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body. Just as the flow of blood is
important to life, the flow of electric
charge is of central importance to
modern technology. In this chapter we
consider some of the basic properties of
moving electric charges, and we apply
these results to simple electric circuits.
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Electric Current and 
Direct-Current Circuits

A battery is a device that uses chemical energy to separate
positive and negative charges, producing a potential difference
between its terminals. In this case, the chemical energy comes
from reactions that take place between the metal electrodes and
the acid in the lemon juice. The potential difference causes a current
to flow in the wires, which is measured by the attached meter. This
chapter explores simple electric circuits, like the one seen here, and shows
how to analyze more complex ones as well.

724

As you read this paragraph, your
heart is pumping blood
through the arteries and veins

in your body. In a way, your heart is
acting like a battery in an electric circuit:
A battery causes electric charge to flow
through a closed circuit of wires; your
heart causes blood to flow through your



2 1 – 1 E L E C T R I C  C U R R E N T 725

21–1 Electric Current
A flow of electric charge from one place to another is referred to as an electric cur-
rent. Often, the charge is carried by electrons moving through a metal wire.
Though the analogy should not be pushed too far, the electrons flowing through
a wire are much like water molecules flowing through a garden hose or blood
cells flowing through an artery.

To be specific, suppose a charge flows past a given point in a wire in a time
In such a case, we say that the electric current, I, in the wire is:

Definition of Electric Current, I

21–1

SI unit: coulomb per second, A

The unit of current, the ampere (A) or amp for short, is named for the French
physicist André-Marie Ampère (1775–1836) and is defined simply as 1 coulomb
per second:

The following Example shows that the number of electrons involved in typical
electric circuits, with currents of roughly an amp, is extremely large—not unlike
the large number of water molecules flowing through a garden hose.

1 A = 1 C/s

C/s = ampere,

I =
¢Q
¢t

¢t.
¢Q

When charge flows through a closed path and returns to its starting point, we
refer to the closed path as an electric circuit. In this chapter we consider direct-
current circuits, also known as dc circuits, in which the current always flows in
the same direction. Circuits with currents that periodically reverse their direction

E X A M P L E  2 1 – 1 M E G A  B L A S T E R

The disk drive in a portable CD player is connected to a battery that supplies it with a current of 0.22 A. How many electrons
pass through the drive in 4.5 s?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the CD drive with a current flow-
ing through it. Also indicated is the time during
which the current flows.

S T R A T E G Y

Since we know both the current, I, and the length of time, we
can use the definition of current, to find the charge,

that flows through the player. Once we know the charge,
the number of electrons, N, is simply divided by the magni-
tude of the electron’s charge: 

S O L U T I O N

1. Calculate the charge, that flows through the drive:

2. Divide by the magnitude of the electron’s charge, e, to find 
the number of electrons: 

I N S I G H T

Thus, even a modest current flowing for a brief time corresponds to the transport of an extremely large number of electrons.

P R A C T I C E  P R O B L E M

How long must this current last if electrons are to flow through the disk drive? [Answer: 5.5 s]

Some related homework problems: Problem 1, Problem 2

7.5 * 1018

 = 6.2 * 1018 electrons

 N =
¢Q
e

=
0.99 C

1.60 * 10-19 C/electron

¢Q = I ¢t = 10.22 A214.5 s2 = 0.99 C¢Q,

N = ¢Q>e.
¢Q

¢Q,
I = ¢Q>¢t,

¢t,

¢t = 4.5 s
I = 0.22 A

I

t = 4.5 s�
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are referred to as alternating-current circuits. These AC circuits are considered in
detail in Chapter 24.

Batteries and Electromotive Force
Although electrons move rather freely in metal wires, they do not flow unless the
wires are connected to a source of electrical energy. A close analogy is provided
by water in a garden hose. Imagine that you and a friend each hold one end of a
garden hose filled with water. If the two ends are held at the same level, as in
Figure 21–1 (a), the water does not flow. If, however, one end is raised above the
other, as in Figure 21–1 (b), water flows from the high end—where the gravitational
potential energy is high—to the low end.

▲ Electric currents are not confined to the wires in our houses and machines, but occur in nature as well. A lightning
bolt is simply an enormous, brief current. It flows when the difference in electric potential between cloud and ground
(or cloud and cloud) becomes so great that it exceeds the breakdown strength of air. An enormous quantity of charge
then leaps across the gap in a fraction of a second. Some organisms, such as this electric torpedo ray, have internal
organic “batteries” that can produce significant electric potentials. The resulting current is used to stun their prey.

(a) Equal potential energy  no flow

Equal potential energy

No water flow

High potential
energy

Low potential
energy

Flow of water

(b) Water flows from high potential energy to low

FIGURE 21–1 Water flow as an analogy
for electric current
Water can flow quite freely through a
garden hose, but if both ends are at the
same level (a), there is no flow. If the
ends are held at different levels (b), the
water flows from the region where the
gravitational potential energy is high to
the region where it is low.

▲

A battery performs a similar function in an electric circuit. To put it simply, a
battery uses chemical reactions to produce a difference in electric potential
between its two ends, or terminals. The symbol for a battery is . The terminal
corresponding to a high electric potential is denoted by a and the terminal
corresponding to a low electric potential is denoted by a When the battery is
connected to a circuit, electrons move in a closed path from the negative terminal
of the battery, through the circuit, and back to the positive terminal.

A simple example of an electrical system is shown in Figure 21–2 (a), where we
show a battery, a switch, and a lightbulb as they might be connected in a flashlight.
In the schematic circuit shown in Figure 21–2 (b), the switch is “open”—creating an
open circuit—which means there is no closed path through which the electrons
can flow. As a result, the light is off. When the switch is closed—which “closes”
the circuit—charge flows around the circuit, causing the light to glow.

A mechanical analog to the flashlight circuit is shown in Figure 21–3. In this sys-
tem, the person raising the water from a low to a high level is analogous to the
battery, the paddle wheel is analogous to the lightbulb, and the water is analogous

- .
+ ,

+ –
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(a) A simple flashlight

(b) Circuit diagram for flashlight

▲ FIGURE 21–2 The flashlight: A simple
electric circuit
(a) A simple flashlight, consisting of a bat-
tery, a switch, and a lightbulb. (b) When
the switch is in the open position, the
circuit is “broken,” and no charge can
flow. When the switch is closed, electrons
flow through the circuit and the light
glows.

▲ FIGURE 21–3 A mechanical analog to
the flashlight circuit
The person lifting the water corresponds
to the battery in Figure 21–2, and the pad-
dle wheel corresponds to the lightbulb.

+
–

Direction of current

Flow of electrons

I

�

▲ FIGURE 21–4 Direction of current and
electron flow
In the flashlight circuit, electrons flow
from the negative terminal of the battery
to the positive terminal. The direction of
the current, I, is just the opposite: from the
positive terminal to the negative terminal.

to the electric charge. Notice that the person does work in raising the water; later,
as the water falls to its original level, it does work on the external world by turn-
ing the paddle wheel.

When a battery is disconnected from a circuit and carries no current, the dif-
ference in electric potential between its terminals is referred to as its electromotive
force, or emf (E). It follows that the units of emf are the same as those of electric po-
tential, namely, volts. Clearly, then, the electromotive force is not really a force at
all. Instead, the emf determines the amount of work a battery does to move a cer-
tain amount of charge around a circuit (like the person lifting water in Figure
21–3). To be specific, the magnitude of the work done by a battery of emf E as a
charge moves from one of its terminals to the other is given by Equation 20–2:

We apply this relation to a flashlight circuit in the following Active Example.

A C T I V E  E X A M P L E  2 1 – 1 O P E R AT I N G  A  F L A S H L I G H T :
F I N D  T H E  C H A R G E  A N D
T H E  W O R K

A battery with an emf of 1.5 V delivers a current of 0.44 A to a flashlight bulb for
64 s (see Figure 21–2). Find (a) the charge that passes through the circuit and (b) the
work done by the battery.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Use the definition of current, to find
the charge that flows through the circuit:

Part (b)

2. Once we know we can use to find
the work:

I N S I G H T

Note that the more charge a battery moves through a circuit, the more work it does.
Similarly, the greater the emf, the greater the work. We can see, then, that a car bat-
tery that operates at 12 volts and delivers several amps of current does much more
work than a flashlight battery—as expected.

Y O U R  T U R N

How long must the flashlight battery operate to do 150 J of work?

(Answers to Your Turn problems are given in the back of the book.)

The emf of a battery is the potential difference it can produce between its termi-
nals under ideal conditions. In real batteries, however, there is always some inter-
nal loss, leading to a potential difference that is less than the ideal value. In fact, the
greater the current flowing through a battery, the greater the reduction in potential
difference between its terminals, as we shall see in Section 21–4. Only when the cur-
rent is zero can a real battery produce its full emf. Because most batteries have rela-
tively small internal losses, we shall treat batteries as ideal—always producing a
potential difference precisely equal to E—unless specifically stated otherwise.

When we draw an electric circuit, it will be useful to draw an arrow indicating
the flow of current. By convention, the direction of the current arrow is given in
terms of a positive test charge, in much the same way that the direction of the elec-
tric field is determined:

The direction of the current in an electric circuit is the direction in
which a positive test charge would move.

Of course, in typical circuits the charges that flow are actually negatively charged
electrons. As a result, the flow of electrons and the current arrow point in opposite
directions, as indicated in Figure 21–4. Notice that a positive charge will flow from

W = 42 JW = ¢QE¢Q,

¢Q = 28 CI = ¢Q>¢t,

W = ¢QE

¢Q
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▲ FIGURE 21–5 Path of an electron 
in a wire
Typical path of an electron as it bounces
off atoms in a metal wire. Because of the
tortuous path the electron follows, its
average velocity is rather small.

a region of high electric potential, near the positive terminal of the battery, to a re-
gion of low electric potential, near the negative terminal, as one would expect.

Finally, surprising as it may seem, electrons move rather slowly through a typical
wire. They suffer numerous collisions with the atoms in the wire, and hence their
path is rather tortuous and roundabout, as indicated in Figure 21–5. Like a car con-
tending with a series of speed bumps, the electron’s average speed, or drift speed as
it is often called, is limited by the repeated collisions—in fact, their average speed is
commonly about Thus, if you switch on the headlights of a car, for exam-
ple, an electron leaving the battery will take about an hour to reach the lightbulb, yet
the lights seem to shine from the instant the switch is turned on. How is this possible?

The answer is that as an electron begins to move away from the battery, it ex-
erts a force on its neighbors, causing them to move in the same general direction
and, in turn, to exert a force on their neighbors, and so on. This process generates
a propagating influence that travels through the wire at nearly the speed of light.
The phenomenon is analogous to a bowling ball hitting one end of a line of balls;
the effect of the colliding ball travels through the line at roughly the speed of
sound, although the individual balls have very little displacement. Similarly, the
electrons in a wire move with a rather small average velocity as they collide with
and bounce off the atoms making up the wire, whereas the influence they have on
one another races ahead and causes the light to shine.

21–2 Resistance and Ohm’s Law
Electrons flow through metal wires with relative ease. In the ideal case, nothing
about the wire would prevent their free motion. Real wires, however, under normal
conditions, always affect the electrons to some extent, creating a resistance to their
motion in much the same way that friction slows a box sliding across the floor.

In order to cause electrons to move against the resistance of a wire, it is neces-
sary to apply a potential difference between its ends. For a wire with constant re-
sistance, R, the potential difference, V, necessary to create a current, I, is given by
Ohm’s law:

Ohm’s Law

21–2

SI unit: volt, V

Ohm’s law is named for the German physicist Georg Simon Ohm (1789–1854).
It should be noted at the outset that Ohm’s law is not a law of nature but more

on the order of a useful rule of thumb—like Hooke’s law for springs or the ideal-
gas laws that approximate the behavior of real gases. Materials that are well ap-
proximated by Ohm’s law are said to be “ohmic” in their behavior; they show a
simple linear relationship between the voltage applied to them and the current
that results. In particular, if one plots current versus voltage for an ohmic mater-
ial, the result is a straight line, with a constant slope equal to . Nonohmic ma-
terials, on the other hand, have more complex relationships between voltage and
current. A plot of current versus voltage for a nonohmic material is nonlinear;
hence, the material does not have a constant resistance. (As an example, see Prob-
lem 9.) It is precisely these “nonlinearities,” however, that can make such materi-
als so useful in the construction of electronic devices, including the ubiquitous
light-emitting diodes (LEDs).

