each pul-
ley itself merely redirects the tension in a string. The traction device considered in
the next Example shows one way this can be accomplished in a system that uses
three ideal pulleys.

T3 = 107 N.
T2 = 105 N + 1

212.00 N2 = 106 N.

T1 = 105 N.

▲ FIGURE 6–6 Tension in a heavy rope
Because of the weight of the rope, the
tension is noticeably different at points 
1, 2, and 3. As the rope becomes lighter,
however, the difference in tension
decreases. In the limit of a rope of zero
mass, the tension is the same throughout
the rope.

T3

T2

T1

▲ FIGURE 6–5 Tension in a string
A string, pulled from either end, has a tension, T. If the string were to be cut
at any point, the force required to hold the ends together is T.

T

T

T

T

▲ FIGURE 6–7 A pulley changes the
direction of a tension

The tension in an
ideal rope has the
same magnitude
everywhere ...

... but a pulley
 changes the
 direction in
 which it
 acts.

T T

E X A M P L E  6 – 4 A  B A D  B R E A K :  S E T T I N G  A  B R O K E N  L E G  W I T H  T R A C T I O N

A traction device employing three pulleys is applied to a broken leg, as shown in the sketch. The middle pulley is attached to the
sole of the foot, and a mass m supplies the tension in the ropes. Find the value of the mass m if the force exerted on the sole of
the foot by the middle pulley is to be 165 N.

CONTINUED ON NEXT PAGE
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CONTINUED FROM PREVIOUS PAGE

P I C T U R E  T H E  P R O B L E M

Our sketch shows the physical picture as well as the 
tension forces acting on the middle pulley. Notice that on 
the upper portion of the rope the tension is 

on the lower portion it is

S T R A T E G Y

We begin by noting that the rope supports the hanging mass
m. As a result, the tension in the rope, T, must be equal in mag-
nitude to the weight of the mass: 

Next, the pulleys simply change the direction of the tension
without changing its magnitude. Therefore, the net force
exerted on the sole of the foot is the sum of the tension T at
40.0° above the horizontal plus the tension T at 40.0° below the
horizontal. We will calculate the net force component by
component.

Once we calculate the net force acting on the foot, we set it
equal to 165 N and solve for the tension T. Finally, we find the
mass using the relation 

S O L U T I O N

1. First, consider the tension that acts upward and to the
right on the middle pulley. Resolve this tension into
x and y components:

2. Next, consider the tension that acts downward 
and to the right on the middle pulley. Resolve this
tension into x and y components. Note the minus sign
in the y component:

3. Sum the x and y components of force acting on the
middle pulley. We see that the net force acts only
in the x direction, as one might expect from symmetry:

4. Step 3 shows that the net force acting on the
middle pulley is Set this force equal
to 165 N and solve for T:

5. Solve for the mass, m, using 

I N S I G H T

As pointed out earlier, this pulley arrangement “magnifies the force” in the sense that a 108-N weight attached to the rope pro-
duces a 165-N force exerted on the foot by the middle pulley. Note that the tension in the rope always has the same value—

—as expected with ideal pulleys, but because of the arrangement of the pulleys the force applied to the foot by the
rope is 

In addition, notice that the force exerted on the foot by the middle pulley produces an opposing force in the leg that acts in the
direction of the head (a cephalad force), as desired to set a broken leg and keep it straight as it heals.

P R A C T I C E  P R O B L E M

(a) Would the required mass m increase or decrease if the angles in this device were changed from 40.0° to 30.0°? (b) Find the
mass m for an angle of 30.0°. [Answer: (a) The required mass m would decrease. (b) 9.71 kg]

Some related homework problems: Problem 23, Problem 26, Problem 36

2T cos 40.0° 7 T.
T = 108 N

 m =
T
g

=
108 N

9.81 m/s2
= 11.0 kg

T = mgT = mg:

T =
165 N

2 cos 40.0°
= 108 N

2T cos 40.0°.
2T cos 40.0° = 165 N

 aFy = T sin 40.0° - T sin 40.0° = 0

 aFx = T cos 40.0° + T cos 40.0° = 2T cos 40.0°

T2,x = T cos 40.0°  T2,y = -T sin 40.0°

T1,x = T cos 40.0°  T1,y = T sin 40.0°

T = mg.

T = mg.

1-T sin 40.0°2yN .T
!
2 = 1T cos 40.0°2xN  +
1T cos 40.0°2xN + 1T sin 40.0°2yN ;

T
!
1 =

m

40.0°

40.0°

Tension forces acting
on middle pulley

40.0°
T sin 40.0° T cos 40.0°

T cos 40.0°T sin 40.0°
T

T

40.0°

x

y

Physical picture

T1

T2
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C O N C E P T U A L  C H E C K P O I N T  6 – 2 C O M P A R E  T H E  R E A D I N G S  O N  T H E  S C A L E S

The scale at left reads 9.81 N. Is the reading of the
scale at right (a) greater than 9.81 N, (b) equal to
9.81 N, or (c) less than 9.81 N?

R E A S O N I N G  A N D  D I S C U S S I O N

Since a pulley simply changes the direction of the tension in a string without changing
its magnitude, it is clear that the scale attached to the ceiling reads the same as the scale
shown in the figure to the right.
There is no difference, however, between attaching the top end of the scale to something
rigid and attaching it to another 1.00-kg hanging mass. In either case, the fact that the
scale is at rest means that a force of 9.81 N must be exerted to the left on the top of the
scale to balance the 9.81-N force exerted on the lower end of the scale. As a result, the
two scales read the same.

A N S W E R

(b) The reading of the scale at right is equal to 9.81 N.

1.00 kg 1.00 kg1.00 kg

1.00 kg

Springs and Hooke’s Law
Suppose you take a spring of length L, as shown in Figure 6–8 (a), and attach it to a
block. If you pull on the spring, causing it to stretch to a length the spring
pulls on the block with a force of magnitude F. If you increase the length of the
spring to the force exerted by the spring increases to 2F. Similarly, if you
compress the spring to a length the spring pushes on the block with a force
of magnitude F, where F is the same force given previously. As you might expect,
compression to a length results in a push of magnitude 2F.

As a result of these experiments, we can say that a spring exerts a force that is
proportional to the amount, x, by which it is stretched or compressed. Thus, if F is
the magnitude of the spring force, we can say that

In this expression, k is a constant of proportionality, referred to as the force con-
stant, or, equivalently, as the spring constant. Since F has units of newtons and x
has units of meters, it follows that k has units of newtons per meter, or N/m. The
larger the value of k, the stiffer the spring.

To be more precise, consider the spring shown in Figure 6–8 (b). Note that we
have placed the origin of the x axis at the equilibrium length of the spring—that
is, at the position of the spring when no force acts on it. Now, if we stretch the
spring so that the end of the spring is at a positive value of we find that
the spring exerts a force of magnitude kx in the negative x direction. Thus, the
spring force (which has only an x component) can be written as

Similarly, consider compressing the spring so that its end is at a negative value
of In this case, the force exerted by the spring is of magnitude kx, and
points in the positive x direction, as is shown in Figure 6–8 (b). Again, we can
write the spring force as

Fx = -kx

x 1x 6 02.

Fx = -kx

x 1x 7 02,

F = kx

L - 2x

L - x,
L + 2x,

L + x,
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To see that this is correct—that is, that is positive in this case—recall that x
is negative, which means that is positive.

This result for the force of a spring is known as Hooke’s law, after Robert
Hooke (1635–1703). It is really just a good rule of thumb rather than a law of na-
ture. Clearly, it can’t work for any amount of stretching. For example, we know
that if we stretch a spring far enough it will be permanently deformed, and will
never return to its original length. Still, for small stretches or compressions,
Hooke’s law is quite accurate.

Rules of Thumb for Springs (Hooke’s Law)
A spring stretched or compressed by the amount x from its equilibrium
length exerts a force whose x component is given by

(gives magnitude and direction) 6–4

If we are interested only in the magnitude of the force associated with a given
stretch or compression, we use the somewhat simpler form of Hooke’s law:

(gives magnitude only) 6–5

In this text, we consider only ideal springs—that is, springs that are massless, and
that are assumed to obey Hooke’s law exactly.

Since the stretch of a spring and the force it exerts are proportional, we can
now see how a spring scale operates. In particular, pulling on the two ends of a
scale stretches the spring inside it by an amount proportional to the applied force.
Once the scale is calibrated—by stretching the spring with a known, or reference,
force—we can use it to measure other unknown forces.

Finally, it is useful to note that Hooke’s law, which we’ve introduced in the
context of ideal springs, is particularly important in physics because it applies
to so much more than just springs. For example, the forces that hold atoms to-
gether are often modeled by Hooke’s law—that is, as “interatomic springs”—
and these are the forces that are ultimately responsible for the normal force
(Chapter 5), vibrations and oscillations (Chapter 13), wave motion (Chapter 14),
and even the thermal expansion of solids (Chapter 16). And this just scratches

F = kx

Fx = -kx

1-x2
Fx

No extension;
zero force

Extension = x;
Force = F

Extension = 2x;
Force = 2F

(a) Doubling the extension doubles the force.

x
0

F

2F

L

L x

L 2x

Positive displacement,
negative force

Negative displacement,
positive force

x = 0
Zero force

x < 0
Fx = –kx > 0

x > 0
Fx = –kx < 0

x
0

F

F

(b) The spring force is opposite to the
displacement from equilibrium.

x

x

FIGURE 6–8 The force exerted by
a spring
When dealing with a spring, it is conve-
nient to choose the origin at the equilib-
rium (zero force) position. In the cases
shown here, the force is strictly in the x
direction, and is given by Note
that the minus sign means that the force
is opposite to the displacement; that is,
the force is restoring.

Fx = -kx.

▲

▲ Springs come in a variety of sizes and
shapes. The large springs on a railroad car
(top) are so stiff and heavy that you can’t
compress or stretch them by hand. Still,
three of them are needed to smooth the ride
of this car. In contrast, the delicate spiral
spring inside a watch (bottom) flexes with
even the slightest touch. It exerts enough
force, however, to power the equally deli-
cate mechanism of the watch.
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the surface—Hooke’s law comes up in one form or another in virtually every
field of physics. In the following Active Example, we present a biomedical ap-
plication of Hooke’s law.

A C T I V E  E X A M P L E  6 – 2 N A S A L  S T R I P S

An increasingly popular device for im-
proving air flow through nasal passages
is the nasal strip, which consists of two

flat, polyester springs enclosed by an adhesive tape covering. Mea-
surements show that a nasal strip can exert an outward force of
0.22 N on the nose, causing it to expand by 3.5 mm. (a) Treating the
nose as an ideal spring, find its force constant in newtons per
meter. (b) How much force would be required to expand the nose
by 4.0 mm?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Solve the magnitude form of Hooke’s law,
for the force constant, k:

2. Substitute numerical values for F and x:

Part (b)

3. Use to find the required force:

I N S I G H T

Even though the human nose is certainly not an ideal spring, Hooke’s law is still a useful way to model its behavior when deal-
ing with forces and the stretches they cause.

Y O U R  T U R N

Suppose a new nasal strip comes on the market that exerts an outward force of 0.32 N. What expansion of the nose will be caused
by this strip?

(Answers to Your Turn problems are given in the back of the book.)

F = 0.25 NF = kx

k = 62 N/m

F = kx,
k = F/x

Springs

Adhesive tabs

Posteroinferior
F F

Anterosuperior

R E A L - W O R L D
P H Y S I C S :  B I O

6–3 Translational Equilibrium
When we say that an object is in translational equilibrium, we mean that the net
force acting on it is zero:

6–6

From Newton’s second law, this is equivalent to saying that the object’s accelera-
tion is zero. In two-dimensional systems, translational equilibrium implies two
independent conditions: and In one dimension, only one of
these conditions will apply.

Later, in Chapters 10 and 11, we will study objects that have both rotational
and linear motions. In such cases, rotational equilibrium will be as important as
translation equilibrium. For now, however, when we say equilibrium, we simply
mean translational equilibrium.

