\qquad
Date: \qquad Period \qquad

Unit 3: Linear Motion Worksheet VI Review of Motion in One Dimension

1. The following graph shows the velocity of a moving object as monitored over a time period of 8 s . Use the graph to answer the questions that follow: (10pts)

Velocity vs. Time

(a) Determine the distance traveled by the object between $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=8 \mathrm{~s}$. \qquad
(b) Determine the displacement of the object between $t=0 \mathrm{~s}$ and $\mathrm{t}=8 \mathrm{~s}$. \qquad
(c) What was change in the object's velocity between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=6 \mathrm{~s}$? \qquad
(d) Find the average acceleration of the object between $t=3 \mathrm{~s}$ and $\mathrm{t}=8 \mathrm{~s}$. \qquad
(e) Calculate the average acceleration of the object over the entire 8 s interval. \qquad
2. The VW Beetle goes from 0 to 60 mph with an acceleration of $2.35 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Using the fact that there are $1.6 \mathrm{~km} / \mathrm{mile}$, convert the final velocity to m / s. (5pts)
(b) Starting from rest, how many seconds should it take the VW Beetle to reach this final velocity? (5pts)
(c) A dragster can go from 0 to 60 mph in a mere 0.600 s . What is the acceleration rate (in $\mathrm{m} / \mathrm{s}^{2}$) of the dragster? (5pts)
\qquad
3. A golf ball is dropped from rest into a river from a bridge 55 m above the water. A short time later, a second ball is thrown downward with a speed of $11.9 \mathrm{~m} / \mathrm{s}$, and happens to strike the water at the same moment as the first ball.
(a) How long did it take the first ball to reach the water?
(b) How long was the first ball falling before the second was thrown?
(c) With what velocity did the first ball strike the water?
(d) With what velocity did the second ball strike the water?
4. A woman on a bridge 100 m high sees a raft floating at a constant speed on the river below. She drops a stone from rest and is successful in hitting the raft. The stone is released when the raft has 6 m more to travel before passing under the bridge.
(a) How long does it take the stone to reach the water?
(b) At what constant speed is the raft traveling?

Answers: (1) $14 \mathrm{~m}, 6 \mathrm{~m},-6 \mathrm{~m} / \mathrm{s},-0.8 \mathrm{~m} / \mathrm{s}^{2}, 0$, (2) $26.7 \mathrm{~m} / \mathrm{s}, 11.4 \mathrm{~s}, 44.5 \mathrm{~m} / \mathrm{s}^{2}$, (3) $3.35 \mathrm{~s}, 1.00 \mathrm{~s}$, $-32.8 \mathrm{~m} / \mathrm{s},-34.9 \mathrm{~m} / \mathrm{s}$, (4) $4.52 \mathrm{~s}, 1.33$