Solving Ohm’s law for the resistance, we find

From this expression it is clear that the units of resistance are volts per amp. In
particular, we define 1 volt per amp to be 1 ohm. Letting the Greek letter omega,

designate the ohm, we have

1 Æ = 1 V/A

Æ,

R =
V
I

1>R

V = IR

10-4 m/s.

▲ A light-emitting diode (LED) is a rela-
tively small, nonohmic device (top), but
groups of LEDs can be used to form
displays of practically any size (bottom).
Because LEDs are extremely durable, and
predicted to last 20 years or more, they are
becoming the illumination of choice in
high-reliability applications such as traffic
lights, emergency exit signs, and brake
lights. You’ll probably see several on your
way home today.
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A device for measuring resistance is called an ohmmeter. We describe the opera-
tion of an ohmmeter in Section 21–8.

E X E R C I S E  2 1 – 1
A potential difference of 24 V is applied to a resistor. How much current flows
through the resistor?

S O L U T I O N

Solving Ohm’s law for the current, I, we find

In an electric circuit a resistor is signified by a zigzag line: . The straight
lines in a circuit indicate ideal wires of zero resistance. To indicate the resistance
of a real wire or device, we simply include a resistor of the appropriate value in
the circuit.

Resistivity
Suppose you have a piece of wire of length L and cross-sectional area A. The re-
sistance of this wire depends on the particular material from which it is con-
structed. If the wire is made of copper, for instance, its resistance will be less than
if it is made from iron. The quantity that characterizes the resistance of a given
material is its resistivity, For a wire of given dimensions, the greater the resis-
tivity, the greater the resistance.

The resistance of a wire also depends on its length and area. To understand the
dependence on L and A, consider again the analogy of water flowing through a
hose. If the hose is very long, the resistance it presents to the water will be corre-
spondingly large, whereas a wider hose—one with a greater cross-sectional
area—will offer less resistance to the water. After all, water flows more easily
through a short fire hose than through a long soda straw; hence, the resistance of
a hose—and similarly a piece of wire—should be proportional to L and inversely
proportional to A; that is, proportional to (L/A).

Combining these observations, we can write the resistance of a wire of length
L, area A, and resistivity in the following way:

Definition of Resistivity, 

21–3

Since the units of L are m and the units of A are it follows that the units of
resistivity are Typical values for are given in Table 21–1. Notice the
enormous range in values of with the resistivity of an insulator like rubber 
about times greater than the resistivity of a good conductor like silver.1021

r,
r1Æ # m2.

m2,

R = ra L
A
b

R

r

r.

I =
V
R

=
24 V

150 Æ
=

24 V
150 V>A = 0.16 A

150-Æ

L

2D

D

2L

Wire 1

Wire 2

TABLE 21–1 Resistivities

Substance Resistivity, 

Insulators
Quartz (fused)
Rubber 1 to 
Glass 1 to 
Semiconductors
Silicon 0.10 to 60
Germanium 0.001 to 0.5
Conductors
Lead
Iron
Tungsten
Aluminum
Gold
Copper
Silver

The resistivity of a semiconductor varies
greatly with the type and amount of impuri-
ties it contains. This property makes them
particularly useful in electronic applications.

*

1.59 * 10-8
1.68 * 10-8
2.20 * 10-8
2.65 * 10-8
5.6 * 10-8
9.71 * 10-8
22 * 10-8

*
*

10,000 * 109
100 * 1013

7.5 * 1017

R (æ # m)

C O N C E P T U A L  C H E C K P O I N T  2 1 – 1 C O M P A R E  T H E  R E S I S T A N C E

Wire 1 has a length L and a circular cross section of diameter D. Wire 2 is constructed
from the same material as wire 1 and has the same shape, but its length is 2L, and its di-
ameter is 2D. Is the resistance of wire 2 (a) the same as that of wire 1, (b) twice that of
wire 1, or (c) half that of wire 1?

R E A S O N I N G  A N D  D I S C U S S I O N

First, the resistance of wire 1 is

Note that we have used the fact that the area of a circle of diameter D is For 
wire 2 we replace L with 2L and D with 2D:

R2 = r
2L

[p12D22>4]
= A12 Br L

1pD2>42 = 1
2R1

pD2>4.

R1 = ra L
A
b = r

L

1pD2>42

CONTINUED ON NEXT PAGE
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Thus, increasing the length by a factor of 2 increases the resistance by a factor of 2; on the
other hand, increasing the diameter by a factor of 2 increases the area, and decreases the
resistance, by a factor of 4. Overall, then, the resistance of wire 2 is half that of wire 1.

A N S W E R

(c) The resistance of wire 2 is half that of wire 1; R2 = R1>2.

Temperature Dependence and Superconductivity
We know from everyday experience that a wire carrying an electric current can
become warm—even quite hot, as in the case of a burner on a stove or the filament
in an incandescent lightbulb. This follows from our earlier discussion of the fact
that electrons collide with the atoms in a wire as they flow through an electric cir-
cuit. These collisions cause the atoms to jiggle with greater kinetic energy about
their equilibrium positions. As a result, the temperature of the wire increases (see
Section 17–2, and Equation 17–21 in particular). For example, the wire filament in
an incandescent lightbulb can reach temperatures of roughly 2800 °C (in compar-
ison, the surface of the Sun has a temperature of about 5500 °C), and the heating
coil on a stove has a temperature of about 750 °C.

As a wire is heated, its resistivity tends to increase. This is because atoms that
are jiggling more rapidly are more likely to collide with electrons and slow their
progress through the wire. In fact, many metals show an approximately linear in-
crease of over a wide range of temperature. Once the dependence of on T is
known for a given material, the change in resistivity can be used as a means of
measuring temperature.

The first practical application of this principle was in a device known as the
bolometer. Invented in 1880, the bolometer is an extremely sensitive thermometer
that uses the temperature variation in the resistivity of platinum, nickel, or bis-
muth as a means of detecting temperature changes as small as 0.0001 C°. Soon after
its invention, a bolometer was used to detect infrared radiation from the stars.

rr

E X A M P L E  2 1 – 2 A  C U R R E N T - C A R R Y I N G  W I R E

A current of 1.82 A flows through a copper wire 1.75 m long and 1.10 mm in diameter. Find the potential difference between the
ends of the wire. (The value of for copper may be found in Table 21–1.)

P I C T U R E  T H E  P R O B L E M

The wire carries a current and its total length L is 1.75 m. We assume that the wire
has a circular cross section, with a diameter 

S T R A T E G Y

We know from Ohm’s law that the potential difference associated with a current I and a re-
sistance R is We are given the current in the wire, but not the resistance. The resistance is easily determined, however,
using with Thus, we first calculate R and then substitute the result into to obtain the potential
difference.

S O L U T I O N

1. Calculate the resistance of the wire:

2. Multiply R by the current, I, to find the potential difference:

I N S I G H T

Copper is an excellent conductor; therefore, both the resistance and the potential difference are quite small.

P R A C T I C E  P R O B L E M

What diameter of copper wire is needed for there to be a potential difference of 0.100 V? Assume that all other quantities remain
the same. [Answer: 0.835 mm]

Some related homework problems: Problem 17, Problem 18

V = IR = 11.82 A210.0317 Æ2 = 0.0577 V

 = 11.72 * 10-8 Æ # m2c 1.75 m

p10.00110 m22>4 d = 0.0317 Æ

 R = ra L
A
b = ra L

pD2>4 b

V = IRA = pD2>4.R = r1L>A2
V = IR.

D = 1.10 mm.
I = 1.82 A,

r

I

L

D

R E A L - W O R L D  P H Y S I C S

The bolometer
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Some materials, like semiconductors, actually show a drop in resistivity as
temperature is increased. This is because the resistivity of a semiconductor is
strongly dependent on the number of electrons that are free to move about and
conduct a current. As the temperature is increased in a semiconductor, more elec-
trons are able to break free from their atoms, leading to an increased current and a
reduced resistivity. Electronic devices incorporating such temperature-dependent
semiconductors are known as thermistors. The digital fever thermometer so com-
mon in today’s hospitals uses a thermistor to provide accurate measurements of a
patient’s temperature.

Since resistivity typically increases with temperature, it follows that if a wire
is cooled below room temperature, its resistivity will decrease. Quite surprising,
however, was a discovery made in the laboratory of Heike Kamerlingh-Onnes in
1911. Measuring the resistance of a sample of mercury at temperatures just a few
degrees above absolute zero, researchers found that at about 4.2 K the resistance
of the mercury suddenly dropped to zero—not just to a very small value, but to
zero. At this temperature, we say that the mercury becomes superconducting, a
hitherto unknown phase of matter. Since that time many different superconduct-
ing materials have been discovered, with various different critical temperatures,

at which superconductivity begins. Today we know that superconductivity is
a result of quantum effects (Chapter 30).

When a material becomes superconducting, a current can flow through it with
absolutely no resistance. In fact, if a current is initiated in a superconducting ring
of material, it will flow undiminished for as long as the ring is kept cool enough.
In some cases, circulating currents have been maintained for years, with ab-
solutely no sign of diminishing.

In 1986 a new class of superconductors was discovered that has zero resis-
tance at temperatures significantly greater than those of any previously known
superconducting materials. At the moment, the highest temperature at which su-
perconductivity has been observed is about 125 K. Since the discovery of these
“high- ” superconductors, hopes have been raised that it may one day be possi-
ble to produce room-temperature superconductors. The practical benefits of such
a breakthrough, including power transmission with no losses, improved MRI
scanners, and magnetically levitated trains, could be immense.

21–3 Energy and Power in Electric Circuits
When a charge moves across a potential difference V, its electrical potential
energy, U, changes by the amount

Recalling that power is the rate at which energy changes, we can
write the electrical power as follows:

Since the electric current is given by we have:

Electrical Power

21–4

SI unit: watt, W

Thus, a current of 1 amp flowing across a potential difference of 1 V produces a
power of 1 W.

P = IV

I = ¢Q>¢t,
P =

¢U
¢t

=
1¢Q2V

¢t

P = ¢U>¢t,
¢U = 1¢Q2V

¢Q

Tc

Tc,

R E A L - W O R L D  P H Y S I C S

Thermistors and fever 
thermometers

▲ When cooled below their critical tem-
perature, superconductors not only lose
their resistance to current flow but also
exhibit new magnetic properties, such as
repelling an external magnetic field. Here,
a superconductor (bottom) levitates a small
permanent magnet.

R E A L - W O R L D  P H Y S I C S

Superconductors and high-
temperature superconductivity
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E X E R C I S E  2 1 – 2
A handheld electric fan operates on a 3.00-V battery. If the power generated by the fan
is 2.24 W, what is the current supplied by the battery?

S O L U T I O N

Solving for the current, we obtain

The expression applies to any electrical system. In the special case of
a resistor, the electrical power is dissipated in the form of heat. Applying Ohm’s
law to this case, we can write the power dissipated in a resistor as

21–5

Similarly, using Ohm’s law to solve for the current, we have

21–6

These relations also apply to incandescent lightbulbs, which are basically resistors
that become hot enough to glow.

P = IV = aV
R
bV =

V2

R

I = V>R,

P = IV = I1IR2 = I2R

1V = IR2
P = IV

I =
P
V

=
2.24 W
3.00 V

= 0.747 A

P = IV

C O N C E P T U A L  C H E C K P O I N T  2 1 – 2 C O M P A R E  L I G H T B U L B S

A battery that produces a potential difference V is connected to a 5-W lightbulb. Later,
the 5-W lightbulb is replaced with a 10-W lightbulb. (a) In which case does the battery
supply more current? (b) Which lightbulb has the greater resistance?

R E A S O N I N G  A N D  D I S C U S S I O N

a. To compare the currents, we need consider only the relation Solving for the
current yields When the voltage V is the same, it follows that the greater the
power, the greater the current. In this case, then, the current in the 10-W bulb is twice
the current in the 5-W bulb.

b. We now consider the relation which gives resistance in terms of voltage 
and power. In fact, Again, with V the same, it follows that the smaller the
power, the greater the resistance. Thus, the resistance of the 5-W bulb is twice that of
the 10-W bulb.

A N S W E R

(a) When the battery is connected to the 10-W bulb, it delivers twice as much current as
when it is connected to the 5-W bulb. (b) The 5-W bulb has twice as much resistance as
the 10-W bulb.

R = V2>P.
P = V2>R,

I = P>V.
P = IV.