As a first example, consider the one-dimensional situation illustrated in
Figure 6–9. Here we see a person lifting a bucket of water from a well by pulling
down on a rope that passes over a pulley. If the bucket’s mass is m, and it is rising
with constant speed v, what is the tension in the rope attached to the bucket? In
addition, what is the tension in the chain that supports the pulley?T2

T1

©Fy = 0.©Fx = 0

aF
!
= 0
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To answer these questions, we first note that both the bucket and the pulley
are in equilibrium; that is, they both have zero acceleration. As a result, the net
force on each of them must be zero.

Let’s start with the bucket. In Figure 6–9, we see that just two forces act on the
bucket: (i) its weight downward, and (ii) the tension in the rope, up-
ward. If we take upward to be the positive direction, we can write for the
bucket as follows:

Therefore, the tension in the rope is Note that this is also the force the
person must exert downward on the rope, as expected.

Next, we consider the pulley. In Figure 6–9, we see that three forces act on it:
(i) the tension in the chain, upward, (ii) the tension in the part of the rope lead-
ing to the bucket, downward, and (iii) the tension in the part of the rope leading
to the person, downward. Note that we don’t include the weight of the pulley
since we consider it to be ideal; that is, massless and frictionless. If we again take
upward to be positive, the statement that the net force acting on the pulley is zero

can be written

It follows that the tension in the chain is twice the weight of the
bucket of water!

In the next Conceptual Checkpoint we consider a slight variation of this
situation.

T2 = 2T1 = 2mg,

T2 - T1 - T1 = 0

1©Fy = 02

T1

T1

T2

T1 = mg.

T1 - mg = 0

©Fy = 0
T1W = mg

FIGURE 6–9 Raising a bucket
A person lifts a bucket of water from the
bottom of a well with a constant speed, v.
Because the speed is constant, the net
force acting on the bucket must be zero.

▲

W

Physical picture

Forces acting
on the pulley

Forces acting
on the bucket

v

T2

T1 T1

W

T1

T1 T1

y

y

T2

T1

C O N C E P T U A L  C H E C K P O I N T  6 – 3 C O M P A R I N G  T E N S I O N S

A person hoists a bucket of water from a well and holds the rope, keeping the bucket at
rest, as at left. A short time later, the person ties the rope to the bucket so that the rope
holds the bucket in place, as at right. In this case, is the tension in the rope (a) greater
than, (b) less than, or (c) equal to the tension in the first case?
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R E A S O N I N G  A N D  D I S C U S S I O N

In the first case (left), the only upward force exerted on the bucket is the tension in the
rope. Since the bucket is at rest, the tension must be equal in magnitude to the weight of
the bucket. In the second case (right), the two ends of the rope exert equal upward forces
on the bucket, hence the tension in the rope is only half the weight of the bucket. To see
this more clearly, imagine cutting the bucket in half so that each end of the rope supports
half the weight, as indicated in the accompanying diagram.

m

T = mg

m
2

m
2

T = 2
mg

T = 2
mg

A N S W E R

(b) The tension in the second case is less than in the first.

In the next two Examples, we consider two-dimensional systems in which
forces act at various angles with respect to one another. Hence, our first step is to
resolve the relevant vectors into their x and y components. Following that, we
apply the conditions for translational equilibrium, and ©Fy = 0.©Fx = 0

E X A M P L E  6 – 5 S U S P E N D E D  V E G E T A T I O N

To hang a 6.20-kg pot of flowers, a gardener uses two wires—one attached horizontally to a wall, the other sloping upward at an
angle of and attached to the ceiling. Find the tension in each wire.

P I C T U R E  T H E  P R O B L E M

u = 40.0°

We choose a typical coordinate system, with the positive x di-
rection to the right and the positive y direction upward. With
this choice, tension 1 is in the positive x direction, 
the weight is in the negative y direction, and ten-
sion 2 has a negative x component and a positive y component,

S T R A T E G Y

The pot is at rest, and therefore the net force acting on it is zero.
As a result, we can say that (i) and (ii) . These
two conditions allow us to determine the magnitude of the
two tensions, and .

CONTINUED ON NEXT PAGE

T2T1

gFy = 0gFx = 0

T
!
2 = 1-T2 cos u2xN + 1T2 sin u2yN .

W
!
= -mg yN ,

T
!
1 = T1xN ,

� �T1

W

T2
T1

T2

x

y

Physical picture Free-body diagram

T2 sin   �

T2 cos  �

W
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� �
TT

W

x

y

CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

1. First, resolve each of the forces acting on the
pot into x and y components:

2. Now, set Note that this condition
gives a relation between and 

3. Next, set This time, the resulting condition
determines in terms of the weight, mg:

4. Use the relation obtained in Step 3 to find 

5. Finally, use the connection between the two tensions
(obtained from ) to find 

I N S I G H T

Notice that even though two wires suspend the pot, they both have tensions greater than the pot’s weight, This is
an important point for architects and engineers to consider when designing structures.

P R A C T I C E  P R O B L E M

Find and if the second wire slopes upward at the angle (a) (b) or (c) [Answer: (a)
(b) (c) ]

Some related homework problems: Problem 34, Problem 37

T1 = 0, T2 = mg = 60.8 NT1 = 35.1 N, T2 = 70.2 NT2 = 178 N
T1 = 167 N,u = 90.0°.u = 60.0°,u = 20°,T2T1

mg = 60.8 N.

T1:©Fx = 0
T1 = T2 cos u = 194.6 N2 cos 40.0° = 72.5 N

T2 =
mg

sin u
=
16.20 kg219.81 m/s22

sin 40.0°
= 94.6 NT2:

T2
aFy = T1,y + T2,y + Wy = 0 + T2 sin u + 1-mg2 = 0©Fy = 0.

T2:T1
aFx = T1,x + T2,x + Wx = T1 + 1-T2 cos u2 + 0 = 0©Fx = 0.

Wx = 0   Wy = -mg
 T2,x = -T2 cos u   T2,y = T2 sin u

 T1,x = T1   T1,y = 0

A C T I V E  E X A M P L E  6 – 3 T H E  F O R C E S  I N  A  L O W - T E C H  L A U N D R Y

A 1.84-kg bag of clothespins hangs in the middle of a clothesline, causing it to sag by an angle Find the tension, T, in
the clothesline.

u = 3.50°.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Find the y component for each tension:

2. Find the y component of the weight:

3. Set 

4. Solve for T:

I N S I G H T

Note that we only considered the y components of force in our calculation. This is because forces in the x direction automatically
balance, due to the symmetry of the system.

Y O U R  T U R N

At what sag angle, will the tension in the clothesline have a magnitude of 175 N?

(Answers to Your Turn problems are given in the back of the book.)

u,

T = mg/12 sin u2 = 148 N

T sin u + T sin u - mg = 0©Fy = 0:

Wy = -mg

Ty = T sin u

T2 sin u = mg

T1 = T2 cos u
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▲ Like the bag of clothespins in Active
Example 6–3, this mountain climber is in
static equilibrium. Since the ropes suspend-
ing the climber are nearly horizontal, the
tension in them is significantly greater than
the climber’s weight.

At 148 N, the tension in the clothesline is quite large, especially when you con-
sider that the weight of the clothespin bag itself is only 18.1 N. The reason for such
a large value is that the vertical component of the two tensions is which,
for is (0.122)T. If (0.122)T is to equal the weight of the bag, it is clear that
T must be roughly eight times the bag’s weight.

If you and a friend were to pull on the two ends of the clothesline, in an at-
tempt to straighten it out, you would find that no matter how hard you pulled, the
line would still sag. You may be able to reduce to quite a small value, but as you
do so the corresponding tension increases rapidly. In principle, it would take an
infinite force to completely straighten the line and reduce to zero.

On the other hand, if were 90°, so that the two halves of the clothesline were
vertical, the tension would be In this case, each side
of the line supports half the weight of the bag, as expected.

6–4 Connected Objects
Interesting applications of Newton’s laws arise when we consider accelerating
objects that are tied together. Suppose, for example, that a force of magnitude F
pulls two boxes—connected by a string—along a frictionless surface, as in
Figure 6–10. In such a case, the string has a certain tension, T, and the two boxes
have the same acceleration, a. Given the masses of the boxes and the applied
force F, we would like to determine both the tension in the string and the ac-
celeration of the boxes.

First, sketch the free-body diagram for each box. Box 1 has two horizontal
forces acting on it: (i) the tension T to the left, and (ii) the force F to the right.
Box 2 has only a single horizontal force, the tension T to the right. If we take the
positive direction to be to the right, Newton’s second law for the two boxes can
be written as follows:

6–7

Since the boxes have the same acceleration, a, we have set 
Next, we can eliminate the tension T by adding the two equations:

With this result, it is straightforward to solve for the acceleration in terms of the
applied force F:

6–8a =
F

m1 + m2

F = 1m1 + m22a
T = m2a

F - T = m1a

a1 = a2 = a.

T = m2a2 = m2a     box 2
F - T = m1a1 = m1a     box 1

T = mg/12 sin 90°2 = mg/2.
u

u

u

u = 3.50°,
2T sin u,

▲ FIGURE 6–10 Two boxes connected by a string
The string ensures that the two boxes have the same acceleration. This physical connection results in a mathematical connection,
as shown in Equation 6–7. Note that in this case we treat each box as a separate system.

T T F

Physical picture
Free-body diagrams

(horizontal components only)

m2 m1
T T F

Box 2 Box 1

x



Finally, substitute this expression for a into either of the second-law equations to
find the tension. The algebra is simpler if we use the equation for box 2. We find

6–9

It is left as an exercise to show that the equation for box 1 gives the same expres-
sion for T.

A second way to approach this problem is to treat both boxes together as a sin-
gle system with a mass as shown in Figure 6–11. The only external hori-
zontal force acting on this system is the applied force F—the two tension forces
are now internal to the system, and internal forces are not included when apply-
ing Newton’s second law. As a result, the horizontal acceleration is simply

as given in Equation 6–8. This is certainly a quick way to find the
acceleration a, but to find the tension T we must still use one of the relations given
in Equations 6–7.

In general, we are always free to choose the “system” any way we like—we can
choose any individual object, as when we considered box 1 and box 2 separately,
or we can choose all the objects together. The important point is that Newton’s sec-
ond law is equally valid no matter what choice we make for the system, as long as
we remember to include only forces external to that system in the corresponding
free-body diagram.

F/1m1 + m22,

m1 + m2,

T = m2a = a m2

m1 + m2
bF

C O N C E P T U A L  C H E C K P O I N T  6 – 4 T E N S I O N  I N  T H E  S T R I N G

Two masses, m1 and m2, are connected by a string that passes over a pulley. Mass m1
slides without friction on a horizontal tabletop, and mass m2 falls vertically downward.
Both masses move with a constant acceleration of magnitude a. Is the tension in the
string (a) greater than, (b) equal to, or (c) less than m2g?

R E A S O N I N G  A N D  D I S C U S S I O N

First, note that m2 accelerates downward, which means that the net force acting on it is
downward. Only two forces act on m2, however: the tension in the string (upward) and
its weight (downward). Since the net force is downward, the tension in the string must
be less than the weight, m2 g.

A common misconception is that since m2 has to pull m1 behind it, the tension in the
string must be greater than m2 g. Certainly, attaching the string to m1 has an effect on
the tension. If the string were not attached, for example, its tension would be zero.
Hence, m2 pulling on m1 increases the tension to a value greater than zero, though still
less than m2 g.

A N S W E R

(c) The tension in the string is less than m2g.

166 C H A P T E R  6 A P P L I C A T I O N S  O F  N E W T O N ’ S  L A W S

m2

a

a

m1

▲ FIGURE 6–11 Two boxes, one system
In this case we consider the two boxes together as a single system of mass The only external horizontal force acting on this
system is hence the horizontal acceleration of the system is in agreement with Equation 6–8.a = F/1m1 + m22,F

!
;

m1 + m2.

