Concept-Development Practice Page

35-1

Series Circuits

1. In the circuit shown at the right, a voltage of 6 V pushes charge through a single resistor of 2 Ω . According to Ohm's law, the current in the resistor (and therefore in the whole circuit) is _______A.

- 2. If a second identical lamp is added, as on the left, the 6-V battery must push charge through a total resistance of Ω . The current in the circuit is then Ω .
- 3. The equivalent resistance of three 4- Ω resistors in series is _____ Ω .
- 5. Does current in the lamps occur simultaneously, or does charge flow first through one lamp, then the other, and finally the last in turn?
- 6. Circuits (a) and (b) below are identical with all bulbs rated at equal wattage (therefore equal resistance). The only difference between the circuits is that Bulb 5 has a short circuit, as shown.

- a. In which circuit is the current greater?
- b. In which circuit are all three bulbs equally bright?
- c. What bulbs are the brightest?
- d. What bulb is the dimmest?
- e. What bulbs have the largest voltage drops across them? _____
- f. Which circuit dissipates more power? _____
- g. What circuit produces more light? _____

Parallel Circuits

1. In the circuit shown below, there is a voltage drop of 6V across *each* 2- Ω resistor.

- a. By Ohm's law, the current in *each* resistor is ______ A.
- b. The current through the battery is the sum of the currents in the resistors, ______ A.
- c. Fill in the current in the eight blank spaces in the view of the *same circuit* shown again at the right.

- $3. \ \ Consider the parallel circuit at the right.$
 - a. The voltage drop across each resistor is______V.
 - b. The current in each branch is:
 - $2-\Omega$ resistor _____A
 - $2-\Omega$ resistor _____A
 - $1-\Omega$ resistor _____A
 - b. The current through the battery equals the sum of the currents which equals _____ A.
 - c. The equivalent resistance of the circuit equals $\underline{\hspace{1cm}}$ Ω .

CONCEPTUAL PHYSICS