On a microscopic level, the power dissipated by a resistor is the result of in-
cessant collisions between electrons moving through the circuit and atoms mak-
ing up the resistor. Specifically, the electric potential difference produced by the
battery causes electrons to accelerate until they bounce off an atom of the resistor.
At this point the electrons transfer energy to the atoms, causing them to jiggle
more rapidly. The increased kinetic energy of the atoms is reflected in an in-
creased temperature of the resistor (see Section 17–2). After each collision, the po-
tential difference accelerates the electrons again and the process repeats—like a
car bouncing through a series of speed bumps—resulting in a continuous transfer
of energy from the electrons to the atoms.

+
–

I

V

E X A M P L E  2 1 – 3 H E A T E D  R E S I S T A N C E

A battery with an emf of 12 V is connected to a resistor. How much energy is dissipated in the resistor in 65 s?

P I C T U R E  T H E  P R O B L E M

The circuit, consisting of a battery and a resistor, is shown in our sketch. We show the current flowing from the positive termi-
nal of the 12-V battery, through the resistor, and into the negative terminal of the battery.545-Æ

545-Æ

▲ The heating element of an electric
space heater is nothing more than a length
of resistive wire coiled up for compact-
ness. As electric current flows through 
the wire, the power it dissipates ( )
is converted to heat and light. The coils
near the center are the hottest, and hence
they glow with a higher-frequency,
yellowish light.

P = I2R
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A commonly encountered application of resistance heating is found in the
“battery check” meters often included with packs of batteries. To operate one of
these meters, you simply press the contacts on either end of the meter against the
corresponding terminals of the battery to be checked. This allows a current to
flow through the main working element of the meter—a tapered strip of graphite.

The reason the strip is tapered is to provide a variation in resistance. Accord-
ing to the relation given in Equation 21–3, the smaller the cross-
sectional area A of the strip, the larger the resistance R. It follows that the narrow
end has a higher resistance than the wide end. Because the same current I flows
through all parts of the strip, the power dissipated is expressed most conveniently
in the form It follows that at the narrow end of the strip, where R is
largest, the heating due to the current will be the greatest. Pressing the meter
against the terminals of the battery, then, results in an overall warming of the
graphite strip, with the narrow end warmer than the wide end.

The final element in the meter is a thin layer of liquid crystal (similar to the ma-
terial used in LCD displays) that responds to small increases in temperature. In par-
ticular, this liquid crystal is black and opaque at room temperature but transparent
when heated slightly. The liquid crystal is placed in front of a colored background,
which can be seen in those regions where the graphite strip is warm enough to
make the liquid crystal transparent. If the battery is weak, only the narrow portion
of the strip becomes warm enough, and the meter shows only a small stripe of color.
A strong battery, on the other hand, heats the entire strip enough to make the liquid
crystal transparent, resulting in a colored stripe the full length of the meter.

P = I2R.

R = r1L/A2,

R E A L - W O R L D  P H Y S I C S

“Battery check” meters

The battery testers now often built into
battery packages (left) employ a tapered
graphite strip. The narrow end (at bottom
in the right-hand photo) has the highest
resistance, and thus produces the most
heat when a current flows through the
strip. The heat is used to produce the
display on the front that indicates the
strength of the battery—if the current is
sufficient to warm even the top of the
strip, where the resistance is lowest, the
battery is fresh.

▲

S T R A T E G Y

We know that a current flowing through a resistor dissipates power (energy per time),
which means that the energy it dissipates in a given time is simply the power multi-
plied by the time: The time is given and the power can be 
found using or The last expression is most convenient in
this case, because the problem statement gives us the voltage and resistance.

To summarize, we first calculate the power, then multiply by the time.

S O L U T I O N

1. Calculate the power dissipated in the resistor:

2. Multiply the power by the time to find the energy dissipated:

I N S I G H T

The current in this circuit is Using this result, we find that the power is as expected.

P R A C T I C E  P R O B L E M

How much energy is dissipated in the resistor if the voltage is doubled to 24 V? [Answer: ]

Some related homework problems: Problem 29, Problem 32

4117 J2 = 68 J

P = I2R = IV = 0.26 W,I = V>R = 0.022 A.

¢U = P ¢t = 10.26 W2165 s2 = 17 J

P = V2>R = 112 V22>1545 Æ2 = 0.26 W

P = V2>R.P = IV, P = I2R,
1¢t = 65 s2,¢U = P ¢t.

+
–

I

12 V 545 �
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Energy Usage
When you get a bill from the local electric company, you will find the number of
kilowatt-hours of electricity that you have used. Notice that a kilowatt-hour
(kWh) has the units of energy:

Thus, the electric company is charging for the amount of energy you use—as one
would expect—and not for the rate at which you use it. The following Example
considers the energy and monetary cost for a typical everyday situation.

 = 3.6 * 106 J

 1 kilowatt-hour = 11000 W213600 s2 = 11000 J>s213600 s2

21–4 Resistors in Series and Parallel
Electric circuits often contain a number of resistors connected in various ways. In
this section we consider simple circuits containing only resistors and batteries.
For each type of circuit considered, we calculate the equivalent resistance pro-
duced by a group of individual resistors.

Resistors in Series
When resistors are connected one after the other, end to end, we say that they are
in series. Figure 21–6 (a) shows three resistors, and connected in series.
The three resistors acting together have the same effect—that is, they draw the
same current—as a single resistor, referred to as the equivalent resistor, This
equivalence is illustrated in Figure 21–6 (b). We now calculate the value of the
equivalent resistance.

The first thing to notice about the circuit in Figure 21–6 (a) is that the same
current I must flow through each of the resistors—there is no other place for the
current to go. As a result, the potential differences across the three resistors are

Req.

R3,R1, R2,

E X A M P L E  2 1 – 4 Y O U R  G O O S E  I S  C O O K E D

A holiday goose is cooked in the kitchen oven for 4.00 h. Assume that the stove draws a current of 20.0 A, operates at a voltage
of 220.0 V, and uses electrical energy that costs $0.068 per kWh. How much does it cost to cook your goose?

P I C T U R E  T H E  P R O B L E M

We show a schematic representation of the stove cooking the goose in our sketch. The
current in the circuit is 20.0 A, and the voltage difference across the heating coils is 220 V.

S T R A T E G Y

The cost is simply the energy usage (in kWh) times the cost per kilowatt-hour ($0.068).
To find the energy used, we note that energy is power multiplied by time. The time is
given, and the power associated with a current I and a voltage V is 

Thus, we find the power, multiply by the time, and then multiply by $0.068 to find the cost.

S O L U T I O N

1. Calculate the power delivered to the stove:

2. Multiply power by time to determine the total energy supplied 
to the stove during the 4.00 h of cooking:

3. Multiply by the cost per kilowatt-hour to find the total cost of cooking:

I N S I G H T

Thus, your goose can be cooked for just over a dollar.

P R A C T I C E  P R O B L E M

If the voltage and current are reduced by a factor of 2 each, how long must the goose be cooked to use the same amount of en-
ergy? [Answer: Note: You should be able to answer a question like this by referring to your previous solu-
tion, without repeating the calculation in detail.]

Some related homework problems: Problem 30, Problem 31

414.00 h2 = 16.0 h.

cost = 117.6 kWh21$0.068>kWh2 = $1.20

¢U = P ¢t = 14.40 kW214.00 h2 = 17.6 kWh

P = IV = 120.0 A21220.0 V2 = 4.40 kW

P = IV.

+
–

I = 20 A

220 V
 Heating

coils

 Goose
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and respectively. Since the total potential difference
from point A to point B must be the emf of the battery, E, it follows that

Writing each of the potentials in terms of the current and resistance, we find

Now, let’s compare this expression with the result we obtain for the equiva-
lent circuit in Figure 21–6 (b). In this circuit, the potential difference across the bat-
tery is Since this potential must be the same as the emf of the battery,
we have

Comparing this expression with we see that the equivalent
resistance is simply the sum of the individual resistances:

In general, for any number of resistors in series, the equivalent resistance is

Equivalent Resistance for Resistors in Series

21–7

SI unit: ohm, 

Note that the equivalent resistance is greater than the greatest resistance of any of
the individual resistors. Connecting the resistors in series is like making a single
resistor increasingly longer; as its length increases so does its resistance.

Æ

Req = R1 + R2 + R3 + Á = aR

Req = R1 + R2 + R3

E = I1R1 + R2 + R32,
E = IReq

V = IReq.

E = IR1 + IR2 + IR3 = I1R1 + R2 + R32

E = V1 + V2 + V3

V3 = IR3,V1 = IR1, V2 = IR2,

(a) Three resistors in series

(b) Equivalent resistance has the same current

R1

V1

V3

R3

R2V2

I

I
I

I

A

B

+
–

Req

A

B

+
–

I

�

�

▲ FIGURE 21–6 Resistors in series
(a) Three resistors, , and ,
connected in series. Note that the same
current I flows through each resistor.
(b) The equivalent resistance,

, has the same 
current I flowing through it as the
current I in the original circuit.

Req = R1 + R2 + R3

R3R1, R2

E X A M P L E  2 1 – 5 T H R E E  R E S I S T O R S  I N  S E R I E S

A circuit consists of three resistors connected in series to a 24.0-V battery. The current in the circuit is 0.0320 A. Given that
and find (a) the value of and (b) the potential difference across each resistor.

P I C T U R E  T H E  P R O B L E M

The circuit is shown in our sketch. Note that the 24.0-V battery delivers the same current,
to each of the three resistors. This is the key characteristic of a series circuit.

S T R A T E G Y

a. First, we can obtain the equivalent resistance of the circuit using Ohm’s law (as in Equation
21–2); Since the resistors are in series, we also know that 
We can solve this relation for the only unknown, 

b. We can then calculate the potential difference across each resistor using Ohm’s law, 

S O L U T I O N

Part (a)

1. Use Ohm’s law to find the equivalent resistance of the circuit:

2. Set equal to the sum of the individual resistances, and

solve for 

Part (b)

3. Use Ohm’s law to determine the potential difference across 

4. Find the potential difference across 

5. Find the potential difference across 

CONTINUED ON NEXT PAGE

V3 = IR3 = 10.0320 A213.50 * 102 Æ2 = 11.2 VR3:

V2 = IR2 = 10.0320 A21150.0 Æ2 = 4.80 VR2:

V1 = IR1 = 10.0320 A21250.0 Æ2 = 8.00 VR1:

 = 7.50 * 102 Æ - 250.0 Æ - 150.0 Æ = 3.50 * 102 Æ

 R3 = Req - R1 - R2R3:

 Req = R1 + R2 + R3Req

Req =
E

I
=

24.0 V
0.0320 A

= 7.50 * 102 Æ

V = IR.

R3.
Req = R1 + R2 + R3.Req = E>I.

I = 0.0320 A,

R3R2 = 150.0 Æ,R1 = 250.0 Æ

+
–�

R1I

R3

R2
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An everyday example of resistors in series is the internal resistance, r, of a battery.
As was mentioned in Section 21–1, real batteries have internal losses that cause the
potential difference between their terminals to be less than E and to depend on the
current in the battery. The simplest way to model a real battery is to imagine it to
consist of an ideal battery of emf E in series with an internal resistance r, as shown
in Figure 21–7. If this battery is then connected to an external resistance, R, the equiv-
alent resistance of the circuit is As a result, the current flowing through the
circuit is and the potential difference between the terminals of the
battery is Thus, we see that the potential difference produced by the battery
is less than E by an amount that is proportional to the current I. Only in the limit of
zero current, or zero internal resistance, will the battery produce its full emf. (See
Problems 51, 54, 116, and 121 for examples of batteries with internal resistance.)

Another application of resistors in series is the three-way lightbulb circuit
shown in Figure 21–8. In this circuit, the two resistors represent two different fila-
ments within a single bulb that are connected to a constant potential difference V.
At the “high” setting, the lower-resistance filament, is connected to the elec-
trical outlet via terminals A and B, and the brightest light is obtained 
At the “middle” setting, the higher-resistance filament, is connected to the
outlet via terminals B and C, resulting in a dimmer light. Finally, at the “low” set-
ting, both filaments are connected in series via terminals A and C. This setting
gives the greatest equivalent resistance, and thus the lowest light output.

An alternative method of producing a three-way lightbulb is to connect the re-
sistors in parallel. This will be discussed in the next subsection.