T T F F

Physical picture Free-body diagram
(horizontal components only)

m2 m1
m1 + m2

x
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In the next Example, we verify the qualitative conclusions given in the Con-
ceptual Checkpoint with a detailed calculation. But first, a note about choosing a
coordinate system for a problem such as this. Rather than apply the same coordi-
nate system to both masses, it is useful to take into consideration the fact that a
pulley simply changes the direction of the tension in a string. With this in mind,
we choose a set of axes that “follow the motion” of the string, so that both masses
accelerate in the positive x direction with accelerations of equal magnitude.
Example 6–6 illustrates the use of this type of coordinate system.

E X A M P L E  6 – 6 C O N N E C T E D  B L O C K S

A block of mass slides on a frictionless tabletop. It is connected to a string that passes over a pulley and suspends a mass .
Find (a) the acceleration of the masses and (b) the tension in the string.

P I C T U R E  T H E  P R O B L E M

Our coordinate system follows the motion of the string so that both masses move in the positive x direction. Since the masses are
connected, their accelerations have the same magnitude. Thus, In addition, note that the tension, is in the pos-
itive x direction for mass 1, but in the negative x direction for mass 2. Its magnitude, T, is the same for each mass, however.
Finally, the weight of mass 2, acts in the positive x direction, whereas the weight of mass 1 is offset by the normal force, N.W2,

T
!
,a1,x = a2,x = a.

m2m1

P R O B L E M - S O L V I N G  N O T E

Choice of Coordinate System:
Connected Objects

If two objects are connected by a string
passing over a pulley, let the coordinate
system follow the direction of the string.
With this choice, both objects have accel-
erations of the same magnitude and in the
same coordinate direction.

a

a

x

y

x

y

m1

W1

W2

T

T

T T

W2

N

W1

Physical picture Free-body diagram for m1 Free-body diagram for m2

N

m2
y

x

x

y

S T R A T E G Y

Applying Newton’s second law to the two masses yields the following relations: For mass 1, and for
mass 2, These two equations can be solved for the two unknowns, a and T.

S O L U T I O N

Part (a)

1. First, write Note that the only force 
acting on in the x direction is T:

2. Next, write In this case, two forces 
act in the x direction: (positive direction)
and T (negative direction):

3. Sum the two relations obtained to eliminate T:

4. Solve for a:

CONTINUED ON NEXT PAGE

a = a m2

m1 + m2
bg

 m2g = 1m1 + m22a
  m2g - T = m2a

 T = m1a

 m2g - T = m2a
W2 = m2g

aF2,x = m2 g - T = m2a©F2,x = m2a.

T = m1a
m1

aF1,x = T = m1a©F1,x = m1a.

©F2,x = m2g - T = m2a2,x = m2a.
©F1,x = T = m1a1,x = m1a
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m2g

m2g

m1g

m1g

T

a
a

T

T

T

Physical picture

Free-body diagram for m2Free-body diagram for m1

x

y x

y

y

xy

x

CONTINUED FROM PREVIOUS PAGE

Part (b)

5. Substitute a into the first relation to find T:

I N S I G H T

We could just as well have determined T using though the algebra is a bit messier. Also, note that if
and that if as expected. Similarly, if either or is zero. This type of check, where you connect

equations with physical situations, is one of the best ways to increase your understanding of physics.

P R A C T I C E  P R O B L E M

Find the tension for the case and and compare the tension to [Answer:
]

Some related homework problems: Problem 44, Problem 48

T = 4.91 N 6 m2g = 7.36 N
a = 3.27 m/s2,m2g.m2 = 0.750 kg,m1 = 1.50 kg

m2m1T = 0m1 = 0,a = gm2 = 0,
a = 0m2g - T = m2a,

T = m1a = a m1m2

m1 + m2
bg1T = m1a2

Conceptual Checkpoint 6–4 shows that the tension in the string should be less
than Let’s rewrite our solution for T to show that this is indeed the case. From
Example 6–6 we have

Since the ratio is always less than 1 (as long as is nonzero), it
follows that as expected.

We conclude this section with a classic system that can be used to measure the
acceleration of gravity. It is referred to as Atwood’s machine, and it is basically
two blocks of different mass connected by a string that passes over a pulley. The
resulting acceleration of the blocks is related to the acceleration of gravity by a rel-
atively simple expression, which we derive in the following Example.

T 6 m2g,
m2m1/1m1 + m22

T = a m1m2

m1 + m2
bg = a m1

m1 + m2
bm2g

m2g.

E X A M P L E  6 – 7 A T W O O D ’ S  M A C H I N E

Atwood’s machine consists of two masses connected by a string that passes over a pulley, as shown below. Find the acceleration
of the masses for general and and evaluate for the specific case 

P I C T U R E  T H E  P R O B L E M

Our sketch shows Atwood’s machine, along with our choice of coordinate directions for the two blocks. Note that both blocks
accelerate in the positive x direction with accelerations of equal magnitude, a. From the free-body diagrams we can see that for
mass 1 the weight is in the negative x direction and the tension is in the positive x direction. For mass 2, the tension is in the neg-
ative x direction and the weight is in the positive x direction. The tension has the same magnitude T for both masses, but their
weights are different.

m1 = 3.1 kg, m2 = 4.4 kg.m2,m1
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S T R A T E G Y

To find the acceleration of the blocks, we follow the same strategy given in the previous Example. In particular, we start by
applying Newton’s second law to each block individually, using the fact that This gives two equations, both
involving the tension T and the acceleration a. Eliminating T allows us to solve for the acceleration.

S O L U T I O N

1. Begin by writing out the expression 
Note that two forces act in the x direction; T
(positive direction) and (negative direction):

2. Next, write out The two forces 
acting in the x direction in this case are 
(positive direction) and T (negative direction):

3. Sum the two relations obtained above to eliminate T:

4. Solve for a:

5. To evaluate the acceleration, substitute numerical
values for the masses and for g:

I N S I G H T

Since is greater than we find that the acceleration is positive, meaning that the masses accelerate in the positive x direc-
tion. On the other hand, if were greater than we would find that a is negative, indicating that the masses accelerate in the
negative x direction. Finally, if we have as expected.

P R A C T I C E  P R O B L E M

If is increased by a small amount, does the acceleration of the blocks increase, decrease, or stay the same? Check your answer
by evaluating the acceleration for [Answer: If is increased only slightly, the acceleration will decrease. For

we find ]

Some related homework problems: Problem 48, Problem 50

a = 1.4 m/s2.m1 = 3.3 kg,
m1m1 = 3.3 kg.

m1

a = 0,m1 = m2

m2,m1

m1,m2

 = a4.4 kg - 3.1 kg

3.1 kg + 4.4 kg
b19.81 m/s22 = 1.7 m/s2

 a = am2 - m1

m1 + m2
bg

a = am2 - m1

m1 + m2
bg

 1m2 - m12g = 1m1 + m22a
 m2g - T = m2a
 T - m1g = m1a

m2g
aF2,x = m2 g - T = m2a©F2,x = m2a.

m1g

aF1,x = T - m1 g = m1a©F1,x = m1a.

a1,x = a2,x = a.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circu-
lar track, the direction of the car’s motion changes continuously. A force must act
on the car to cause this change in direction. We would like to know two things
about a force that causes circular motion: what is its direction, and what is its
magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at

▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.

T T
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first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration (cen-
tripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the circu-
lar path of an object, with the center of the circle at the origin. To calculate the
acceleration at the top of the circle, at point P, we first calculate the average accel-
eration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move
closer to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting 
go to zero. Table 6–2 shows that as goes to zero , the ratio 
goes to 1:

Finally, then, the instantaneous acceleration at point P is

6–14

As mentioned, the direction of the acceleration is toward the center of the circle,
and now we see that its magnitude is

6–15acp =
v2

r

a
!
= -
v2

r
yN = -acpyN

sin u
u

 
 as u : 0 

" 1

1sin u2/u1u: 02u

ua
!

a
!
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-2v sin u
12ru/v2 yN = -
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r
a sin u
u
byN
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d
v
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v
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▲ FIGURE 6–13 A particle moving with
constant speed in a circular path centered
on the origin
The speed of the particle is constant, but
its velocity is constantly changing direc-
tion. Because the velocity changes, the
particle is accelerating.

x

y

O

r

1
Pv1

v2

2

r

��

�
�

... and point 2, but
the direction of
motion is different.

A changing direction of motion
means a changing velocity —

and hence an acceleration.

The speed is the
same at point 1 ...

TABLE 6 .2 for Values of 

Approaching Zero

radians

1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
0.0625 0.999

sin U
U

U,

u
sin u
u

▲ The people enjoying this carnival ride
are experiencing a centripetal acceleration
of roughly directed inward, to-
ward the axis of rotation. The force needed
to produce this acceleration, which keeps
the riders moving in a circular path, is pro-
vided by the horizontal component of the
tension in the chains.

10 m/s2
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We can summarize these results as follows:

• When an object moves in a circle of radius r with constant speed v, its cen-
tripetal acceleration is 

• A force must be applied to an object to give it circular motion. For an object
of mass m, the net force acting on it must have a magnitude given by

6–16

and must be directed toward the center of the circle.

Note that the centripetal force, can be produced in any number of ways.
For example, might be the tension in a string, as in the example with the ball,
or it might be due to friction between tires and the road, as when a car turns a cor-
ner. In addition, could be the force of gravity causing a satellite, or the Moon,
to orbit the Earth. Thus, is a force that must be present to cause circular mo-
tion, but the specific cause of varies from system to system.

We now show how these results for centripetal force and centripetal accelera-
tion can be applied in practice.

fcp

fcp

fcp

fcp

fcp,

fcp = macp = m 
v2

r

acp = v2/r.

P R O B L E M - S O L V I N G  N O T E

Choice of Coordinate System:
Circular Motion

In circular motion, it is convenient to
choose the coordinate system so that one
axis points toward the center of the circle.
Then, we know that the acceleration in
that direction must be acp = v2/r.

E X A M P L E  6 – 8 R O U N D I N G  A  C O R N E R

A 1200-kg car rounds a corner of radius If the coefficient of static friction between the tires and the road is 
what is the greatest speed the car can have in the corner without skidding?

P I C T U R E  T H E  P R O B L E M

In the first sketch we show a bird’s-eye view of the car as it moves along its circular path. The next sketch shows the car mov-
ing directly toward the observer. Note that we have chosen the positive x direction to point toward the center of the circular
path, and the positive y axis to point vertically upward. We also indicate the three forces acting on the car: gravity, 

the normal force, and the force of static friction, f
!
s = msNxN .N

!
= NyN ;W

!
= -WyN = -mgyN ;

ms = 0.82,r = 45 m.

Side view

W

x

y

N
fs

v

Top view

r = 45 m

S T R A T E G Y

In this system, the force of static friction provides the centripetal force required for the car to move in a circular path. That is why
the force of friction is at right angles to the car’s direction of motion; it is directed toward the center of the circle. In addition, the
friction in this case is static because the car’s tires are rolling without slipping—always making static contact with the ground. Fi-
nally, if the car moves faster, more centripetal force (i.e., more friction) is required. Thus, the greatest speed for the car corresponds
to the maximum static friction, Hence, if we set equal to the centripetal force, we can solve for v.

S O L U T I O N

1. Sum the x components of force to relate the force of static friction to the
centripetal acceleration of the car:

2. Since the car moves in a circular path, with the center of the circle in the
x direction, it follows that . Make this substitution, along
with for the force of static friction:

CONTINUED ON NEXT PAGE

fs = msN
ax = acp = v2/r

msN = macp = m
v2

r

aFx = fs = max

macp = mv2/r,msNfs = msN.
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CONTINUED FROM PREVIOUS PAGE

3. Next, set the sum of the y components of force equal to zero, since :

4. Solve for the normal force:

5. Substitute the result in Step 2 and solve for v. Notice that 
the mass of the car cancels:

6. Substitute numerical values to determine v:

I N S I G H T

Note that the maximum speed is less if the radius is smaller (tighter corner) or if is smaller (slick road). The mass of the vehi-
cle, however, is irrelevant. For example, the maximum speed is precisely the same for a motorcycle rounding this corner as it is
for a large, heavily loaded truck.

