Name: \qquad
Date: \qquad

Vector Addition Worksheet III

/ 39

On a separate piece of paper, or in the space below IF you can neatly fit your work, use the following individual vectors to GRAPHICALLY find the resultant vector in the first three problems. Remember, the resultant vector must have both magnitude and direction. Include a scale, for example $1 \mathrm{~km}=1 \mathrm{~mm}$. Use Ruler and Protractor!!

First things first, draw each of the below vectors on a separate $x-y$ axis below. 4 pts.

$$
\overrightarrow{\mathbf{C}}=20 \mathrm{~km} \text { at } 57^{\circ} \mathrm{W} \text { of } \mathrm{S}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{B}}=15 \mathrm{~km} \text { at } 10^{\circ} \mathrm{E} \text { of } \mathrm{N} \\
& \overrightarrow{\mathbf{D}}=40 \mathrm{~km} \text { at } 28^{\circ} \mathrm{W} \text { of } \mathrm{N}
\end{aligned}
$$

1. $\vec{A}+\vec{B}=$? (2pts)
2. $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=$? (2pts)
3. $\vec{C}+\vec{D}=$? (2pts)

Solve all the following problems MATHEMATICALLY using your calculator. Show all work. Remember, the resultant vector must have both magnitude and direction (an angle).

1. Now, let's assume that $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$, and $\overrightarrow{\mathbf{D}}$ from above are each the resultant of component vectors (" x " and " y "). Redraw the previous vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\overrightarrow{\mathbf{D}} \mathbf{\text { in }} \rightarrow$ the graphs below BUT it is not necessary to draw to scale. 8 pts

Now add the component "x" and "y" vectors to each of the above vectors so that it resembles the example below. Calculate the value of each component. Remember the below is just an example!! Label the " x " and the " y " component for each vector and clearly show work on how you got the value for each component. 12 pts (3pts each)

In each of the below problems, draw the vector diagram, solving for the quantity asked for in each problem. 3 pts each
2. A boat is heading across a river at a velocity of 25 mph . The river is flowing at 10 mph . What is the actual velocity of the boat? (Answer: $26.9 \mathrm{mph} @ 68.2^{\circ}$ downstream relative to the shore.)
3. You push on a box with a force of 500 Newtons directly north. Another person pushes the box with a force of 800 Newtons directly east. What is the resultant force?
(Answer: $943.4 \mathrm{~N} @ 58^{\circ} \mathrm{E}$ of N)
4. An airplane is flying $340 \mathrm{~km} / \mathrm{hr}$ at 12° East of North. The wind is blowing $40 \mathrm{~km} / \mathrm{hr}$ at 12° South of East. What is the plane's actual velocity (resultant velocity)? (Answer: $\mathbf{3 4 2 . 3} \mathbf{~ m p h} @ 71.3^{0} \mathrm{~N}$ of E)