Resistors in Parallel
Resistors are in parallel when they are connected across the same potential differ-
ence, as in Figure 21–9 (a). In a case like this, the current has parallel paths through
which it can flow. As a result, the total current in the circuit, I, is equal to the sum
of the currents through each of the three resistors:

Since the potential difference is the same for each of the resistors, it follows that
the currents flowing through them are as follows:

Summing these three currents, we find

21–8

Now, in the equivalent circuit shown in Figure 21–9 (b), Ohm’s law gives
or

21–9

Comparing Equations 21–8 and 21–9, we find that the equivalent resistance for
three resistors in parallel is

1
Req

=
1
R1

+
1
R2

+
1
R3

I = Ea 1
Req
b

E = IReq,

I =
E

R1
+
E

R2
+
E

R3
= Ea 1

R1
+

1
R2

+
1
R3
b

I1 =
E

R1
, I2 =

E

R2
, I3 =

E

R3

I = I1 + I2 + I3

R2,
1P = V2>R2.

R1,

E - Ir.
I = E>1r + R2,

r + R.

CONTINUED FROM PREVIOUS PAGE

I N S I G H T

Note that the greater the resistance, the greater the potential difference. In addition, the sum of the individual potential differ-
ences is as expected.

P R A C T I C E  P R O B L E M

Find the power dissipated in each resistor. [Answer: ]

Some related homework problems: Problem 43, Problem 44

P1 = 0.256 W, P2 = 0.154 W, P3 = 0.358 W

8.00 V + 4.80 V + 11.2 V = 24.0 V,

r

+ –

�

R

I = �/(r + R)

Potential difference = � – Ir

▲ FIGURE 21–7 The internal resistance 
of a battery
Real batteries always dissipate some en-
ergy in the form of heat. These losses can
be modeled by a small “internal” resis-
tance, r, within the battery. As a result,
the potential difference between the
terminals of a real battery is less than its
ideal emf, E. For example, if a battery
produces a current I, the potential differ-
ence between its terminals is . In
the case shown here, a battery is con-
nected in series with the resistor R.
Instead of producing the current ,
as in the ideal case, it produces the
current .I = E>(r + R)

I = E>R

E - Ir

R1

R2

A

B

C

R2 > R1

▲ FIGURE 21–8 A three-way bulb
The circuit diagram for a three-way light-
bulb. For the brightest light, terminals A
and B are connected to the household
electrical line, so the current passes
through the low-resistance filament .
For intermediate brightness, terminals B
and C are used, so the current passes
through the higher-resistance filament .
For the lowest light output, terminals A
and C are used, so the current passes
through both and in series.R2R1

R2

R1

R E A L - W O R L D  P H Y S I C S

Three-way lightbulbs
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In general, for any number of resistors in parallel, we have:

Equivalent Resistance for Resistors in Parallel

21–10

SI unit: ohm, 

As a simple example, consider a circuit with two identical resistors R con-
nected in parallel. The equivalent resistance in this case is given by

Solving for we find If we connect three such resistors in parallel,
the corresponding result is

In this case, Thus, the more resistors we connect in parallel, the smaller
the equivalent resistance. Each time we add a new resistor in parallel with the oth-
ers, we give the battery a new path through which current can flow—analogous
to opening an additional lane of traffic on a busy highway. Stated another way,
giving the current multiple paths through which it can flow is equivalent to using
a wire with a greater cross-sectional area. From either point of view, the fact that
more current flows with the same potential difference means that the equivalent
resistance has been reduced.

Finally, if any one of the resistors in a parallel connection is equal to zero, the
equivalent resistance is also zero. This situation is referred to as a short circuit,
and is illustrated in Figure 21–10. In this case, all of the current flows through the
path of zero resistance.

Req = 1
3 R.

1
Req

=
1
R

+
1
R

+
1
R

=
3
R

Req = 1
2 R.Req,

1
Req

=
1
R

+
1
R

=
2
R

Æ

1
Req

=
1
R1

+
1
R2

+
1
R3

+ Á = a  
1
R

P R O B L E M - S O L V I N G  N O T E

The Equivalent Resistance of 
Resistors in Parallel

After summing the inverse of resistors in
parallel, remember to take one more in-
verse at the end of your calculation to find
the equivalent resistance.

FIGURE 21–9 Resistors in parallel
(a) Three resistors, , and , con-
nected in parallel. Note that each resistor
is connected across the same potential
difference E. (b) The equivalent resis-
tance, , has 
the same current flowing through it as
the total current I in the original circuit.

1>Req = 1>R1 + 1>R2 + 1>R3

R3R1, R2

▲

(b) Equivalent resistance has the same current

Req
+
–

I

I

�

(a) Three resistors in parallel

R3R2R1
+
–

I1 I2 I3

I

I

�

R3R2R1 = 0

R

+
–

I 0 0

I

I

�

▲ FIGURE 21–10 A short circuit
If one of the resistors in parallel with oth-
ers is equal to zero, all the current flows
through that portion of the circuit, giving
rise to a short circuit. In this case, resis-
tors and are “shorted out,” and the
current in the circuit is .I = E>RR3R2

E X A M P L E  2 1 – 6 T H R E E  R E S I S T O R S  I N  P A R A L L E L

Consider a circuit with three resistors, and connected in parallel with a 24.0-V bat-
tery. Find (a) the total current supplied by the battery and (b) the current through each resistor.

P I C T U R E  T H E  P R O B L E M

The accompanying sketch indicates the parallel connection of the resistors with the bat-
tery. Notice that each of the resistors experiences precisely the same potential differ-
ence; namely, the 24.0 V produced by the battery. This is the feature that characterizes
parallel connections.

S T R A T E G Y

a. We can find the total current from where 

b. For each resistor, the current is given by Ohm’s law, 

CONTINUED ON NEXT PAGE

I = E>R.

1>Req = 1>R1 + 1>R2 + 1>R3.I = E>Req,

R3 = 350.0 Æ,R1 = 250.0 Æ, R2 = 150.0 Æ,

R3R2R1
+
–

I1 I2 I3

I

I

�
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CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

Part (a)

1. Find the equivalent resistance of the circuit:

2. Use Ohm’s law to find the total current:

Part (b)

3. Calculate using with 

4. Repeat the preceding calculation for resistors 2 and 3:

I N S I G H T

As expected, the smallest resistor, carries the greatest current. The three currents combined yield the total current, as they
must; that is, 

P R A C T I C E  P R O B L E M

Find the power dissipated in each resistor. [Answer: ]

Some related homework problems: Problem 45, Problem 46

P1 = 2.30 W, P2 = 3.84 W, P3 = 1.65 W

I1 + I2 + I3 = 0.0960 A + 0.160 A + 0.0686 A = 0.325 A = I.
R2,

 I3 =
E

R3
=

24.0 V
350.0 Æ

= 0.0686 A

 I2 =
E

R2
=

24.0 V
150.0 Æ

= 0.160 A

I1 =
E

R1
=

24.0 V
250.0 Æ

= 0.0960 AE = 24.0 V:I1 = E>R1I1

I =
E

Req
=

24.0 V
73.96 Æ

= 0.325 A

 Req = 10.01352 Æ-12-1 = 73.96 Æ

 =
1

250.0 Æ
+

1
150.0 Æ

+
1

350.0 Æ
= 0.01352 Æ-1

 
1
Req

=
1
R1

+
1
R2

+
1
R3

In comparing Examples 21–5 and 21–6 note the differences in the power dissi-
pated in each circuit. First, the total power dissipated in the parallel circuit is
much greater than that dissipated in the series circuit. This is due to the fact that
the equivalent resistance of the parallel circuit is smaller than the equivalent re-
sistance of the series circuit, and the power delivered by a voltage V to a resistance
R is inversely proportional to the resistance In addition, note that the
smallest resistor, has the smallest power in the series circuit but the largest
power in the parallel circuit. These issues are explored further in the following
Conceptual Checkpoint.

R2,
1P = V2>R2.

C O N C E P T U A L  C H E C K P O I N T  2 1 – 3 S E R I E S  V E R S U S  P A R A L L E L

Two identical lightbulbs are connected to a battery, either in series or in parallel. Are the
bulbs in series (a) brighter than, (b) dimmer than, or (c) the same brightness as the bulbs
in parallel?

R E A S O N I N G  A N D  D I S C U S S I O N

Both sets of lightbulbs are connected to the same potential difference, V; hence, the
power delivered to the bulbs is where is twice the resistance of a bulb in the
series circuit and half the resistance of a bulb in the parallel circuit. As a result, more
power is converted to light in the parallel circuit.

A N S W E R

(b) The bulbs connected in series are dimmer than the bulbs connected in parallel.

ReqV 2>Req,

Finally, note that a three-way lightbulb can also be produced by simply
wiring two filaments in parallel. For example, one filament might have a power
of 50 W and the second filament a power of 100 W. One setting of the switch
sends current through the 50-W filament, the next setting sends current through
the 100-W filament, and the third setting connects the two filaments in parallel.
With the third connection, each filament produces the same power as before—
since each is connected to the same potential difference—giving a total power of
50 W + 100 W = 150 W.
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Combination Circuits
The rules we have developed for series and parallel resistors can be applied to more
complex circuits as well. For example, consider the circuit shown in Figure 21–11 (a),
where four resistors, each equal to R, are connected in a way that combines series
and parallel features. To analyze this circuit, we first note that the two vertically ori-
ented resistors are connected in parallel with one another. Therefore, the equivalent
resistance of this unit is given by or Replacing 
these two resistors with yields the circuit shown in Figure 21–11 (b), which con-
sists of three resistors in series. As a result, the equivalent resistance of the entire cir-
cuit is as indicated in Figure 21–11 (c). Similar methods can be
applied to a wide variety of circuits.

R + R>2 + R = 2.5R,

R>2
Req = R>2.1>Req = 1>R + 1>R,

(a) Replace parallel resistors (b) Replace series resistors (c) Final equivalent resistance

R

RR

R

+
–

I

�

R

R/2

R

+
–

I

� 2.5R
+
–

I

�

▲ FIGURE 21–11 Analyzing a complex circuit of resistors
(a) The two vertical resistors are in parallel with one another; hence, they can be replaced with their equivalent resistance,

. (b) Now the circuit consists of three resistors in series. The equivalent resistance of these three resistors is 2.5 R. 
(c) The original circuit reduced to a single equivalent resistance.
R>2

E X A M P L E  2 1 – 7 C O M B I N A T I O N  S P E C I A L

In the circuit shown in the diagram, the emf of the battery is 12.0 V, and each resistor has a resistance of . Find (a) the cur-
rent supplied by the battery to this circuit and (b) the current through the lower two resistors.

P I C T U R E  T H E  P R O B L E M

The circuit for this problem has three resistors connected to a battery. Note that the
lower two resistors are in series with one another, and in parallel with the upper re-
sistor. The battery has an emf of 12.0 V.

S T R A T E G Y

a. The current supplied by the battery, I, is given by Ohm’s law, , where is
the equivalent resistance of the three resistors. To find , we first note that the lower
two resistors are in series, giving a net resistance of 2R. Next, the upper resistor, R, is
in parallel with 2R. Calculating this equivalent resistance yields the desired .

b. Because the voltage across the lower two resistors is E, the current through them
is .

S O L U T I O N

Part (a)

1. Calculate the equivalent resistance of the lower two resistors:

2. Calculate the equivalent resistance of R in parallel with 2R:

3. Find the current supplied by the battery, I:

Part (b)

4. Use E and to find the current in the lower two resistors:

I N S I G H T

Note that the total resistance of the three resistors is less than —in fact, it is only . We also see that 
0.0300 A flows through the lower two resistors, and therefore twice that much—0.0600 A—flows through the upper resistor.

CONTINUED ON NEXT PAGE

133.3 Æ200.0 Æ200.0-Æ

Ilower =
E

Req,lower
=

12.0 V
2(200.0 Æ)

= 0.0300 AReq,lower

I =
E

Req
=

12.0 V
133.3 Æ

= 0.0900 A

Req = 2
3R = 2

3(200.0 Æ) = 133.3 Æ

1
Req

=
1
R

+
1

2R
=

3
2R

Req,lower = R + R = 2R

Ilower = E>Req,lower = E>2R
Req

Req

ReqI = E>Req

200.0 Æ

R

R R

I

+ –

�

P R O B L E M - S O L V I N G  N O T E

Analyzing a Complex Circuit

When considering an electric circuit with
resistors in series and parallel, work from
the smallest units of the circuit outward to
ever larger units.
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21–5 Kirchhoff’s Rules
To find the currents and voltages in a general electric circuit, we use two rules first
introduced by the German physicist Gustav Kirchhoff (1824–1887). The Kirchhoff
rules are simply ways of expressing charge conservation (the junction rule) and
energy conservation (the loop rule) in a closed circuit. Since these conservation
laws are always obeyed in nature, the Kirchhoff rules are completely general.

The Junction Rule
The junction rule follows from the observation that the current entering any point
in a circuit must equal the current leaving that point. If this were not the case,
charge would either build up or disappear from a circuit.