P R A C T I C E  P R O B L E M

Suppose the situation described in this Example takes place on the Moon, where the acceleration of gravity is less than it is on
Earth. If a lunar rover goes around this same corner, is its maximum speed greater than, less than, or the same as the result found
in Step 4? To check your answer, find the maximum speed for a lunar rover when it rounds a corner with and

(On the Moon, ) [Answer: The maximum speed will be less. On the Moon we find ]

Some related homework problems: Problem 55, Problem 57, Problem 61

v = 7.7 m/s.g = 1.62 m/s2.ms = 0.82.
r = 45 m

ms

v = 4(0.82)(45 m)(9.81 m/s2) = 19 m/s

v = 2msrg

msmg = mv
2

rN = mg

N = W = mg

aFy = N - W = may = 0ay = 0

▲ The steeply banked track at the Talladega Speedway in Alabama (left) helps to keep the rapidly moving cars from skidding off along a
tangential path. Even when there is no solid roadway, however, banking can still help—airplanes bank when making turns (center) to keep
from “skidding” sideways. Banking is beneficial in another way as well. Occupants of cars on a banked roadway or of a banking airplane
feel no sideways force when the banking angle is just right, so turns become a safer and more comfortable experience. For this reason,
some trains use hydraulic suspension systems to bank when rounding corners (right), even though the tracks themselves are level.

If you try to round a corner too rapidly, you may experience a skid; that is,
your car may begin to slide sideways across the road. A common bit of road wis-
dom is that you should turn in the direction of the skid to regain control—which,
to most people, sounds counterintuitive. The advice is sound, however. Suppose,
for example, that you are turning to the left and begin to skid to the right. If you
turn more sharply to the left to try to correct for the skid, you simply reduce the
turning radius of your car, r. The result is that the centripetal acceleration, 
becomes larger, and an even larger force would be required from the road to make
the turn. The tendency to skid would therefore be increased. On the other hand, if
you turn slightly to the right when you start to skid, you increase your turning ra-
dius and the centripetal acceleration decreases. In this case your car may stop
skidding, and you can then regain control of your vehicle.

You may also have noticed that many roads are tilted, or banked, when they
round a corner. The same type of banking is observed on many automobile race-
tracks as well. Next time you drive around a banked curve, notice that the bank-
ing tilts you in toward the center of the circular path you are following. This is by

v2/r,

R E A L - W O R L D  P H Y S I C S

Skids and banked roadways
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design. On a banked curve, the normal force exerted by the road contributes to the
required centripetal force. If the tilt angle is just right, the normal force provides
all of the centripetal force so that the car can negotiate the curve even if there is no
friction between its tires and the road. The next Example determines the optimum
banking angle for a given speed and given radius of turn.

E X A M P L E  6 – 9 B A N K  O N  I T

If a roadway is banked at the proper angle, a car can round a corner without any assistance from friction between the tires and
the road. Find the appropriate banking angle for a 900-kg car traveling at 20.5 m/s in a turn of radius 85.0 m.

P I C T U R E  T H E  P R O B L E M

Note that we choose the positive y axis to point vertically
upward and the positive x direction to point toward the center
of the circular path. Since is perpendicular to the banked 
roadway, it is at an angle to the y axis. Therefore, 

and 

S T R A T E G Y

In order for the car to move in a circular path, there must be
a force acting on it in the positive x direction. Since the weight

has no x component, it follows that the normal force must supply the needed centripetal force. Thus, we find N by setting
, since there is no motion in the y direction. Then we use N in to find the angle .

S O L U T I O N

1. Start by determining N from the condition 

2. Next, set 

3. Substitute (from , Step 1)
and solve for , using the fact that . 
Notice that, once again, the mass of the car cancels:

4. Substitute numerical values to determine 

I N S I G H T

The symbolic result in Step 3 shows that the banking angle increases with increasing speed and decreasing radius of turn, as one
would expect.

From the point of view of a passenger, the experience of rounding a properly banked corner is basically the same as riding on a
level road—there are no “sideways forces” to make the turn uncomfortable. There is one small difference, however—the pas-
senger feels heavier due to the increased normal force.

P R A C T I C E  P R O B L E M

A turn of radius 65 m is banked at 30.0°. What speed should a car have in order to make the turn with no assistance from friction?
[Answer: ]

Some related homework problems: Problem 58, Problem 107

v = 19 m/s

u = tan-1 c 120.5 m/s22
19.81 m/s22185.0 m2 d = 26.7°u:

sin u/cos u = tan uu

N sin u =
mg

cos u
 sin u = m 

v2

rgFy = 0N = mg/cos u

 = max = macp = m 
v2

r

 aFx = N sin u©Fx = mv2/r:

N =
W

cos u
=
mg

cos u

 aFy = N cos u - W = 0©Fy = 0:

ugFx = max = mv2/rgFy = may = 0
N
!

W
!

W
!
= -WyN = -mgyN .N

!
= 1N sin u2xN + 1N cos u2yN

u

N
!

x

y

W

N

r

�

�

�

If you’ve ever driven through a dip in the road, you know that you feel mo-
mentarily heavier near the bottom of the dip, just like a passenger in Example 6–9.
This change in apparent weight is due to the approximately circular motion of the
car, as we show next.

tan u =
v2

gr
  or u = tan-1av2

gr
b
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A C T I V E  E X A M P L E  6 – 4 F I N D  T H E  N O R M A L  F O R C E

While driving along a country lane with a constant speed of 17.0 m/s, you en-
counter a dip in the road. The dip can be approximated as a circular arc, with a
radius of 65.0 m. What is the normal force exerted by a car seat on an 80.0-kg
passenger when the car is at the bottom of the dip?

x

yW

N

r

v

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Write for the passenger:

2. Replace with the centripetal acceleration:

3. Solve for N:

4. Substitute numerical values:

I N S I G H T

At the bottom of the dip the normal force is greater than the weight of the passen-
ger, since it must also supply the centripetal force. As a result, the passenger feels
heavier than usual. In this case, the 80.0-kg passenger feels as if his mass has in-
creased by 45%, to 116 kg!

The same physics applies to a jet pilot who pulls a plane out of a high-speed dive. In
that case, the magnitude of the effect can be much larger, resulting in a decrease of
blood flow to the brain and eventually to loss of consciousness. Here’s a case where
basic physics really can be a matter of life and death.

Y O U R  T U R N

At what speed will the magnitude of the normal force be equal to 1250 N?

(Answers to Your Turn problems are given in the back of the book.)

N = 1140 N

N = mg + mv2/r

ay = v2/ray

N - mg = may©Fy = may

A similar calculation can be applied to a car going over the top of a bump. In
that case, circular motion results in a reduced apparent weight.

Finally, we determine the acceleration produced in a centrifuge, a common
device in biological and medical laboratories that uses large centripetal accelera-
tions to perform such tasks as separating red and white blood cells from serum. A
simplified top view of a centrifuge is shown in Figure 6–14. 

E X E R C I S E  6 – 1
The centrifuge in Figure 6–14 rotates at a rate that gives the bottom of the test tube a lin-
ear speed of 89.3 m/s. If the bottom of the test tube is 8.50 cm from the axis of rotation,
what is the centripetal acceleration experienced there?

S O L U T I O N

Applying the relation yields

In this expression, g is the acceleration of gravity, 9.81 m/s2.

acp =
v2

r
=
189.3 m/s22

0.0850 m
= 93,800 m/s2 = 9560 g

acp = v2/r

▲ A laboratory centrifuge of the kind com-
monly used to separate blood components.

▲ FIGURE 6–14 Simplified top view of a
centrifuge in operation

r

v

R E A L - W O R L D  P H Y S I C S :  B I O

Centrifuges and ultracentrifuges



C H A P T E R  S U M M A R Y 175

Thus, a centrifuge can produce centripetal accelerations that are many thou-
sand times greater than the acceleration of gravity. In fact, devices referred to as
ultracentrifuges can produce accelerations as great as 1 million g. Even in the rel-
atively modest case considered in Exercise 6–1, the forces involved in a centrifuge
can be quite significant. For example, if the contents of the test tube have a mass
of 12.0 g, the centripetal force that must be exerted by the bottom of the tube is

or about 250 lb!
Finally, an object moving in a circular path may increase or decrease its speed.

In such a case, the object has both an acceleration tangential to its path that
changes its speed, and a centripetal acceleration perpendicular to its path, 
that changes its direction of motion. Such a situation is illustrated in Figure 6–15.
The total acceleration of the object is the vector sum of and We will explore
this case more fully in Chapter 10.

a
!
cp.a

!
t

a
!
cp,a

!
t,

10.0120 kg219560 g2 = 1130 N,

▲ FIGURE 6–15 A particle moving in a
circular path with tangential acceleration
In this case, the particle’s speed is in-
creasing at the rate given by at.

Tangential acceleration
changes the speed.

Centripetal acceleration
changes the direction of
motion.

O
x

y

acp

atotal

at

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The equations of kinematics from
Chapters 2 and 4 proved useful again
in this chapter. See, in particular,
Examples 6–1 and 6–2.

Our discussion of springs, and
Hooke’s law in particular, will be of
importance when we consider
oscillations in Chapter 13.

The discussion related to Figure 5–15
about angles on an inclined surface
came into play when identifying the
angles in Examples 6–2 and 6–9.

The basic ideas of translational
equilibrium (Section 6–3) will be
extended to more general objects in
Chapter 11.

Our derivation of the direction and
magnitude of centripetal acceleration
(Section 6–5) made extensive use of
our knowledge of vectors and how to
resolve them into components.

Circular motion will come up again in
a number of situations, but especially
when we consider orbital motion in
Chapter 12 and the Bohr model of the
hydrogen atom in Chapter 31.

C H A P T E R  S U M M A RY

6 – 1 F R I C T I O N A L  F O R C E S

Frictional forces are due to the microscopic roughness of surfaces in contact. As
a rule of thumb, friction is independent of the area of contact and independent
of the relative speed of the surfaces.

Kinetic Friction
Friction experienced by surfaces that are in contact and moving relative to one
another. The force of kinetic friction is given by

6–1

In this expression, is the coefficient of kinetic friction and N is the magnitude
of the normal force.

Static Friction
Friction experienced by surfaces that are in static contact. The maximum force of
static friction is given by

6–3

In this expression, is the coefficient of static friction and N is the magnitude of
the normal force. The force of static friction can have any magnitude between
zero and its maximum value.

ms

fs,max = msN

mk

fk = mkN

0

v

W
N

F
fk
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6 – 2 ST R I N G S  A N D  S P R I N G S

Strings and springs provide a common way of exerting forces on objects. Ideal
strings and springs are massless.

Tension
The force transmitted through a string. The tension is the same throughout the
length of an ideal string.

Hooke’s Law
The force exerted by an ideal spring stretched by the amount x is

6–4

In words, the force exerted by a spring is proportional to the amount of stretch
or compression, and is in the opposite direction.

6 – 3 T R A N S L AT I O N A L  E Q U I L I B R I U M

An object is in translational equilibrium if the net force acting on it is zero.
Equivalently, an object is in equilibrium if it has zero acceleration.

6 – 4 C O N N E C T E D  O B J E C T S

Connected objects are linked physically, and hence they are linked mathemati-
cally as well. For example, objects connected by strings have the same magni-
tude of acceleration.

6 – 5 C I R C U L A R  M O T I O N

An object moving with speed v in a circle of radius r has an acceleration of mag-
nitude directed toward the center of the circle: This is referred to as the
centripetal acceleration, If the object has a mass m, the force required for the
circular motion is

6–16

P R O B L E M - S O L V I N G  S U M M A RY

Type of Calculation Relevant Physical Concepts Related Examples

Find the acceleration when First, find the magnitude of the normal force, N. Examples 6–1, 6–2
kinetic friction is present. The corresponding kinetic friction has a magnitude

of and points opposite to the direction of
motion. Include this force with the others when
applying Newton’s second law.

Solve problems involving Start by finding the magnitude of the normal Example 6–3
static friction. force, N. The corresponding static friction has a Active Example 6–1

magnitude between zero and Its direction
opposes motion.

