Physics Practice Quiz E,F,G,H
Unit 2: Graph interpretation
Unit 2: Graph interpretation

Formula's:

1. In each of the graphs below describe velocity, acceleration and the area under the curve. 18 pt.

Vel $=$ _constant
Acc =_zero
Area =
\qquad

Time

$$
\begin{aligned}
& \text { Vel =_increasing } \\
& \text { Acc =_increasing } \\
& \text { Area = _distance }
\end{aligned}
$$

Time

Vel = _zero
\qquad

Acc $=\ldots$ zero
\qquad
Area $=\ldots \mathrm{N} / \mathrm{A}$
Vel

Time

Vel $=$ _increasing
Acc = _decreasing

Area $=\underline{\text { distance }}$

Vel $=$ increasing
Acc $=$ _constant
Area $=\ldots \mathrm{N} / \mathrm{A}$

Time
Vel =_constant

Acc =_zero
Area $=$ distance
2. Using the position-time graph shown below, determine the velocity over each segment. Show all your work in determining the velocity. Circle final answers! 2 pts each.

Dist (m)
30
25
20
15
10
5
0

Segment A: $15 \mathrm{~m} / 15 \mathrm{~s}=1 \mathrm{~m} / \mathrm{s}$

Segment B: $\quad 15 \mathrm{~m} / 10 \mathrm{~s}=\mathbf{1 . 5} \mathrm{m} / \mathrm{s}$

Segment C: $\quad-\mathbf{3 0 m} / 40 \mathrm{~s}=\mathbf{- 0 . 7 5} \mathrm{m} / \mathrm{s}$
3. Using the Velocity-time graph shown below, determine the acceleration over each segment. Show all your work in determining the acceleration. Circle final answers! 2 pts each.
$\operatorname{Vel}(\mathrm{m} / \mathrm{s})$

Segment A: $4 \mathrm{~m} / \mathrm{s} / 6$ seconds $=0.66667 \mathrm{~m} / \mathrm{s}^{2}$

Segment B: $0 \mathrm{~m} / \mathrm{s} / 4$ seconds $=0 \mathrm{~m} / \mathrm{s}^{2}$

Segment C: $-4 \mathrm{~m} / \mathrm{s} / 6$ seconds $=-0.666667 \mathrm{~m} / \mathrm{s}^{2}$

Bonus:
In the following diagram determine the instantaneous velocity for the point indicated on the graph. Show all your work!! 3 points.

Dist (m)

To solve, determine the slope of the straight line to determine the slope of the point on the graph. This will tell You the slope of the graph (velocity m / s) at the indicated point. The line is called a tangent line to the point on the graph.