As an example, consider the circuit shown in Figure 21–12. At point A, three
wires join to form a junction. (In general, a junction is any point in a circuit where
three or more wires meet.) The current carried by each of the three wires is indi-
cated in the figure. Notice that the current entering the junction is the current
leaving the junction is Setting the incoming and outgoing currents equal,
we have or equivalently

This is Kirchhoff’s junction rule applied to the junction at point A.
In general, if we associate with currents entering a junction and

with currents leaving a junction, Kirchhoff’s junction rule can be stated
as follows:

The algebraic sum of all currents meeting at any junction in a circuit
must equal zero.

In the example just discussed, enters the junction and leave the junc-
tion hence, the algebraic sum of currents at the junction is Set-
ting this sum equal to zero recovers our previous result.

In some cases we may not know the direction of all the currents meeting at a
junction in advance. When this happens, we simply choose a direction for the un-
known currents, apply the junction rule, and continue as usual. If the value we
obtain for a given current is negative, it simply means that the direction we chose
was wrong; the current actually flows in the opposite direction.

For example, suppose we know both the direction and magnitude of the
currents and in Figure 21–13. To find the third current, we apply the junctionI2I1

I1 - I2 - I3.1-2;
I31+2, I2I1

a - sign
a + sign

I1 - I2 - I3 = 0

I1 = I2 + I3,
I2 + I3.

I1;

CONTINUED FROM PREVIOUS PAGE

P R A C T I C E  P R O B L E M

Suppose the upper resistor is changed from R to 2R, and the lower two resistors remain the same. (a) Will the current supplied
by the battery increase, decrease, or stay the same? (b) Find the new current. [Answer: (a) The current will decrease because
there is greater resistance to its flow; (b) 0.0600 A.]

Some related homework problems: Problem 48, Problem 49, Problem 51

The electric circuit in these photos
starts with two identical lightbulbs (1 and
2) in series with a battery, as we see on the
left. The bulbs are equally bright. Now, be-
fore you examine the photo to the right, con-
sider the effect of adding a third identical
bulb (3) to the circuit by placing it in the
empty socket. What happens to the
brightness of bulbs 1 and 2? As you can
see, adding bulb 3 creates a new path for
the current and increases the total current
in the circuit by a factor of 4/3 (check this
yourself). The current passing through
bulb 1 is equally split between bulbs 2 and
3, however, and the new current in bulb 2
is now only (4/3) � 2/3 of its original
value. Thus, bulb 1 brightens and bulb 2
becomes dimmer.

1
2

▲

2

1

3
2

1

3

R

+
–

I1 I2

I3

�1

+
–

R2

A

R1

�2

The current I1 entering junction A ...

... equals the
current I2 + I3
leaving it.

▲ FIGURE 21–12 Kirchhoff’s junction rule
Kirchhoff’s junction rule states that the
sum of the currents entering a junction
must equal the sum of the currents
leaving the junction. In this case, for
the junction labeled A, , or

.I1 - I2 - I3 = 0
I1 = I2 + I3

I1 = 2.0 A I2 = 5.5 A

I3

R2R1

A

▲ FIGURE 21–13 A specific application of
Kirchhoff’s junction rule
Applying Kirchhoff’s junction rule to the
junction A, , yields the
result . The minus sign indi-
cates that flows opposite to the direc-
tion shown; that is, is actually upward.I3

I3
I3 = -3.5 A

I1 - I2 - I3 = 0
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rule—but first we must choose a direction for If we choose  to point down-
ward, as shown in the figure, the junction rule gives

Solving for we have

Since is negative, we conclude that the actual direction of this current is up-
ward; that is, the 2.0-A current and the 3.5-A current enter the junction and com-
bine to yield the 5.5-A current that leaves the junction.

The Loop Rule
Imagine taking a day hike on a mountain path. First, you gain altitude to reach a
scenic viewpoint; later you descend below your starting point into a valley; fi-
nally, you gain altitude again and return to the trailhead. During the hike you
sometimes increase your gravitational potential energy, and sometimes you de-
crease it, but the net change at the end of the hike is zero—after all, you return to
the same altitude from which you started. Kirchhoff’s loop rule is an application
of the same idea to an electric circuit.

For example, consider the simple circuit shown in Figure 21–14. The electric po-
tential increases by the amount E in going from point A to point B, since we move
from the low-potential terminal of the battery to the high-potential ter-
minal. This is like gaining altitude in the hiking analogy. Next, there is no poten-
tial change as we go from point B to point C, since these points are connected by
an ideal wire. As we move from point C to point D, however, the potential does
change—recall that a potential difference is required to force a current through a
resistor. We label the potential difference across the resistor Finally, there is
no change in potential between points D and A, since they too are connected by
an ideal wire.

We can now apply the idea that the net change in electric potential (the analog
to gravitational potential energy in the hike) must be zero around any closed loop.
In this case, we have

Thus, we find that that is, the electric potential decreases as one
moves across the resistor in the direction of the current. To indicate this drop in po-
tential, we label the side where the current enters the resistor with (indicating
high potential) and the side where the current leaves the resistor with (indi-
cating low potential). Finally, we can use Ohm’s law to set the magnitude of the
potential drop equal to IR and find the current in the circuit:

This, of course, is the expected result.
In general, Kirchhoff’s loop rule can be stated as follows:

The algebraic sum of all potential differences around any closed
loop in a circuit is zero.

We now consider a variety of applications in which both the junction rule and the
loop rule are used to find the various currents and potentials in a circuit.

Applications
We begin by considering the relatively simple circuit shown in Figure 21–15. The
currents and voltages in this circuit can be found by considering various parallel
and series combinations of the resistors, as we did in the previous section. Thus,
Kirchhoff’s rules are not strictly needed in this case. Still, applying the rules to this
circuit illustrates many of the techniques that can be used when studying more
complex circuits.

I =
E

R

ƒ ¢VCD ƒ = E = IR

a -
a +

¢VCD = -E;

E + ¢VCD = 0

¢VCD.

1+21-2

I3

I3 = I1 - I2 = 2.0 A - 5.5 A = -3.5 A

I3,
I1 - I2 - I3 = 0

I3I3.

The electric
potential increases
from A to B ...

... and decreases
from C to D.

R

B

D

C

A

+
–

+

–

I

�

▲ FIGURE 21–14 Kirchhoff’s loop rule
Kirchhoff’s loop rule states that as one
moves around a closed loop in a circuit,
the algebraic sum of all potential differ-
ences must be zero. The electric potential
increases as one moves from the to
the plate of a battery; it decreases as
one moves through a resistor in the
direction of the current.

+
-

▲ FIGURE 21–15 Analyzing a simple circuit
A simple circuit that can be studied using
either equivalent resistance or Kirchhoff’s
rules.

RR I3

R

A

B

+
–

I1

I1
I2

I2

�

P R O B L E M - S O L V I N G  N O T E

Applying Kirchhoff’s Rules

When applying Kirchhoff’s rules, be sure
to use the appropriate sign for currents
and potential differences.
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Let’s suppose that all the resistors have the value and that the
emf of the battery is The equivalent resistance of the resistors can be
obtained by noting that the vertical resistors are connected in parallel with one an-
other and in series with the horizontal resistor. The vertical resistors combine to
give a resistance of , which, when added to the horizontal resistor, gives an
equivalent resistance of The current in the circuit, then, 
is

Now we approach the same problem from the point of view of Kirchhoff’s
rules. First, we apply the junction rule to point A:

(junction A) 21–11

Note that current splits at point A into currents and which combine again
at point B to give flowing through the horizontal resistor. We can apply the junc-
tion rule to point B, which gives but since this differs from
Equation 21–11 by only a minus sign, no new information is gained.

Next, we apply the loop rule. Since there are three unknowns, and we
need three independent equations for a full solution. One has already been given by
the junction rule; thus, we expect that two loop equations will be required to com-
plete the solution. To begin, we consider loop 1, which is shown in Figure 21–16 (a).
We choose to move around this loop in the clockwise direction. (If we were to
choose the counterclockwise direction instead, the same information would be
obtained.) For loop 1, then, we have an increase in potential as we move across the
battery, a drop in potential across the vertical resistor of and another drop in
potential across the horizontal resistor, this time of magnitude Applying the
loop rule, we find the following:

(loop 1) 21–12

Similarly, we can apply the loop rule to loop 2, shown in Figure 21–16 (b). In this
case we cross the right-hand vertical resistor in the direction of the current, im-
plying a drop in potential, and we cross the left-hand vertical resistor against the
current, implying an increase in potential. Therefore, the loop rule gives

(loop 2) 21–13

There is a third possible loop, shown in Figure 21–16 (c), but the information it gives
is not different from that already obtained. In fact, any two of the three loops com-
plete our solution.

Note that R cancels in Equation 21–13; hence, we see that or
Substituting this result into the junction rule (Equation 21–11), we obtain

Solving this equation for gives us Finally, using the first loop
equation (Equation 21–12), we find

Note that the only unknown in this equation is current Solving for this current,
we find

As expected, our result using Kirchhoff’s rules agrees with the result obtained pre-
viously. Finally, the other two currents in the circuit are 

E X E R C I S E  2 1 – 3
Write the loop equation for loop 3 in Figure 21–16 (c).

S O L U T I O N

Proceeding in a clockwise direction, as indicated in the figure, we find

E - I2R - I1R = 0

I2 = I3 = I1>2 = 0.0500 A.

I1 =
E

3
2R

=
15.0 V

3
21100.0 Æ2 = 0.100 A

I1.

E - 1I1>22R - I1R = E - 3
2 I1R = 0

I2 = I1>2 = I3.I2

= I1 - 2I2 = 0
I1 - I2 - I3 = I1 - I2 - I2

I3 = I2.
I3 - I2 = 0,

I3R - I2R = 0

E - I3R - I1R = 0

I1R.
I3R,

I3,I1, I2,

-I1 + I2 + I3 = 0,
I1

I3,I2I1

I1 - I2 - I3 = 0

I = E>Req = 15.0 V>150.0 Æ = 0.100 A.
Req = 3R>2 = 150.0 Æ.

R>2

E = 15.0 V.
R = 100.0 Æ,

R

RR I3

RR

A

Loop 1

B

(a)

(b)

(c)

+
–

I1

I1
I2

I2

�

RR I3

R

A

Loop 2

B

+
–

I1

I1
I2

I2

�

RI3

A

Loop 3

B

+
–

I1

I1
I2

I2

�

▲ FIGURE 21–16 Using loops to analyze 
a circuit
Three loops associated with the circuit in
Figure 21–15.
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Since and are equal (loop 2), it follows that loop 1 and loop 3
give the same information. If we proceed in a counterclockwise

direction around loop 3, we find

Notice that this result is the same as the clockwise result except for an overall minus
sign, and, therefore, it contains no new information. In general, it does not matter in
which direction we choose to go around a loop.

Clearly, the Kirchhoff approach is more involved than the equivalent-resistance
method. However, it is not possible to analyze all circuits in terms of equivalent re-
sistances. In such cases, Kirchhoff’s rules are the only option, as illustrated in the
next Active Example.

-E + I2R + I1R = 0

1E - I2R - I1R = 02
1E - I3R - I1R = 02I3I2

21–6 Circuits Containing Capacitors
To this point we have considered only resistors and batteries in electric circuits.
Capacitors, which can also play an important role, are represented by a set of par-
allel lines (reminiscent of a parallel-plate capacitor): . We now investigate sim-
ple circuits involving batteries and capacitors, leaving for the next section circuits
that combine all three circuit elements.

Capacitors in Parallel
The simplest way to combine capacitors, as we shall see, is by connecting them in
parallel. For example, Figure 21–17 (a) shows three capacitors connected in parallel
with a battery of emf As a result, each capacitor has the same potential difference,

between its plates. The magnitudes of the charges on each capacitor are as follows:

As a result, the total charge on the three capacitors is

If an equivalent capacitor is used to replace the three in parallel, as in Figure 21–17 (b), the
charge on its plates must be the same as the total charge on the individual capacitors:

Q = CeqE

Q = Q1 + Q2 + Q3 = EC1 + EC2 + EC3 = 1C1 + C2 + C32E

Q1 = C1E,  Q2 = C2E,  Q3 = C3E

e,
e.

A C T I V E  E X A M P L E  2 1 – 2 T W O  L O O P S ,  T W O  B A T T E R I E S :  F I N D  T H E  C U R R E N T S

Find the currents in the circuit shown.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Apply the junction rule 
to point A:

2. Apply the loop rule to loop 1 
(let ):

3. Apply the loop rule to loop 2
(let ):

4. Solve for and 

I N S I G H T

Note that is negative. This means that its direction is opposite
to that shown in the circuit diagram.