Find the acceleration and the Apply Newton’s second law to each mass separately. Examples 6–6, 6–7
tension for masses connected This generates two equations, which can be solved
by a string. for the two unknowns, a and T.

Solve problems involving Set up the coordinate system so that one axis points Examples 6–8, 6–9
circular motion. to the center of the circle. When applying Newton’s Active Example 6–4

second law to that direction, set the acceleration
equal to acp = v2/r.

msN.

fk = mkN

fcp = macp = mv2/r

acp.
v2/r

Fx = -kx

� T1

T2

W

m2

a

a
m1

x

y
W

N

r

v

m

40.0°
40.0°
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C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. A clothesline always sags a little, even if nothing hangs from it.
Explain.

2. In the Jurassic Park sequel, The Lost World, a man tries to keep a
large vehicle from going over a cliff by connecting a cable from
his Jeep to the vehicle. The man then puts the Jeep in gear and
spins the rear wheels. Do you expect that spinning the tires will
increase the force exerted by the Jeep on the vehicle? Why or
why not?

3. When a traffic accident is investigated, it is common for the
length of the skid marks to be measured. How could this infor-
mation be used to estimate the initial speed of the vehicle that
left the skid marks?

4. In a car with rear-wheel drive, the maximum acceleration is
often less than the maximum deceleration. Why?

5. A train typically requires a much greater distance to come to
rest, for a given initial speed, than does a car. Why?

6. Give some everyday examples of situations in which friction is
beneficial.

7. At the local farm, you buy a flat of strawberries and place them
on the backseat of the car. On the way home, you begin to brake
as you approach a stop sign. At first the strawberries stay put,
but as you brake a bit harder, they begin to slide off the seat.
Explain.

8. It is possible to spin a bucket of water in a vertical circle and
have none of the water spill when the bucket is upside down.
How would you explain this to members of your family?

9. Water sprays off a rapidly turning bicycle wheel. Why?
10. Can an object be in equilibrium if it is moving? Explain.
11. In a dramatic circus act, a motorcyclist drives his bike around

the inside of a vertical circle. How is this possible, considering
that the motorcycle is upside down at the top of the circle?

12. The gravitational attraction of the Earth is only slightly less at
the altitude of an orbiting spacecraft than it is on the Earth’s
surface. Why is it, then, that astronauts feel weightless?

13. A popular carnival ride has passengers stand with their backs
against the inside wall of a cylinder. As the cylinder begins to
spin, the passengers feel as if they are being pushed against the
wall. Explain.

14. Referring to Question 13, after the cylinder reaches operating
speed, the floor is lowered away, leaving the passengers
“stuck” to the wall. Explain.

15. Your car is stuck on an icy side street. Some students on their
way to class see your predicament and help out by sitting on
the trunk of your car to increase its traction. Why does this
help?

16. The parking brake on a car causes the rear wheels to lock up. What
would be the likely consequence of applying the parking brake in
a car that is in rapid motion? (Note: Do not try this at home.)

17. BIO The foot of your average gecko is covered with billions of
tiny hair tips—called spatulae—that are made of keratin, the
protein found in human hair. A subtle shift of the electron dis-
tribution in both the spatulae and the wall to which a gecko
clings produces an adhesive force by means of the van der
Waals interaction between molecules. Suppose a gecko uses its
spatulae to cling to a vertical windowpane. If you were to de-
scribe this situation in terms of a coefficient of static friction, 
what value would you assign to Is this a sensible way to
model the gecko’s feat? Explain.

18. Discuss the physics involved in the spin cycle of a washing ma-
chine. In particular, how is circular motion related to the re-
moval of water from the clothes?

19. The gas pedal and the brake pedal are capable of causing a car
to accelerate. Can the steering wheel also produce an accelera-
tion? Explain.

20. In the movie 2001: A Space Odyssey, a rotating space station pro-
vides “artificial gravity” for its inhabitants. How does this work?

ms?
ms,

The rotating space station from the movie 2001: A Space
Odyssey (Conceptual Question 20)

21. When rounding a corner on a bicycle or a motorcycle, the driver
leans inward, toward the center of the circle. Why?

22. In Robin Hood: Prince of Thieves, starring Kevin Costner, Robin
swings between trees on a vine that is on fire. At the lowest
point of his swing, the vine burns through and Robin begins to
fall. The next shot, from high up in the trees, shows Robin
falling straight downward. Would you rate the physics of this
scene “Good,” “Bad,” or “Ugly”? Explain.

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for
two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used
to indicate the level of difficulty.

S E C T I O N  6 – 1    F R I C T I O N A L  F O R C E S

1. • CE Predict/Explain You push two identical bricks across a
tabletop with constant speed, v, as shown in Figure 6–16. In case
1, you place the bricks end to end; in case 2, you stack the bricks

one on top of the other. (a) Is the force of kinetic friction in
case 1 greater than, less than, or equal to the force of kinetic fric-
tion in case 2? (b) Choose the best explanation from among the
following:

For instructor-assigned homework, go to www.masteringphysics.com
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Box 1 Box 2 Box 3

F1 F1 F1

F2 F2 F2

▲ FIGURE 6–17 Problem 8

▲ FIGURE 6–18 Problems 10, 11, and 106

F

21°

Case 1

v

Case 2

v

▲ FIGURE 6–16 Problem 1

I. The normal force in case 2 is larger, and hence the bricks
press down more firmly against the tabletop.

II. The normal force is the same in the two cases, and friction
is independent of surface area.

III. Case 1 has more surface area in contact with the tabletop,
and this leads to more friction.

2. • CE Predict/Explain Two drivers traveling side-by-side at the
same speed suddenly see a deer in the road ahead of them and
begin braking. Driver 1 stops by locking up his brakes and
screeching to a halt; driver 2 stops by applying her brakes just
to the verge of locking, so that the wheels continue to turn until
her car comes to a complete stop. (a) All other factors being
equal, is the stopping distance of driver 1 greater than, less
than, or equal to the stopping distance of driver 2? (b) Choose
the best explanation from among the following:

I. Locking up the brakes gives the greatest possible braking
force.

II. The same tires on the same road result in the same force of
friction.

III. Locked-up brakes lead to sliding (kinetic) friction, which is
less than rolling (static) friction.

3. • A baseball player slides into third base with an initial speed of
4.0 m/s. If the coefficient of kinetic friction between the player
and the ground is 0.46, how far does the player slide before
coming to rest?

4. • A child goes down a playground slide with an acceleration of
. Find the coefficient of kinetic friction between the

child and the slide if the slide is inclined at an angle of 33.0°
below the horizontal.

5. • Hopping into your Porsche, you floor it and accelerate at
without spinning the tires. Determine the minimum

coefficient of static friction between the tires and the road
needed to make this possible.

6. • When you push a 1.80-kg book resting on a tabletop, it takes
2.25 N to start the book sliding. Once it is sliding, however, it
takes only 1.50 N to keep the book moving with constant speed.
What are the coefficients of static and kinetic friction between
the book and the tabletop?

7. • In Problem 6, what is the frictional force exerted on the book
when you push on it with a force of 0.75 N?

8. •• CE The three identical boxes shown in Figure 6–17 remain at
rest on a rough, horizontal surface, even though they are acted
on by two different forces, and . All of the forces labeled F

!
1F

!
2F

!
1

12 m/s2

1.26 m/s2

have the same magnitude; all of the forces labeled are identi-
cal to one another. Rank the boxes in order of increasing magni-
tude of the force static friction between them and the surface.
Indicate ties where appropriate.

9. •• IP A tie of uniform width is laid out on a table, with a fraction
of its length hanging over the edge. Initially, the tie is at rest. (a)
If the fraction hanging from the table is increased, the tie even-
tually slides to the ground. Explain. (b) What is the coefficient of
static friction between the tie and the table if the tie begins to
slide when one-fourth of its length hangs over the edge?

10. •• To move a large crate across a rough floor, you push on it
with a force F at an angle of 21° below the horizontal, as shown
in Figure 6–18. Find the force necessary to start the crate moving,
given that the mass of the crate is 32 kg and the coefficient of
static friction between the crate and the floor is 0.57.

F
!
2

11. •• In Problem 10, find the acceleration of the crate if the applied
force is 330 N and the coefficient of kinetic friction is 0.45.

12. •• IP A 48-kg crate is placed on an inclined ramp. When the
angle the ramp makes with the horizontal is increased to 26°,
the crate begins to slide downward. (a) What is the coefficient
of static friction between the crate and the ramp? (b) At what
angle does the crate begin to slide if its mass is doubled?

13. •• IP A 97-kg sprinter wishes to accelerate from rest to a speed
of 13 m/s in a distance of 22 m. (a) What coefficient of static
friction is required between the sprinter’s shoes and the track?
(b) Explain the strategy used to find the answer to part (a).

14. •• Coffee To Go A person places a cup of coffee on the roof
of her car while she dashes back into the house for a forgotten
item. When she returns to the car, she hops in and takes off
with the coffee cup still on the roof. (a) If the coefficient of sta-
tic friction between the coffee cup and the roof of the car is
0.24, what is the maximum acceleration the car can have with-
out causing the cup to slide? Ignore the effects of air resis-
tance. (b) What is the smallest amount of time in which the
person can accelerate the car from rest to 15 m/s and still keep
the coffee cup on the roof?

15. •• IP Force Times Distance I At the local hockey rink, a puck
with a mass of 0.12 kg is given an initial speed of v = 5.3 m/s.
(a) If the coefficient of kinetic friction between the ice and the
puck is 0.11, what distance d does the puck slide before coming
to rest? (b) If the mass of the puck is doubled, does the frictional
force F exerted on the puck increase, decrease, or stay the same?
Explain. (c) Does the stopping distance of the puck increase,
decrease, or stay the same when its mass is doubled? Explain.
(d) For the situation considered in part (a), show that Fd = 1

2mv
2.
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▲ FIGURE 6–19 Problems 24 and 25

fs

F

mg

fs
F N

(The significance of this result will be discussed in Chapter 7,
where we will see that is the kinetic energy of an object.)

16. •• IP  Force Times Time At the local hockey rink, a puck with
a mass of 0.12 kg is given an initial speed of = 6.7 m/s. (a) If
the coefficient of kinetic friction between the ice and the puck is
0.13, how much time t does it take for the puck to come to rest?
(b) If the mass of the puck is doubled, does the frictional force F
exerted on the puck increase, decrease, or stay the same? Ex-
plain. (c) Does the stopping time of the puck increase, decrease,
or stay the same when its mass is doubled? Explain. (d) For the
situation considered in part (a), show that . (The sig-
nificance of this result will be discussed in Chapter 9, where we
will see that mv is the momentum of an object.)

17. •• Force Times Distance II A block of mass 
slides with an initial speed on a smooth, hori-
zontal surface. The block now encounters a rough patch with a
coefficient of kinetic friction given by . The rough
patch extends for a distance , after which the sur-
face is again frictionless. (a) What is the acceleration of the
block when it is in the rough patch? (b) What is the final speed,

, of the block when it exits the rough patch? (c) Show that
(The significance of this -Fd = -(mkmg)d = 1

2mvf
2 - 1

2mvi
2.

vf

d = 0.125 m
mk = 0.260

vi = 4.33 m/s
m = 1.95 kg

Ft = mv0

v0

1
2mv

2

29. •• IP Your friend’s 13.6-g graduation tassel hangs on a string
from his rearview mirror. (a) When he accelerates from a
stoplight, the tassel deflects backward toward the rear of the
car. Explain. (b) If the tassel hangs at an angle of 6.44° relative to
the vertical, what is the acceleration of the car?

30. •• In Problem 29, (a) find the tension in the string holding the
tassel. (b) At what angle to the vertical will the tension in the
string be twice the weight of the tassel?

▲ FIGURE 6–20 Problem 28

result will be discussed in Chapter 7, where we will see that
is the kinetic energy of an object.)

