$\qquad$
Worksheet IV
Read each question carefully. Show all of your work and the equations used. Don't forget units and circle the final answers.

1. A 9800 N car traveling at $22 \mathrm{~m} / \mathrm{s}$ strikes a concrete bridge support and completely halts in 0.5 sec .
a) Determine the magnitude of the force acting on the car. [44,000 N]2pts
b) Suppose a barrier, which contained material gradually crushed during impact so that the stopping time was increased to 3 sec , had surrounded the bridge support. What would be the magnitude of the new force? [7,333.33 N]2pts
2. A 1 kg object traveling at $1 \mathrm{~m} / \mathrm{s}$ collides head-on with a 2 kg object initially at rest. If the collision is completely inelastic, determine the velocity of the objects after impact and how much kinetic energy was lost during the collision. $[0.33 \mathrm{~m} / \mathrm{s}, 0.33665 \mathrm{~J}] 5 \mathrm{pts}$
3. Max, who has a mass of 80 kg , and his girlfriend, Allison, who has a mass of 50 kg , are wearing skates and are standing together on a frozen lake. If they push apart and Max has a velocity of $0.72 \mathrm{~m} / \mathrm{s}$ in the opposite direction of Allison, what is Allison's velocity? (Neglect friction) [ $1.152 \mathrm{~m} / \mathrm{s}$ ] 2pts
4. Stranded on a frozen and frictionless lake, David, who has a mass of 55 kg , takes off his new 0.15 kg Michael Jordan tennis shoes that he got from Santa Claus for Christmas. He throws the shoes horizontally directly away from the shore with a speed of $2 \mathrm{~m} / \mathrm{s}$. If David is 5 m away from shore, how long does it take before he reaches land?
[ $916.67 \mathrm{sec}, 15.278 \mathrm{~min}$ ] 2 pts
5. For a movie scene, a 60 kg , Jenna drops from a tree onto a 50 kg sled, moving $6 \mathrm{~m} / \mathrm{s}$ toward the shore of a frozen lake.
a) What is the speed of the sled after Jenna is on board? [ $2.73 \mathrm{~m} / \mathrm{s}] 2 \mathrm{pts}$
b) If the sled hits the bank and stops, but Jenna keeps going, then at what speed does she leave the sled? [ $5.005 \mathrm{~m} / \mathrm{s}$ ] 2 pts
6. Locate the center of mass of the two-particle system shown in the figure below from the reference of the 4 kg mass.

7. The mass of the Sun is 329,390 Earth masses, and the mean distance from the center of the Sun to the center of the Earth is $1.496 \times 10^{8} \mathrm{~km}$. Treating the Earth and Sun as particles, with each mass concentrated at its respective geometric center; how far from the center of the Sun is the center of mass of the Earth-Sun system? Compare this distance with the mean radius of the $\operatorname{Sun}\left(6.96 \times 10^{5} \mathrm{~km}\right)$. [ $\left.454.17 \mathrm{~km}, 1 / 1532\right] 5 \mathrm{pts}$
8. Where is the center of mass of the three-particle system shown below using the origin as the reference point?

$$
[\mathrm{COM}=(-2.14,-0.0476)] 4 \mathrm{pts}
$$