Y O U R  T U R N

Suppose the polarity of the 9.0-V battery is reversed. What are the currents in this case?

(Answers to Your Turn problems are given in the back of the book.)

I2

I3 = 0.080 A

I1 = 0.070 A, I2 = -0.010 A,I3:I1, I2,

R = 100.0 Æ
-9.0 V - I2R + I3R = 0

R = 100.0 Æ
15 V - I3R - I1R = 0

I1 - I2 - I3 = 0

+
–

+ –
I1

I1
I2

I2

I3

A

Loop 1 Loop 2

15 V

9.0 V

B

100.0 �

100.0 �

100.0 �

+

–

(b) Equivalent capacitance with same
total charge

(a) Three capacitors in parallel

C3C2C1

Q3Q2Q1
+
–�

Ceq

Q
+
–�

▲ FIGURE 21–17 Capacitors in parallel
(a) Three capacitors, , and , con-
nected in parallel. Note that each capaci-
tor is connected across the same potential
difference, E. (b) The equivalent capaci-
tance, , has the same
charge on its plates as the total charge on
the three original capacitors.

Ceq = C1 + C2 + C3

C3C1, C2
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Comparing with we see that the equivalent ca-
pacitance is simply

In general, the equivalent capacitance of capacitors connected in parallel is the
sum of the individual capacitances:

Equivalent Capacitance for Capacitors in Parallel

21–14

SI unit: farad, F

Thus, connecting capacitors in parallel produces an equivalent capacitance
greater than the greatest individual capacitance. It is as if the plates of the indi-
vidual capacitors are connected together to give one large set of plates, with a cor-
respondingly large capacitance.

Ceq = C1 + C2 + C3 + Á = aC

Ceq = C1 + C2 + C3

Q = 1C1 + C2 + C32E,Q = CeqE

E X A M P L E  2 1 – 8 E N E R G Y  I N  P A R A L L E L

Two capacitors, one and the other of unknown capacitance C, are connected in parallel across a battery with an emf of
9.00 V. The total energy stored in the two capacitors is 0.0115 J. What is the value of the capacitance C?

P I C T U R E  T H E  P R O B L E M

The circuit, consisting of one 9.00-V battery and two capacitors, is illustrated in the
diagram. The total energy of 0.0115 J stored in the two capacitors is the same as the
energy stored in the equivalent capacitance for this circuit.

S T R A T E G Y

Recall from Chapter 20 that the energy stored in a capacitor can be written as 
It follows, then, that for an equivalent capacitance, the energy is 
Since we know the energy and voltage, we can solve this relation for the equivalent ca-
pacitance. Finally, the equivalent capacitance is the sum of the individual capacitances,

We use this relation to solve for C.

S O L U T I O N

1. Solve for the equivalent capacitance:

2. Substitute numerical values to find 

3. Solve for C in terms of the equivalent capacitance:

I N S I G H T

The energy stored in the capacitor is In comparison, the capacitor stores an energy equal
to 0.0110 J. Thus, the larger capacitor stores the greater amount of energy. Though this may seem only natural, one needs to be
careful. When we examine capacitors in series later in this section, we shall find exactly the opposite result.

P R A C T I C E  P R O B L E M

What is the total charge stored on the two capacitors? [Answer: ]

Some related homework problems: Problem 72, Problem 73

Q = CeqE = 2.56 * 10-3 C

272-mFU = 1
2 CV2 = 0.000486 J.12.0-mF

 C = Ceq - 12.0 mF = 284 mF - 12.0 mF = 272 mF

 Ceq = 12.0 mF + C

Ceq =
2U

V2
=

210.0115 J2
19.00 V22 = 284 mFCeq:

Ceq =
2U

V2

U = 1
2 CeqV

2U = 1
2 CeqV

2

Ceq = 12.0 mF + C.

U = 1
2 CeqV

2.Ceq,
U = 1

2 CV2.

12.0 mF

C9.00 V
+
– 12.0 F�

Although you probably haven’t realized it, when you turn on a “touch sensi-
tive” lamp, you are part of a circuit with capacitors in parallel. In fact, you are one
of the capacitors! When you touch such a lamp, a small amount of charge moves
onto your body—your body is like the plate of a capacitor. Because you have

R E A L - W O R L D  P H Y S I C S

“Touch-sensitive” lamps



2 1 – 6 C I R C U I T S  C O N T A I N I N G  C A P A C I T O R S 745

effectively increased the plate area—as always happens when capacitors are con-
nected in parallel—the capacitance of the circuit increases. The electronic circuitry
in the lamp senses this increase in capacitance and triggers the switch to turn the
light on or off.

Capacitors in Series
You have probably noticed from Equation 21–14 that capacitors connected in
parallel combine in the same way as resistors connected in series. Similarly, capaci-
tors connected in series obey the same rules as resistors connected in parallel, as we
now show.

Consider three capacitors—initially uncharged—connected in series with a
battery, as in Figure 21–18 (a). The battery causes the left plate of to acquire a pos-
itive charge, This charge, in turn, attracts a negative charge onto the right
plate of the capacitor. Because the capacitors start out uncharged, there is zero net
charge between and As a result, the negative charge on the right plate
of leaves a corresponding positive charge on the upper plate of The
charge on the upper plate of attracts a negative charge onto its lower
plate, leaving a corresponding positive charge on the right plate of Finally,
the positive charge on the right plate of attracts a negative charge onto its
left plate. The result is that all three capacitors have charge of the same magnitude
on their plates.

With the same charge Q on all the capacitors, the potential difference for each
is as follows:

Since the total potential difference across the three capacitors must equal the emf
of the battery, we have

21–15

An equivalent capacitor connected to the same battery, as in Figure 21–18 (b), will
satisfy the relation or

21–16

A comparison of Equations 21–15 and 21–16 yields the result

Thus, in general, we have the following rule for combining capacitors in series:

Equivalent Capacitance for Capacitors in Series

21–17

SI unit: farad, F

It follows, then, that the equivalent capacitance of a group of capacitors connected
in series is less than the smallest individual capacitance. In this case, it is as if the
plate separations of the individual capacitors add to give a larger effective sepa-
ration, and a correspondingly smaller capacitance.

More complex circuits, with some capacitors in series and others in parallel,
can be handled in the same way as was done earlier with resistors. This is illus-
trated in the following Active Example.

1
Ceq

=
1
C1

+
1
C2

+
1
C3

+ Á = a
1
C

1
Ceq

=
1
C1

+
1
C2

+
1
C3

E = Qa 1
Ceq
b

Q = CeqE,

E = V1 + V2 + V3 =
Q

C1
+
Q

C2
+
Q

C3
= Qa 1

C1
+

1
C2

+
1
C3
b

V1 =
Q

C1
,  V2 =

Q

C2
,  V3 =

Q

C3

-QC3

C3.+Q
-QC2+Q

C2.+QC1

-QC2.C1

-Q+Q.
C1

P R O B L E M - S O L V I N G  N O T E

Finding the Equivalent 
Capacitance of a Circuit

When calculating the equivalent capaci-
tance of capacitors in series, be sure to
take one final inverse at the end of your
calculation to find . Also, when consid-
ering circuits with capacitors in both se-
ries and parallel, start with the smallest
units of the circuit and work your way out
to the larger units.

Ceq

(b) Equivalent capacitance with same
total charge

(a) Three capacitors in series

Ceq

+Q

–Q

+
–�

C2

C3

C1

+Q

Net charge =
+Q + (–Q) = 0

Net charge =
+Q + (–Q) = 0

+Q –Q

–Q +Q

–Q

+
–�

▲ FIGURE 21–18 Capacitors in series
(a) Three capacitors, , and , con-
nected in series. Note that each capacitor
has the same magnitude charge on its
plates. (b) The equivalent capacitance,

, has the 
same charge as the original capacitors.
1>Ceq = 1>C1 + 1>C2 + 1>C3

C3C1, C2
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Consider the electric circuit shown here, consisting of a 12.0-V battery and three capacitors connected partly in series and partly
in parallel. Find (a) the equivalent capacitance of this circuit and (b) the total energy stored in the capacitors.

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Find the equivalent capacitance of a capacitor 
in series with a capacitor: 

2. Find the equivalent capacitance of a capacitor 
in parallel with a capacitor: 

Part (b)

3. Calculate the stored energy using 

I N S I G H T

Notice that the capacitor and the capacitor are connected in series. As you might expect, one of these capacitors
stores twice as much energy as the other. Which is it? Check the Your Turn question for the answer.

Y O U R  T U R N

Is the energy stored in the capacitor greater than or less than the energy stored in the capacitor? Explain. Check
your answer by calculating the energy stored in each of the capacitors.

(Answers to Your Turn problems are given in the back of the book.)

5.0-mF10.0-mF

5.00-mF10.0-mF

U = 1.68 * 10-3 JU = 1
2 CeqV

2:

20.0-mF
Ceq = 23.3 mF3.33-mF

5.00-mF
3.33 mF10.0-mF
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21–7 RC Circuits
When the switch is closed on a circuit containing only batteries and capacitors, the
charge on the capacitor plates appears almost instantaneously—essentially at the
speed of light. This is not the case, however, in circuits that also contain resistors.
In these situations, the resistors limit the rate at which charge can flow, and an ap-
preciable amount of time may be required before the capacitors acquire a signifi-
cant charge. A useful analogy is the amount of time needed to fill a bucket with
water. If you use a fire hose, which has little resistance to the flow of water, the
bucket fills almost instantly. If you use a garden hose, which presents a much
greater resistance to the water, filling the bucket may take a minute or more.

The simplest example of such a circuit, a so-called RC circuit, is shown in
Figure 21–19. Initially (before ) the switch is open, and there is no current in the
resistor or charge on the capacitor. At the switch is closed and current begins
to flow. If the resistor was not present, the capacitor would immediately take on
the charge The effect of the resistor, however, is to slow the charging
process—in fact, the larger the resistance, the longer it takes for the capacitor to
charge. One way to think of this is to note that as long as a current flows in the cir-
cuit, as in Figure 21–19 (b), there is a potential drop across the resistor; hence, the
potential difference between the plates of the capacitor is less than the emf of the
battery. With less voltage across the capacitor there will be less charge on its plates
compared with the charge that would result if the plates were connected directly
to the battery.

The methods of calculus can be used to show that the charge on the capacitor
in Figure 21–19 varies with time as follows:

21–18

In this expression, e is Euler’s number or, more precisely, the base
of natural logarithms (see Appendix A). The quantity is referred to as the time
constant of the circuit. The time constant is related to the resistance and capaci-
tance of a circuit by the following simple relation: As we shall see, can
be thought of as a characteristic time for the behavior of an RC circuit.

tt = RC.

t

1e = 2.718 Á 2
q1t2 = CE11 - e-t>t2

Q = CE.

t = 0
t = 0

(b) t > 0

C

R

+q

–q

+
–�

I

(a) t < 0

C

R

+
–�

▲ FIGURE 21–19 A typical RC circuit
(a) Before the switch is closed 
there is no current in the circuit and no
charge on the capacitor. (b) After the
switch is closed , current flows
and the charge on the capacitor builds up
over a finite time. As the charge
on the capacitor approaches .Q = CE

t: q

(t 7 0)

(t 6 0)

+
–

10.0 F�

5.00 F�

20.0 F��
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For example, at time the exponential term is therefore,
the charge on the capacitor is zero at as expected:

In the opposite limit, the exponential vanishes: Thus the charge
in this limit is 

This is just the charge Q the capacitor would have had from on if there had
been no resistor in the circuit. Finally, at time the charge on the capacitor is

which is 63.2% of its final charge.
The charge on the capacitor as a function of time is plotted in Figure 21–20.

Before we continue, let’s check to see that the quantity is in fact a time.
Suppose, for example, that the resistor and capacitor in an RC circuit have the val-
ues and respectively. Multiplying R and C we find

The tick marks on the horizontal axis in Figure 21–20 indicate the times 
and Notice that the capacitor is almost completely charged by the time 

Figure 21–20 also shows that the charge on the capacitor increases rapidly
initially, indicating a large current in the circuit. Eventually, the charging slows
down, because the greater the charge on the capacitor, the harder it is to transfer
additional charge against the electrical repulsive force. Later, the charge barely
changes with time, which means that the current is essentially zero. In fact, the
mathematical expression for the current—again derived from calculus—is the
following:

21–19

This expression is plotted in Figure 21–21, where we see that significant variation in
the current occurs over times ranging from to At time the cur-
rent is which is the value it would have if the capacitor were replaced
by an ideal wire. As the current approaches zero, as expected:

In this limit, the capacitor is essentially fully charged, so that no
more charge can flow onto its plates. Thus, in this limit, the capacitor behaves like
an open switch.