18. ••• IP The coefficient of kinetic friction between the tires of
your car and the roadway is (a) If your initial speed is v
and you lock your tires during braking, how far do you skid?
Give your answer in terms of v, , and m, the mass of your
car. (b) If you double your speed, what happens to the stop-
ping distance? (c) What is the stopping distance for a truck
with twice the mass of your car, assuming the same initial
speed and coefficient of kinetic friction?

S E C T I O N  6 – 2    ST R I N G S  A N D  S P R I N G S

19. • CE A certain spring has a force constant k. (a) If this spring is
cut in half, does the resulting half spring have a force constant
that is greater than, less than, or equal to k? (b) If two of the
original full-length springs are connected end to end, does the
resulting double spring have a force constant that is greater
than, less than, or equal to k?

20. • Pulling up on a rope, you lift a 4.35-kg bucket of water from a
well with an acceleration of . What is the tension in
the rope?

21. • When a 9.09-kg mass is placed on top of a vertical spring, the
spring compresses 4.18 cm. Find the force constant of the
spring.

22. • A 110-kg box is loaded into the trunk of a car. If the height of
the car’s bumper decreases by 13 cm, what is the force constant
of its rear suspension?

23. • A 50.0-kg person takes a nap in a backyard hammock. Both
ropes supporting the hammock are at an angle of 15.0° above
the horizontal. Find the tension in the ropes.

24. • IP A backpack full of books weighing 52.0 N rests on a table
in a physics laboratory classroom. A spring with a force con-
stant of 150 N/m is attached to the backpack and pulled hori-
zontally, as indicated in Figure 6–19. (a) If the spring is pulled
until it stretches 2.00 cm and the pack remains at rest, what is
the force of friction exerted on the backpack by the table?
(b) Does your answer to part (a) change if the mass of the back-
pack is doubled? Explain.

1.78 m/s2

m

m.

1
2mv

2

25. • If the 52.0-N backpack in Problem 24 begins to slide when the
spring stretches by 2.50 cm, what is the coeffi-
cient of static friction between the backpack and the table?

26. •• IP The equilibrium length of a certain spring with a force
constant of is 0.18 m. (a) What is the magnitude of
the force that is required to hold this spring at twice its equilib-
rium length? (b) Is the magnitude of the force required to keep
the spring compressed to half its equilibrium length greater
than, less than, or equal to the force found in part (a)? Explain.

27. •• IP Illinois Jones is being pulled from a snake pit with a rope
that breaks if the tension in it exceeds 755 N. (a) If Illinois Jones
has a mass of 70.0 kg and the snake pit is 3.40 m deep, what is
the minimum time that is required to pull our intrepid explorer
from the pit? (b) Explain why the rope breaks if Jones is pulled
from the pit in less time than that calculated in part (a).

28. •• IP A spring with a force constant of 120 N/m is used to push a
0.27-kg block of wood against a wall, as shown in Figure 6–20. (a)
Find the minimum compression of the spring needed to keep the
block from falling, given that the coefficient of static friction be-
tween the block and the wall is 0.46. (b) Does your answer to part
(a) change if the mass of the block of wood is doubled? Explain.

k = 250 N/m

(k = 150 N/m)
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▲ FIGURE 6–22 Problems 32 and 33

F

▲ FIGURE 6–23 Problem 35

1.0 kg

2.0 kg

31°

m = 2.50 kg

T2

T1
30.0°

30.0°

Small pulley

F

42°

m
6.7 kg

▲ FIGURE 6–21 Problems 31 and 83

32°
65°

1

2

▲ FIGURE 6–24 Problems 36 and 69

▲ FIGURE 6–25 Problem 37

31. •• IP A picture hangs on the wall suspended by two strings, as
shown in Figure 6–21. The tension in string 1 is 1.7 N. (a) Is the
tension in string 2 greater than, less than, or equal to 1.7 N? Ex-
plain. (b) Verify your answer to part (a) by calculating the ten-
sion in string 2. (c) What is the weight of the picture?

32. •• Mechanical Advantage The pulley system shown in Figure
6–22 is used to lift a 52-kg crate. Note that one chain connects
the upper pulley to the ceiling and a second chain connects the
lower pulley to the crate. Assuming the masses of the chains,
pulleys, and ropes are negligible, determine (a) the force re-
quired to lift the crate with constant speed, (b) the tension in the
upper chain, and (c) the tension in the lower chain.

F
!

33. •• In Problem 32, determine (a) the force , (b) the tension in
the upper chain, and (c) the tension in the lower chain, given
that the crate is rising with an acceleration of .

S E C T I O N  6 – 3    T R A N S L AT I O N A L  E Q U I L I B R I U M

34. • Pulling the string on a bow back with a force of 28.7 lb, an
archer prepares to shoot an arrow. If the archer pulls in the cen-
ter of the string, and the angle between the two halves is 138°,
what is the tension in the string?

35. • In Figure 6–23 we see two blocks connected by a string and
tied to a wall. The mass of the lower block is 1.0 kg; the mass of
the upper block is 2.0 kg. Given that the angle of the incline is

2.3 m/s2

F
!

31°, find the tensions in (a) the string connecting the two blocks
and (b) the string that is tied to the wall.

36. • BIO Traction After a skiing accident, your leg is in a cast and
supported in a traction device, as shown in Figure 6–24. Find the
magnitude of the force exerted by the leg on the small pulley.
(By Newton’s third law, the small pulley exerts an equal and
opposite force on the leg.) Let the mass m be 2.50 kg.

F
!

37. • Two blocks are connected by a string, as shown in Figure 6–25.
The smooth inclined surface makes an angle of 42° with the
horizontal, and the block on the incline has a mass of 6.7 kg.
Find the mass of the hanging block that will cause the system to
be in equilibrium. (The pulley is assumed to be ideal.)

38. •• CE Predict/Explain (a) Referring to the hanging planter in
Example 6–5, which of the three graphs (A, B, or C) in Figure
6–26 shows an accurate plot of the tensions and as a func-
tion of the angle ? (b) Choose the best explanation from among
the following:

I. The two tensions must be equal at some angle between
and .

II. is greater than at all angles, and is equal to mg at
.

III. is less than at all angles, and is equal to 0 at u = 90°.T1T2

u = 90°
T1T2

u = 90°u = 0

u

T2T1
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▲ FIGURE 6–26 Problem 38
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▲ FIGURE 6–28 Problem 40
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▲ FIGURE 6–29 Problem 41

39. •• A 0.15-kg ball is placed in a shallow wedge with an opening
angle of 120°, as shown in Figure 6–27. For each contact point be-
tween the wedge and the ball, determine the force exerted on
the ball. Assume the system is frictionless.

40. •• IP You want to nail a 1.6-kg board onto the wall of a barn. To
position the board before nailing, you push it against the wall
with a horizontal force to keep it from sliding to the ground
(Figure 6–28). (a) If the coefficient of static friction between the
board and the wall is 0.79, what is the least force you can apply
and still hold the board in place? (b) What happens to the force
of static friction if you push against the wall with a force greater
than that found in part (a)?

F
!

S E C T I O N  6 – 4    C O N N E C T E D  O B J E C T S

42. • CE In Example 6–6 (Connected Blocks), suppose and 
are both increased by a factor of 2. (a) Does the acceleration of
the blocks increase, decrease, or stay the same? (b) Does the ten-
sion in the string increase, decrease, or stay the same?

43. • CE Predict/Explain Suppose and in Example 6–7 
(Atwood’s Machine) are both increased by 1 kg. Does the accel-
eration of the blocks increase, decrease, or stay the same? (b)
Choose the best explanation from among the following:

I. The net force acting on the blocks is the same, but the total
mass that must be accelerated is greater.

II. The difference in the masses is the same, and this is what
determines the net force on the system.

III. The force exerted on each block is greater, leading to an in-
creased acceleration.

44. • Find the acceleration of the masses shown in Figure 6–30,
given that , and . Assume
the table is frictionless and the masses move freely.

m3 = 3.0 kgm1 = 1.0 kg, m2 = 2.0 kg

m2m1

m2m1

mg
Contact
force 2

Contact
force 1

▲ FIGURE 6–27 Problem 39

41. ••• BIO The Russell Traction System To immobilize a frac-
tured femur (the thigh bone), doctors often utilize the Russell
traction system illustrated in Figure 6–29. Notice that one force
is applied directly to the knee, , while two other forces, and 

, are applied to the foot. The latter two forces combine to give 
a force that is transmitted through the lower leg to the
knee. The result is that the knee experiences the total force

. The goal of this traction system is to have 
directly in line with the fractured femur, at an angle of

20.0° above the horizontal. Find (a) the angle required to pro-
duce this alignment of and (b) the magnitude of the force, 

that is applied to the femur in this case. (Assume the pul-
leys are ideal.)
F
!
total

F
!
total

u

F
!
total

F
!
total = F

!
1 + F

!
2 + F

!
3

F
!
2 + F

!
3

F
!
3

F
!
2F

!
1

m1 = 1.0 kg m2 = 2.0 kg

m3 =
3.0 kg

▲ FIGURE 6–30 Problems 44, 47, and 103

45. • Two blocks are connected by a string, as shown in Figure 6–31.
The smooth inclined surface makes an angle of 35° with the
horizontal, and the block on the incline has a mass of 5.7 kg. The
mass of the hanging block is . Find (a) the direction
and (b) the magnitude of the hanging block’s acceleration.

m = 3.2 kg
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▲ FIGURE 6–32 Problem 48
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▲ FIGURE 6–34 Problem 54

B

C

A

D

▲ FIGURE 6–33 Problem 52

46. • Referring to Problem 45, find (a) the direction and (b) the
magnitude of the hanging block’s acceleration if its mass is

.

47. •• Referring to Figure 6–30, find the tension in the string con-
necting (a) and and (b) and . Assume the table is
frictionless and the masses move freely.

48. •• IP A 3.50-kg block on a smooth tabletop is attached by a
string to a hanging block of mass 2.80 kg, as shown in Figure 6–32.
The blocks are released from rest and allowed to move freely.
(a) Is the tension in the string greater than, less than, or equal to
the weight of the hanging mass? Find (b) the acceleration of the
blocks and (c) the tension in the string.

m3m2m2m1

m = 4.2 kg

49. •• IP A 7.7-N force pulls horizontally on a 1.6-kg block that slides
on a smooth horizontal surface. This block is connected by a hor-
izontal string to a second block of mass on the same
surface. (a) What is the acceleration of the blocks? (b) What is the
tension in the string? (c) If the mass of block 1 is increased, does
the tension in the string increase, decrease, or stay the same?

50. ••• Buckets and a Pulley Two buckets of sand hang from op-
posite ends of a rope that passes over an ideal pulley. One
bucket is full and weighs 120 N; the other bucket is only partly
filled and weighs 63 N. (a) Initially, you hold onto the lighter
bucket to keep it from moving. What is the tension in the rope?
(b) You release the lighter bucket and the heavier one descends.
What is the tension in the rope now? (c) Eventually the heavier
bucket lands and the two buckets come to rest. What is the ten-
sion in the rope now?

S E C T I O N  6 – 5    C I R C U L A R  M O T I O N

51. • CE Suppose you stand on a bathroom scale and get a reading
of 700 N. In principle, would the scale read more, less, or the
same if the Earth did not rotate?

52. • CE A car drives with constant speed on an elliptical track, as
shown in Figure 6–33. Rank the points A, B, and C in order of in-
creasing likelihood that the car might skid. Indicate ties where
appropriate.

m2 = 0.83 kg

53. • CE A car is driven with constant speed around a circular
track. Answer each of the following questions with “Yes” or
“No.” (a) Is the car’s velocity constant? (b) Is its speed con-
stant? (c) Is the magnitude of its acceleration constant? (d) Is the
direction of its acceleration constant?

54. • CE A puck attached to a string undergoes circular motion on an
air table. If the string breaks at the point indicated in Figure 6–34,
is the subsequent motion of the puck best described by path A,
B, C, or D?

55. • When you take your 1300-kg car out for a spin, you go around
a corner of radius 59 m with a speed of 16 m/s. The coefficient of
static friction between the car and the road is 0.88. Assuming your
car doesn’t skid, what is the force exerted on it by static friction?