I1t: q2: 0.
t: q ,

I102 = E>R,
t = 0t ' 4t.t = 0

I1t2 = a E
R
be-t>t

t = 4t.4t.
t, 2t, 3t,

 = a 120 volt
coulomb>second

b a3.5 * 10-6 coulomb
volt

b = 4.2 * 10-4 second

 t = RC = 1120 ohm213.5 * 10-6 farad2
C = 3.5 mF,R = 120 Æ

t = RC

q = CE11 - e-12 = CE11 - 0.3682 = 0.632CE,
t = t

t = 0

q1t: q2 = CE11 - 02 = CE

CE:
e-q>t = 0.t: q ,

q102 = CE11 - 12 = 0

t = 0,
e-0>t = e0 = 1;t = 0
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0.6

C
ha

rg
e,

 q

0.8

C

C

C

C

C

� �2 �3 �4
Time, t

�

�

�

�

�

▲ FIGURE 21–20 Charge versus time for
the RC circuit in Figure 21–19
The horizontal axis shows time in units
of the characteristic time, . The
vertical axis shows the magnitude of the
charge on the capacitor in units of .CE
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▲ FIGURE 21–21 Current versus time 
for the RC circuit in Figure 21–19
Initially the current is , the same as if
the capacitor were not present. The cur-
rent approaches zero after a period equal
to several time constants, .t = RC

E>R

E X A M P L E  2 1 – 9 C H A R G I N G  A  C A P A C I T O R

A circuit consists of a resistor, a resistor, a capacitor, a switch, and a 3.00-V battery all connected in series. Ini-
tially the capacitor is uncharged and the switch is open. At time the switch is closed. (a) What charge will the capacitor have
a long time after the switch is closed? (b) At what time will the charge on the capacitor be 80.0% of the value found in part (a)?

P I C T U R E  T H E  P R O B L E M

The circuit described in the problem statement is shown with the switch in the open posi-
tion. Once the switch is closed at current will flow in the circuit and charge will
begin to accumulate on the capacitor plates.

S T R A T E G Y

a. A long time after the switch is closed, the current stops and the capacitor is fully
charged. At this point, the voltage across the capacitor is equal to the emf of the bat-
tery. Therefore, the charge on the capacitor is 

b. To find the time when the charge will be 80.0% of the full charge, we can 
set and solve for the desired time, t.

CONTINUED ON NEXT PAGE
q1t2 = CE11 - e-t>t2 = 0.800CE

Q = CE,

Q = CE.

t = 0,

t = 0
182-mF275-Æ126-Æ

+
–3.00 V 275 �

126 �

182 F�
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Similar behavior occurs when a charged capacitor is allowed to discharge, as
in Figure 21–22. In this case, the initial charge on the capacitor is Q. If the switch is
closed at the charge for later times is

21–20

Like charging, the discharging of a capacitor occurs with a characteristic time

To summarize, circuits with resistors and capacitors have the following gen-
eral characteristics:

• Charging and discharging occur over a finite, characteristic time given by
the time constant, 

• At current flows freely through a capacitor being charged; it behaves
like a short circuit.

• As the current flowing into a capacitor approaches zero. In this
limit, a capacitor behaves like an open switch.

We explore these features further in the following Conceptual Checkpoint.

t: q

t = 0
t = RC.

t = RC.

q1t2 = Qe-t>t
t = 0,

(b) t > 0

C

R

+q

–q

I

(a) t < 0

C

R

+Q

–Q

▲ FIGURE 21–22 Discharging a capacitor
(a) A charged capacitor is connected to a resistor. Initially the circuit is open, and no current
can flow. (b) When the switch is closed, current flows from the plate of the capacitor to 
the plate. The charge remaining on the capacitor approaches zero after several time units, RC.-

+

▲ A modern-day circuit board incorpo-
rates numerous resistors (cylinders with
colored bands) and capacitors (yellow
cylinders and metal container).

CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

Part (a)

1. Evaluate for this circuit:

Part (b)

2. Set in and cancel 

3. Solve for t in terms of the time constant 

4. Calculate and use the result to find the time t:

I N S I G H T

Note that the time required for the charge on a capacitor to reach 80.0% of its final value is 1.61 time constants. This result is
independent of the values of R and C in an RC circuit.

P R A C T I C E  P R O B L E M

What is the current in this circuit at the time found in part (b)? [Answer:
]

Some related homework problems: Problem 79, Problem 82

17.48 mA210.2002 = 1.50 mA
I1t2 = 1E>R2e-t>t = [(3.00 V)/(126 Æ +275 Æ)](0.200) =

 = -173.0 ms21-1.612 = 118 ms

 t = -173.0 ms2 ln10.2002
 t = RC = 1126 Æ + 275 Æ21182 mF2 = 73.0 mst

t = -t ln10.2002
e-t>t = 1 - 0.800 = 0.200t:

0.800 = 1 - e-t>t
q1t2 = 0.800CE = CE11 - e-t>t2CE:q1t2 = CE11 - e-t>t2q1t2 = 0.800CE

Q = CE = 1182 mF213.00 V2 = 546 mCQ = CE

P R O B L E M - S O L V I N G  N O T E

The Limiting Behavior of Capacitors

Capacitors in dc circuits act like short cir-
cuits at and open circuits as .t: qt = 0
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What current flows through the battery in this circuit (a) immediately after the switch is
closed and (b) a long time after the switch is closed?

R E A S O N I N G  A N D  D I S C U S S I O N

a. Immediately after the switch is closed, the capacitor acts like a short circuit; that is, as
if the battery were connected to two resistors R in parallel. The equivalent resistance
in this case is R 2; therefore, the current is 

b. After current has been flowing in the circuit for a long time, the capacitor acts like an
open switch. Now current can flow only through the one resistor, R; hence, the cur-
rent is half of its initial value.

A N S W E R

(a) The current is (b) the current is .E>R2E>R;

I = E>R,

I = E>1R>22 = 2E>R.>
+
–

R

R

C

�

The fact that RC circuits have a characteristic time makes them useful in a
variety of different applications. On a rather mundane level, RC circuits are
used to determine the time delay on windshield wipers. When you adjust the
delay knob in your car, you change a resistance or a capacitance, which in turn
changes the time constant of the circuit. This results in a greater or a smaller
delay. The blinking rate of turn signals is also determined by the time constant
of an RC circuit.

A more critical application of RC circuits is the heart pacemaker. In the sim-
plest case, these devices use an RC circuit to deliver precisely timed pulses di-
rectly to the heart. The more sophisticated pacemakers available today can even
“sense” when a patient’s heart rate falls below a predetermined value. The pace-
maker then begins sending appropriate pulses to the heart to increase its rate.
Many pacemakers can even be reprogrammed after they are surgically implanted
to respond to changes in a patient’s condition.

Normally, the heart’s rate of beating is determined by its own natural pace-
maker, the sinoatrial or SA node, located in the upper right chamber of the heart.
If the SA node is not functioning properly, it may cause the heart to beat slowly or
irregularly. To correct the problem, a pacemaker is implanted just under the col-
larbone, and an electrode is introduced intravenously via the cephalic vein. The
distal end of the electrode is positioned, with the aid of fluoroscopic guidance, in
the right ventricular apex. From that point on, the operation of the pacemaker fol-
lows the basic principles of electric circuits, as described in this chapter.

*21–8 Ammeters and Voltmeters
Devices for measuring currents and voltages in a circuit are referred to as
ammeters and voltmeters, respectively. In each case, the ideal situation is for the
meter to measure the desired quantity without altering the characteristics of the
circuit being studied. This is accomplished in different ways for these two types
of meters, as we shall see.

First, the ammeter is designed to measure the flow of current through a par-
ticular portion of a circuit. For example, we may want to know the current flow-
ing between points A and B in the circuit shown in Figure 21–23 (a). To measure this
current, we insert the ammeter into the circuit in such a way that all the current
flowing from A to B must also flow through the meter. This is done by connecting
the meter “in series” with the other circuit elements between A and B, as indicated
in Figure 21–23 (b).

If the ammeter has a finite resistance—which must be the case for real meters—
the presence of the meter in the circuit will alter the current it is intended to mea-
sure. Thus, an ideal ammeter would be one with zero resistance. In practice, if the
resistance of the ammeter is much less than the other resistances in the circuit, its
reading will be reasonably accurate.

R E A L - W O R L D  P H Y S I C S

Delay circuits in windshield 
wipers and turn signals

R E A L - W O R L D  P H Y S I C S :  B I O

Pacemakers

▲ An X-ray showing a pacemaker
installed in a person’s chest. The timing of
the electrical pulses that keep the heart
beating regularly is determined by an RC
circuit powered by a small, long-lived
battery.
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Second, a voltmeter measures the potential drop between any two points in a
circuit. Referring again to the circuit in Figure 21–23 (a), we may wish to know
the difference in potential between points C and D. To measure this voltage, we
connect the voltmeter “in parallel” to the circuit at the appropriate points, as in
Figure 21–24.

A real voltmeter always allows some current to flow through it, which
means that the current flowing through the circuit is less than before the meter
was connected. As a result, the measured voltage is altered from its ideal value.
An ideal voltmeter, then, would be one in which the resistance is infinite, so that
the current it draws from the circuit is negligible. In practical situations it is suf-
ficient that the resistance of the meter be much greater than the resistances in the
circuit.

Sometimes the functions of an ammeter, voltmeter, and ohmmeter are com-
bined in a single device called a multimeter. Adjusting the settings on a multime-
ter allows a variety of circuit properties to be measured.

▲ A typical digital multimeter, which can
measure resistance (teal settings), current
(yellow settings), or voltage (red settings).
This meter is measuring the voltage of a 
“9 volt” battery.

Measuring the voltage between C and D

R

R

A

D

C

B

+
–�

C

FIGURE 21–24 Measuring the voltage in a circuit
The voltage difference between points C and D can be measured by connect-
ing a voltmeter in parallel to the original circuit. An ideal voltmeter would
have infinite resistance.

▲

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The concept of electric potential
energy (Chapter 20) is used in Section
21–3, where we talk about the energy
associated with an electric circuit.

A dc circuit with a current flowing
through it will play an important role
in our discussion of magnetism in
Chapter 22. We will also consider the
magnetic force exerted on a current-
carrying wire in Chapter 22.

We also discuss the power of an
electric circuit in Section 21–3. For this
we refer back to mechanics, where
power was originally introduced in
Chapter 7.

In Chapter 24 we extend our discussion
of electric circuits from those in which
the current flows in only one direction
(dc) to circuits in which the current
alternates in direction (ac, or alternating
current). We will again use resistors and
capacitors in the ac circuits.

Capacitors, first introduced in
Chapter 20, are used in dc circuits in
Section 21–6.

A simple dc circuit appears in Chapter 30,
where we discuss the photoelectric effect
and its importance in the development of
quantum mechanics.

R

R

A

D

C

B

(a) Typical electric circuit (b) Measuring the current between A and B

+
–�

R

R

A

D

C

B

+
–�

CC

▲ FIGURE 21–23 Measuring the current in a circuit
To measure the current flowing between points A and B in (a), an ammeter is inserted into
the circuit, as shown in (b). An ideal ammeter would have zero resistance.
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2 1 – 1 E L E C T R I C  C U R R E N T

Electric current is the flow of electric charge.

Definition
If a charge passes a given point in the time the corresponding electric
current is

21–1

Ampere
The unit of current is the ampere, or amp for short. By definition, 1 amp is one
coulomb per second; 

Battery
A battery is a device that uses chemical reactions to produce a potential differ-
ence between its two terminals.

Electromotive Force
The electromotive force, or emf, is the potential difference between the termi-
nals of a battery under ideal conditions.

Work Done by a Battery
As a battery moves a charge around a circuit, it does the work 

Direction of Current
By definition, the direction of the current I in a circuit is the direction in which
positive charges would move. The actual charge carriers, however, are generally
electrons; hence, they move in the opposite direction to I.

2 1 – 2 R E S I STA N C E  A N D  O H M ’ S  L AW

When electrons move through a wire, they encounter resistance to their motion.
In order to move electrons against this resistance, it is necessary to apply a
potential difference between the ends of the wire.