56. • Find the linear speed of the bottom of a test tube in a cen-
trifuge if the centripetal acceleration there is 52,000 times the ac-
celeration of gravity. The distance from the axis of rotation to
the bottom of the test tube is 7.5 cm.

57. • BIO A Human Centrifuge To test the effects of high acceler-
ation on the human body, the National Aeronautics and Space
Administration (NASA) has constructed a large centrifuge at
the Manned Spacecraft Center in Houston. In this device, astro-
nauts are placed in a capsule that moves in a circular path with
a radius of 15 m. If the astronauts in this centrifuge experience
a centripetal acceleration 9.0 times that of gravity, what is the
linear speed of the capsule?

▲ FIGURE 6–31 Problems 45 and 46

35°

m
5.7 kg
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r = 35 m

v = 12 m/s

▲ FIGURE 6–35 Problems 62 and 63

58. • A car goes around a curve on a road that is banked at an angle
of 33.5°. Even though the road is slick, the car will stay on the
road without any friction between its tires and the road when
its speed is 22.7 m/s. What is the radius of the curve?

59. •• Jill of the Jungle swings on a vine 6.9 m long. What is the ten-
sion in the vine if Jill, whose mass is 63 kg, is moving at 2.4 m/s
when the vine is vertical?

60. •• IP In Problem 59, (a) how does the tension in the vine
change if Jill’s speed is doubled? Explain. (b) How does the ten-
sion change if her mass is doubled instead? Explain.

61. •• IP (a) As you ride on a Ferris wheel, your apparent weight
is different at the top than at the bottom. Explain. (b) Calculate
your apparent weight at the top and bottom of a Ferris wheel,
given that the radius of the wheel is 7.2 m, it completes one rev-
olution every 28 s, and your mass is 55 kg.

to the object’s direction of motion, (a) is the shape of the object’s
path circular, linear, or parabolic? (b) During its motion, does the
object’s velocity change in direction but not magnitude, change
in magnitude but not direction, or change in both magnitude and
direction? (c) Does its speed increase, decrease, or stay the same?

67. • CE BIO Maneuvering a Jet Humans lose consciousness if ex-
posed to prolonged accelerations of more than about 7g. This is
of concern to jet fighter pilots, who may experience centripetal
accelerations of this magnitude when making high-speed turns.
Suppose we would like to decrease the centripetal acceleration
of a jet. Rank the following changes in flight path in order of
how effective they are in decreasing the centripetal acceleration,
starting with the least effective: A, decrease the turning radius
by a factor of two; B, decrease the speed by a factor of three; or
C, increase the turning radius by a factor of four.

68. • CE BIO Gravitropism As plants grow, they tend to align
their stems and roots along the direction of the gravitational
field. This tendency, which is related to differential concentra-
tions of plant hormones known as auxins, is referred to as
gravitropism. As an illustration of gravitropism, experiments
show that seedlings placed in pots on the rim of a rotating
turntable do not grow in the vertical direction. Do you expect
their stems to tilt inward—toward the axis of rotation—or
outward—away from the axis of rotation?

69. • BIO A skateboard accident leaves your leg in a cast and sup-
ported by a traction device, as in Figure 6–24. Find the mass m
that must be attached to the rope if the net force exerted by the
small pulley on the foot is to have a magnitude of 37 N.

70. • Find the centripetal acceleration at the top of a test tube in a
centrifuge, given that the top is 4.2 cm from the axis of rotation
and that its linear speed is 77 m/s.

71. • Find the coefficient of kinetic friction between a 3.85-kg block
and the horizontal surface on which it rests if an 850-N/m
spring must be stretched by 6.20 cm to pull it with constant
speed. Assume that the spring pulls in the horizontal direction.

72. • A child goes down a playground slide that is inclined at an
angle of 26.5° below the horizontal. Find the acceleration of the
child given that the coefficient of kinetic friction between the
child and the slide is 0.315.

73. • When a block is placed on top of a vertical spring, the spring
compresses 3.15 cm. Find the mass of the block, given that the
force constant of the spring is 1750 N/m.

74. •• The da Vinci Code Leonardo da Vinci (1452–1519) is credited
with being the first to perform quantitative experiments on fric-
tion, though his results weren’t known until centuries later, due
in part to the secret code (mirror writing) he used in his note-
books. Leonardo would place a block of wood on an inclined

A Ferris Wheel (Problems 61 and 84)

62. •• Driving in your car with a constant speed of 12 m/s, you en-
counter a bump in the road that has a circular cross section, as
indicated in Figure 6–35. If the radius of curvature of the bump
is 35 m, find the apparent weight of a 67-kg person in your car
as you pass over the top of the bump.

63. •• Referring to Problem 62, at what speed must you go over the
bump if people in your car are to feel “weightless”?

64. •• IP You swing a 4.6-kg bucket of water in a vertical circle of
radius 1.3 m. (a) What speed must the bucket have if it is to
complete the circle without spilling any water? (b) How does
your answer depend on the mass of the bucket?

G E N E R A L  P R O B L E M S

65. • CE If you weigh yourself on a bathroom scale at the equator,
is the reading you get greater than, less than, or equal to the
reading you get if you weigh yourself at the North Pole?

66. • CE An object moves on a flat surface with an acceleration of
constant magnitude. If the acceleration is always perpendicular

Sketches from the notebooks of Leonardo da Vinci showing
experiments he performed on friction (Problem 74)
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▲ FIGURE 6–37 Problems 81 and 82
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▲ FIGURE 6–36 Problem 80

plane and measure the angle at which the block begins to slide.
He reports that the coefficient of static friction was 0.25 in his ex-
periments. At what angle did Leonardo’s blocks begin to slide?

75. •• A force of 9.4 N pulls horizontally on a 1.1-kg block that
slides on a rough, horizontal surface. This block is connected by
a horizontal string to a second block of mass on
the same surface. The coefficient of kinetic friction is 
for both blocks. (a) What is the acceleration of the blocks?
(b) What is the tension in the string?

76. •• You swing a 3.25-kg bucket of water in a vertical circle of ra-
dius 0.950 m. At the top of the circle the speed of the bucket is
3.23 m/s; at the bottom of the circle its speed is 6.91 m/s. Find
the tension in the rope tied to the bucket at (a) the top and
(b) the bottom of the circle.

77. •• A 14-g coin slides upward on a surface that is inclined at an
angle of 18° above the horizontal. The coefficient of kinetic friction
between the coin and the surface is 0.23; the coefficient of static
friction is 0.35. Find the magnitude and direction of the force of
friction (a) when the coin is sliding and (b) after it comes to rest.

78. •• In Problem 77, the angle of the incline is increased to 25°.
Find the magnitude and direction of the force of friction when
the coin is (a) sliding upward initially and (b) sliding back
downward later.

79. •• A physics textbook weighing 22 N rests on a table. The coef-
ficient of static friction between the book and the table is

; the coefficient of kinetic friction is . You
push horizontally on the book with a force that gradually in-
creases from 0 to 15 N, and then slowly decreases to 5.0 N, as in-
dicated in the following table. For each value of the applied
force given in the table, give the magnitude of the force of fric-
tion and state whether the book is accelerating, decelerating, at
rest, or moving with constant speed.

mk = 0.40ms = 0.60

mk = 0.24
m2 = 1.92 kg

80. •• A ball of mass m is placed in a wedge, as shown in Figure 6–36,
in which the two walls meet at a right angle. Assuming the
walls of the wedge are frictionless, determine the magnitude of
(a) contact force 1 and (b) contact force 2.

static friction between block A and the surface on which it rests
is 0.320. (b) If the mass of block A is doubled, does the frictional
force exerted on it increase, decrease, or stay the same? Explain.

82. •• In part (a) of Problem 81, what is the maximum mass block
B can have and the system still be in equilibrium?

83. •• IP A picture hangs on the wall suspended by two strings, as
shown in Figure 6–21. The tension in string 2 is 1.7 N. (a) Is the
tension in string 1 greater than, less than, or equal to 1.7 N? Ex-
plain. (b) Verify your answer to part (a) by calculating the ten-
sion in string 1. (c) What is the mass of the picture?

84. •• IP Referring to Problem 61, suppose the Ferris wheel rotates
fast enough to make you feel “weightless” at the top. (a) How
many seconds does it take to complete one revolution in this
case? (b) How does your answer to part (a) depend on your
mass? Explain. (c) What are the direction and magnitude of
your acceleration when you are at the bottom of the wheel? As-
sume that its rotational speed has remained constant.

85. •• A Conical Pendulum A 0.075-kg toy airplane is tied to the
ceiling with a string. When the airplane’s motor is started, it
moves with a constant speed of 1.21 m/s in a horizontal circle of
radius 0.44 m, as illustrated in Figure 6–38. Find (a) the angle the
string makes with the vertical and (b) the tension in the string.

86. •• A tugboat tows a barge at constant speed with a 3500-kg cable,
as shown in Figure 6–39. If the angle the cable makes with the hor-

22°22°

▲ FIGURE 6–39 Problem 86

81. •• IP The blocks shown in Figure 6–37 are at rest. (a) Find the
frictional force exerted on block A given that the mass of block A
is 8.82 kg, the mass of block B is 2.33 kg, and the coefficient of
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0.45 m

▲ FIGURE 6–41 Problem 91

izontal where it attaches to the barge and the tugboat is 22°, find
the force the cable exerts on the barge in the forward direction.

87. •• IP Two blocks, stacked one on top of the other, can move
without friction on the horizontal surface shown in Figure 6–40.
The surface between the two blocks is rough, however, with a
coefficient of static friction equal to 0.47. (a) If a horizontal force
F is applied to the 5.0-kg bottom block, what is the maximum
value F can have before the 2.0-kg top block begins to slip?
(b) If the mass of the top block is increased, does the maximum
value of F increase, decrease, or stay the same? Explain.

88. •• Find the coefficient of kinetic friction between a 4.7-kg block
and the horizontal surface on which it rests if an 89-N/m spring
must be stretched by 2.2 cm to pull the block with constant speed.
Assume the spring pulls in a direction 13° above the horizontal.

89. •• IP In a daring rescue by helicopter, two men with a combined
mass of 172 kg are lifted to safety. (a) If the helicopter lifts the men
straight up with constant acceleration, is the tension in the rescue
cable greater than, less than, or equal to the combined weight of
the men? Explain. (b) Determine the tension in the cable if the
men are lifted with a constant acceleration of .

90. •• At the airport, you pull a 18-kg suitcase across the floor with
a strap that is at an angle of 45° above the horizontal. Find
(a) the normal force and (b) the tension in the strap, given that
the suitcase moves with constant speed and that the coefficient
of kinetic friction between the suitcase and the floor is 0.38.

91. •• IP A light spring with a force constant of 13 N/m is connected
to a wall and to a 1.2-kg toy bulldozer, as shown in Figure 6–41.
When the electric motor in the bulldozer is turned on, it
stretches the spring for a distance of 0.45 m before its tread be-
gins to slip on the floor. (a) Which coefficient of friction (static or
kinetic) can be determined from this information? Explain.
(b) What is the numerical value of this coefficient of friction?

1.10 m/s2

92. •• IP A 0.16-g spider hangs from the middle of the first thread
of its future web. The thread makes an angle of 7.2° with the
horizontal on both sides of the spider. (a) What is the tension in
the thread? (b) If the angle made by the thread had been less
than 7.2°, would its tension have been greater than, less than, or
the same as in part (a)? Explain.

93. •• Find the acceleration the cart in Figure 6–42 must have in
order for the cereal box at the front of the cart not to fall.
Assume that the coefficient of static friction between the cart
and the box is 0.38.

94. •• IP Playing a Violin The tension in a violin string is 2.7 N.
When pushed down against the neck of the violin, the string
makes an angle of 4.1° with the horizontal. (a) With what force
must you push down on the string to bring it into contact with the

neck? (b) If the angle were less than 4.1°, would the required force
be greater than, less than, or the same as in part (a)? Explain.

95. •• IP A pair of fuzzy dice hangs from a string attached to your
rearview mirror. As you turn a corner with a radius of 98 m and
a constant speed of 27 mi/h, what angle will the dice make with
the vertical? Why is it unnecessary to give the mass of the dice?

96. •• Find the tension in each of the two ropes supporting a ham-
mock if one is at an angle of 18° above the horizontal and the
other is at an angle of 35° above the horizontal. The person
sleeping in the hammock (unconcerned about tensions and
ropes) has a mass of 68 kg.

97. •• As your plane circles an airport, it moves in a horizontal circle
of radius 2300 m with a speed of 390 km/h. If the lift of the air-
plane’s wings is perpendicular to the wings, at what angle should
the plane be banked so that it doesn’t tend to slip sideways?

98. •• IP A block with a mass of 3.1 kg is placed at rest on a surface
inclined at an angle of 45° above the horizontal. The coefficient
of static friction between the block and the surface is 0.50, and a
force of magnitude F pushes upward on the block, parallel to
the inclined surface. (a) The block will remain at rest only if F is
greater than a minimum value, , and less than a maximum
value, . Explain the reasons for this behavior. (b) Calculate

. (c) Calculate .

99. •• A mountain climber of mass m hangs onto a rope to keep
from sliding down a smooth, ice-covered slope (Figure 6–43).
Find a formula for the tension in the rope when the slope is
inclined at an angle above the horizontal. Check your results
in the limits and .u = 90°u = 0

u

FmaxFmin

Fmax

Fmin

F

2.0 kg

5.0 kg

▲ FIGURE 6–40 Problem 87
▲ FIGURE 6–42 Problem 93
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▲ FIGURE 6–43 Problem 99
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▲ FIGURE 6–44 Problem 101
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▲ FIGURE 6–45 Problem 105
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▲ FIGURE 6–46 Problem 107
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100. •• A child sits on a rotating merry-go-round, 2.3 m from its
center. If the speed of the child is 2.2 m/s, what is the mini-
mum coefficient of static friction between the child and the
merry-go-round that will prevent the child from slipping?

101. ••• A 2.0-kg box rests on a plank that is inclined at an angle
of 65° above the horizontal. The upper end of the box is at-
tached to a spring with a force constant of 360 N/m, as shown
in Figure 6–44. If the coefficient of static friction between the
box and the plank is 0.22, what is the maximum amount the
spring can be stretched and the box remain at rest?

102. ••• Awood block of mass m rests on a larger wood block of mass
M that rests on a wooden table. The coefficients of static and ki-
netic friction between all surfaces are and , respectively.
What is the minimum horizontal force, F, applied to the lower
block that will cause it to slide out from under the upper block?

103. ••• Find the tension in each of the two strings shown in Fig-
ure 6–30 for general values of the masses. Your answer should
be in terms of , and g.

104. ••• The coefficient of static friction between a rope and the
table on which it rests is . Find the fraction of the rope that
can hang over the edge of the table before it begins to slip.

105. ••• A hockey puck of mass m is attached to a string that
passes through a hole in the center of a table, as shown in
Figure 6–45. The hockey puck moves in a circle of radius r.
Tied to the other end of the string, and hanging vertically be-
neath the table, is a mass M. Assuming the tabletop is per-
fectly smooth, what speed must the hockey puck have if the
mass M is to remain at rest?

ms

m1, m2, m3

mkms

106. ••• The Force Needed to Move a Crate To move a crate of
mass m across a rough floor, you push down on it at an angle

as shown in Figure 6–18 for the special case of . (a)
Find the force necessary to start the crate moving as a function
of , given that the coefficient of static friction between the
crate and the floor is . (b) Show that it is impossible to move
the crate, no matter how great the force, if the coefficient of sta-
tic friction is greater than or equal to .

107. ••• IP A popular ride at amusement parks is illustrated in
Figure 6–46. In this ride, people sit in a swing that is suspended
from a rotating arm. Riders are at a distance of 12 m from the
axis of rotation and move with a speed of 25 mi/h. (a) Find the
centripetal acceleration of the riders. (b) Find the angle the
supporting wires make with the vertical. (c) If you observe a
ride like that in Figure 6–46, or as shown in the photo on page
170, you will notice that all the swings are at the same angle 
to the vertical, regardless of the weight of the rider. Explain.

u

u

1/tan u

ms

u

u = 21°u,

108. ••• A Conveyor Belt A box is placed on a conveyor belt that
moves with a constant speed of 1.25 m/s. The coefficient of ki-
netic friction between the box and the belt is 0.780. (a) How
much time does it take for the box to stop sliding relative to the
belt? (b) How far does the box move in this time?

109. ••• You push a box along the floor against a constant force of
friction. When you push with a horizontal force of 75 N, the
acceleration of the box is ; when you increase the
force to 81 N, the acceleration is . Find (a) the mass of
the box and (b) the coefficient of kinetic friction between the
box and the floor.

110. ••• As part of a circus act, a person drives a motorcycle with
constant speed v around the inside of a vertical track of radius
r, as indicated in Figure 6–47. If the combined mass of the
motorcycle and rider is m, find the normal force exerted on the
motorcycle by the track at the points (a) A, (b) B, and (c) C.

0.75 m/s2
0.50 m/s2

▲ FIGURE 6–47 Problem 110
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BIO Nasal Strips
People in all walks of life use nasal strips, or external nasal
dilator strips (ENDS), to alleviate a number of respiratory
problems. First introduced to eliminate snoring, they are now
finding use in a number of other areas. For example, dentists
have found that nasal strips help patients breathe better dur-
ing dental procedures, making the experience considerably
more pleasant for both doctor and patient. Surprisingly, horse
owners have also discovered the advantage of nasal strips,
and have begun to apply large “horse-sized” strips to saddle
horses—as well as racing thoroughbreds—to reduce fatigue
and lung stress.

One of the great advantages of ENDS is that no drugs are in-
volved; the strips are a purely mechanical device, consisting of
two flat, polyester springs enclosed by an adhesive tape cover-
ing. When applied to the nose, they exert an outward force that
enlarges the nasal passages and reduces the resistance to air
flow (see the illustration in Active Example 6–2). The mecha-
nism shown in Figure 6–48 (a) is used to measure the behavior of
these strips. For example, if a 30-g weight is placed on the
moveable platform (of negligible mass), the strip is found to
compress from an initial length of 50 mm to a reduced length of
19 mm, as can be seen in Figure 6–48 (b).

111. • On the straight-line segment I in Figure 6–48 (b) we see that
increasing the applied mass from 26 g to 44 g results in a

reduction of the end-to-end distance from 21 mm to 14 mm.
What is the force constant in N/m on segment I?

A. 2.6 N/m B. 3.8 N/m

C. 9.8 N/m D. 25 N/m

112. • Is the force constant on segment II greater than, less than, or
equal to the force constant on segment I?

113. • Which of the following is the best estimate for the force con-
stant on segment II?

A. 0.83 N/m B. 1.3 N/m

C. 2.5 N/m D. 25 N/m

114. • Rank the straight segments I, II, and III in order of increasing
“stiffness” of the nasal strip.

I N T E R A C T I V E  P R O B L E M S

115. •• IP Referring to Example 6–3 Suppose the coefficients of
static and kinetic friction between the crate and the truck bed
are 0.415 and 0.382, respectively. (a) Does the crate begin to
slide at a tilt angle that is greater than, less than, or equal to
23.2°? (b) Verify your answer to part (a) by determining the
angle at which the crate begins to slide. (c) Find the length of
time it takes for the crate to slide a distance of 2.75 m when the
tilt angle has the value found in part (b).

116. •• IP Referring to Example 6–3 The crate begins to slide
when the tilt angle is 17.5°. When the crate reaches the bot-
tom of the flatbed, after sliding a distance of 2.75 m, its
speed is 3.11 m/s. Find (a) the coefficient of static friction
and (b) the coefficient of kinetic friction between the crate
and the flatbed.

117. •• Referring to Example 6–6 Suppose that the mass on the
frictionless tabletop has the value m1 � 2.45 kg. (a) Find the 
value of that gives an acceleration of 2.85 m/s2. (b) What is
the corresponding tension, T, in the string? (c) Calculate the
ratio and show that it is less than 1, as expected.

118. •• Referring to Example 6–8 (a) At what speed will the
force of static friction exerted on the car by the road be equal to
half the weight of the car? The mass of the car is ,
the radius of the corner is m, and the coefficient of sta-
tic friction between the tires and the road is . (b) Sup-
pose that the mass of the car is now doubled, and that it moves
with a speed that again makes the force of static friction equal
to half the car’s weight. Is this new speed greater than, less
than, or equal to the speed in part (a)?

ms = 0.82
r = 45

m = 1200 kg

T/m2 g

m2

A thoroughbred racehorse with a nasal strip.
Did it win by a nose?

▲ FIGURE 6–48 Problems 111, 112, 113, and 114
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Force, 
Acceleration,
and Motion
Motion does not
require a force—
but a change in
motion does.  
On these pages 
we explore the
connections 
between forces, 
as described in 
Newton’s laws, 
and the types of
motion we’ve 
studied in the 
first six chapters.

1 Objects that experience zero net force obey Newton’s first law
If the net force acting on an object is zero, the object’s motion doesn’t change—the object 
either remains at rest or continues to move with constant velocity, as Newton’s first law states. 

F
!
net = ©F

!

At rest Motion at constant velocity

If the net force acting 
on an object is zero … then … the object has zero acceleration. 

2 All objects experience forces—the question is whether the object
experiences a net force  

All objects—moving or at
rest—are acted on by forces.
Even in outer space, objects
experience gravitational and
other forces. Therefore, the
net force on the object is the
quantity that matters. 

Newton’s first law seems at
odds with our experience: If
we stop exerting a force on a
moving object, the object
usually stops. But that is 
because we must counter
friction and drag forces. In
the photo, the net force on the
couch is zero even though the
person exerts a steady push. 

a
!

=
©F

!

m
= 0

W

N
ΣF = 0 

a = 0 a = 0
F = 0 

W

N

,©F
!

= 0

This behavior is consistent with Newton’s second law for a net force of zero:

a = 0
N

F

fk

W

F = 0

3 Moving at constant velocity is equivalent to being at rest  
When you sit in a jet flying 
in a straight line, you feel 
the same as when you are 
sitting at home, and objects
around you behave the same.

From the point of view of
physics, there is no difference
between these situations;
Newton’s laws hold in both.
We say that both represent 
inertial frames of reference. 



Linear accelerated motion Projectile motion Circular motion
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6 The acceleration magnitude is proportional to F and inversely proportional to m

5 The acceleration points in the direction of the net force
Linear accelerated motion  
• Net force is parallel to motion. 
• Velocity changes in magnitude but

not in direction.  

Special case: free fall
Constant downward acceleration g

!

Parabolic motion
• Constant net force acts at angle 

to motion. 
• Velocity changes in both magnitude

and direction. 

Special case: projectile motion
Constant downward acceleration g

!

Circular motion (constant speed)  
• Net force is constant in magnitude

but always points toward the center
of the circle. Thus, the net force is
always at a right angle to the 
object’s velocity.

• Velocity changes in direction but not
in magnitude.

a
!

=
©F

!

m
Z 0

If a nonzero net force
acts on an object … then

… the object has an acceleration in the direction of the net 
force that is proportional to and inversely proportional to m.©F

!
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B
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Ball’s vertical motion is up-and-down free fall.
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Horizontally, ball moves at constant velocity.
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4 Objects that experience a nonzero net force obey Newton’s second law
A nonzero net force accelerates an object—that is, causes its velocity to change in magnitude, direction, 
or both. We have studied the following three special types of accelerated motion: 

W

N

F

a

a W = ΣF
F = ΣF 

N

W
a

Accelerated motion obeys Newton’s second law:

Doubling the net force acting on an object doubles the object’s
acceleration ( ).a

! r F
! Doubling the object’s mass m halves its acceleration ( ).a

! r 1/m

mass = 2m

F

a1
2

mass = m

a

F

2a

2 F

a

F

v
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a ΣF
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v

g gWW
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Ball tossed
upward
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