Ohm’s Law
To produce a current I through a wire with resistance R the following potential
difference, V, is required:

21–2

Resistivity
The resistivity of a material determines how much resistance it gives to the
flow of electric current.

Resistance of a Wire
The resistance of a wire of length L, cross-sectional area A, and resistivity is

21–3

Temperature Dependence
The resistivity of most metals increases approximately linearly with temperature.

Superconductivity
Below a certain critical temperature, certain materials lose all electrical resis-
tance. A current flowing in a superconductor can continue undiminished as long
as its temperature is maintained below 

2 1 – 3 E N E R GY  A N D  P O W E R  I N  E L E C T R I C  C I R C U I T S

In general, energy is required to cause an electric current to flow through a cir-
cuit. The rate at which the energy must be supplied is the power.

Electrical Power
If a current I flows across a potential difference V, the corresponding electrical
power is

21–4P = IV

Tc.

Tc ,

R = ra L
A
b

r

r

V = IR

W = 1¢Q2E.¢Q

E,

1 A = 1 C>s.

I =
¢Q
¢t

¢t,¢Q +
–

Direction of current

Flow of electrons

I

�

L

2D

D

2L

Wire 1

Wire 2

+
–

I = 20 A

220 V
 Heating

coils

 Goose
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Power Dissipation in a Resistor
If a potential difference V produces a current I in a resistor R, the electrical
power converted to heat is

21–5, 21–6

Energy Usage and the Kilowatt-Hour
The energy equivalent of one kilowatt-hour (kWh) is

2 1 – 4 R E S I ST O R S  I N  S E R I E S  A N D  PA R A L L E L

Resistors connected end to end—so that the same current flows through each
one—are said to be in series. Resistors connected across the same potential
difference—allowing parallel paths for the current to flow—are said to be
connected in parallel.

Series
The equivalent resistance, of resistors connected in series is equal to the
sum of the individual resistances:

21–7

Parallel
The equivalent resistance, of resistors connected in parallel is given by the
following:

21–10

2 1 – 5 K I R C H H O F F ’ S  R U L E S

Kirchhoff’s rules are statements of charge conservation and energy conservation
as applied to closed electric circuits.

Junction Rule (Charge Conservation)
The algebraic sum of all currents meeting at a junction must equal zero. Cur-
rents entering the junction are taken to be positive; currents leaving are taken to
be negative.

Loop Rule (Energy Conservation)
The algebraic sum of all potential differences around a closed loop is zero. The
potential increases in going from the to the terminal of a battery and de-
creases when crossing a resistor in the direction of the current.

2 1 – 6 C I R C U I T S  C O N TA I N I N G  C A PA C I T O R S

Capacitors connected end to end—so that the same charge is on each one—are
said to be in series. Capacitors connected across the same potential difference
are said to be connected in parallel.

Parallel
The equivalent capacitance, of capacitors connected in parallel is equal to
the sum of the individual capacitances:

21–14

Series
The equivalent capacitance, of capacitors connected in series is given by

21–17

2 1 – 7 RC C I R C U I T S

In circuits containing both resistors and capacitors, there is a characteristic time,
during which significant changes occur. This time is referred to as the

time constant. The simplest such circuit, known as an RC circuit, consists of one
resistor and one capacitor connected in series.

t = RC,

1
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Charging a Capacitor
The charge on a capacitor in an RC circuit varies with time as follows:

21–18

The corresponding current is given by

21–19

Discharging a Capacitor
If a capacitor in an RC circuit starts with a charge Q at time its charge at
all later times is

21–20

Behavior near 
Just after the switch is closed in an RC circuit, capacitors behave like ideal
wires—that is, they offer no resistance to the flow of current.

Behavior as 
Long after the switch is closed in an RC circuit, capacitors behave like open
circuits.

* 2 1 – 8 A M M E T E R S  A N D  V O LT M E T E R S

Ammeters and voltmeters are devices for measuring currents and voltages,
respectively, in electric circuits.

Ammeter
An ammeter is connected in series with the section of the circuit in which the
current is to be measured. In the ideal case, an ammeter’s resistance is zero.

Voltmeter
A voltmeter is connected in parallel with the portion of the circuit to be mea-
sured. In the ideal case, a voltmeter’s resistance is infinite.

P R O B L E M - S O L V I N G  S U M M A RY

Type of Problem Relevant Physical Concepts Related Examples

Find the work done by a battery. The work done by a battery is the charge that passes  Active Example 21–1
through the battery times the emf of the battery: 

Relate resistance to resistivity. The resistance of a wire is its resistivity, times its length, Example 21–2
divided by its cross-sectional area: 

Relate the power in an electric The basic definition of electrical power is current times Examples 21–3, 21–4
circuit to the current, voltage, voltage: Using Ohm’s law when appropriate, the 
and resistance. power can also be expressed as and 

Determine the equivalent resistance Resistors in series simply add: resistors Examples 21–5,
of resistors in series and parallel. in parallel add in terms of inverses: 21–6, 21–7

Find the current in a circuit Apply Kirchhoff’s junction rule (the algebraic sum of currents Active Example 21–2
containing resistors that are not at a junction must be zero) and loop rule (the algebraic sum of 
simply in series or parallel. potential difference around a loop is zero). 

Determine the equivalent capacitance Capacitors in parallel simply add: Example 21–8 
of capacitors in series and parallel. capacitors in series add in terms of inverses: Active Example 21–3

Find the charge and the current in The charge and current in an RC circuit during charging vary Example 21–9
an RC circuit as a function of time. exponentially with time as follows: 

The characteristic time is t = RC.I1t2 = 1E>R2e-t>t.
q1t2 = CE11 - e-t>t2;

1>Ceq = 1>C1 + 1>C2 + Á .

Ceq = C1 + C2 + Á;

1>Req = 1>R1 + 1>R2 + Á.
Req = R1 + R2 + Á;

P = V2>R.P = I2R
P = IV.

R = r1L>A2.
r,

W = ¢QE.

t: ˆ

t � 0

q1t2 = Qe-t>t

t = 0,

I1t2 = a E
R
be-t>t

q1t2 = CE11 - e-t>t2
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C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. What is the direction of the electric current produced by an elec-
tron that falls toward the ground?

2. Your body is composed of electric charges. Does it follow, then,
that you produce an electric current when you walk?

3. Suppose you charge a comb by rubbing it through your hair. Do
you produce a current when you walk across the room carrying
the comb?

4. Suppose you charge a comb by rubbing it through the fur on
your dog’s back. Do you produce a current when you walk
across the room carrying the comb?

5. An electron moving through a wire has an average drift speed
that is very small. Does this mean that its instantaneous veloc-
ity is also very small?

6. Are car headlights connected in series or parallel? Give an
everyday observation that supports your answer.

7. Give an example of how four resistors of resistance R can be
combined to produce an equivalent resistance of R.

8. Is it possible to connect a group of resistors of value R in such a
way that the equivalent resistance is less than R? If so, give a
specific example.

9. What physical quantity do resistors connected in series have in
common?

10. What physical quantity do resistors connected in parallel have
in common?

11. Explain how electrical devices can begin operating almost im-
mediately after you throw a switch, even though individual
electrons in the wire may take hours to reach the device.

12. Explain the difference between resistivity and resistance.
13. Explain why birds can roost on high-voltage wire without

being electrocuted.
14. List two electrical applications that would benefit from

room-temperature superconductors. List two applications for
which room-temperature superconductivity would not be
beneficial.

15. On what basic conservation laws are Kirchhoff’s rules based?
16. What physical quantity do capacitors connected in series have

in common?
17. What physical quantity do capacitors connected in parallel

have in common?
18. Consider the circuit shown in Figure 21–25, in which a light of re-

sistance R and a capacitor of capacitance C are connected in
series. The capacitor has a large capacitance, and is initially
uncharged. The battery provides enough power to light the
bulb when connected to the battery directly. Describe the be-
havior of the light after the switch is closed.

R

C

� +
–

▲ FIGURE 21–25 Conceptual Question 18

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••)
are used to indicate the level of difficulty.

S E C T I O N  2 1 – 1    E L E C T R I C  C U R R E N T

1. • How many coulombs of charge are in one ampere-hour?

2. • A flashlight bulb carries a current of 0.18 A for 78 s. How
much charge flows through the bulb in this time? How many
electrons?

3. • The picture tube in a particular television draws a current of
15 A. How many electrons strike the viewing screen every second?

4. • IP A car battery does 260 J of work on the charge passing
through it as it starts an engine. (a) If the emf of the battery is 12 V,
how much charge passes through the battery during the start?
(b) If the emf is doubled to 24 V, does the amount of charge pass-
ing through the battery increase or decrease? By what factor?

5. • Highly sensitive ammeters can measure currents as small as
10.0 fA. How many electrons per second flow through a wire
with a 10.0-fA current?

6. •• A television set connected to a 120-V outlet consumes 78 W
of power. (a) How much current flows through the television?
(b) How long does it take for 10 million electrons to pass
through the TV?

7. •• BIO Pacemaker Batteries Pacemakers designed for long-
term use commonly employ a lithium–iodine battery capable of

supplying of charge. (a) How many coulombs of
charge can such a battery supply? (b) If the average current pro-
duced by the pacemaker is , what is the expected lifetime
of the device?

S E C T I O N  2 1 – 2    R E S I STA N C E  A N D  O H M ’ S  L AW

8. • CE A conducting wire is quadrupled in length and tripled in
diameter. (a) Does its resistance increase, decrease, or stay the
same? Explain. (b) By what factor does its resistance change?

9. • CE Figure 21–26 shows a plot of current versus voltage for two
different materials, A and B. Which of these materials satisfies
Ohm’s law? Explain.

5.6 mA

0.42 A # h

C
ur

re
nt

Voltage
V1

B

A

▲ FIGURE 21–26 Problems 9 and 10

For instructor-assigned homework, go to www.masteringphysics.com
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10. • CE Predict/Explain Current-versus-voltage plots for two
materials, A and B, are shown in Figure 21–26. (a) Is the resis-
tance of material A greater than, less than, or equal to the resis-
tance of material B at the voltage ? (b) Choose the best
explanation from among the following:

I. Curve B is higher in value than curve A.
II. A larger slope means a larger value of , and hence a

smaller value of R.
III. Curve B has the larger slope at the voltage and hence the

larger resistance.

11. • CE Two cylindrical wires are made of the same material and
have the same length. If wire B is to have nine times the resis-
tance of wire A, what must be the ratio of their radii, ?

12. • A silver wire is 5.9 m long and 0.49 mm in diameter. What is
its resistance?

13. • When a potential difference of 18 V is applied to a given wire,
it conducts 0.35 A of current. What is the resistance of the wire?

14. • The tungsten filament of a lightbulb has a resistance of .
If the filament is 27 cm long, what is its diameter?

15. • What is the resistance of 6.0 mi of copper wire with a diame-
ter of 0.55 mm?

16. •• CE The four conducting cylinders shown in Figure 21–27 are
all made of the same material, though they differ in length
and/or diameter. They are connected to four different batteries,
which supply the necessary voltages to give the circuits the
same current, I. Rank the four voltages, , and , in
order of increasing value. Indicate ties where appropriate.

V4V1, V2, V3

0.07 Æ

rB>rA

V1

I/V

V1

but the resistivity and potential difference remain the same.
Does the current increase or decrease? By what factor?

20. •• When a potential difference of 12 V is applied to a wire 6.9 m
long and 0.33 mm in diameter, the result is an electric current of
2.1 A. What is the resistivity of the wire?

21. •• IP (a) What is the resistance per meter of an aluminum wire
with a cross-sectional area of . (b) Would your an-
swer to part (a) increase, decrease, or stay the same if the diam-
eter of the wire were increased? Explain. (c) Repeat part (a) for
a wire with a cross-sectional area of .

22. •• BIO Resistance and Current in the Human Finger The
interior of the human body has an electrical resistivity of

. (a) Estimate the resistance for current flowing the
length of your index finger. (For this calculation, ignore the
much higher resistivity of your skin.) (b) Your muscles will con-
tract when they carry a current greater than 15 mA. What volt-
age is required to produce this current through your finger?

23. ••• Consider a rectangular block of metal of height A, width B,
and length C, as shown in Figure 21–28. If a potential difference V
is maintained between the two faces of the block, a current

is observed to flow. Find the current that flows if the same po-
tential difference V is applied between the two faces of the
block. Give your answer in terms of .IAB

B * C
IAB

A * B

0.15 Æ # m

3.6 * 10-7 m2

2.4 * 10-7 m2

+ –

3L
2L

L
L

2D

2D

D

D

I

V1

+ –

V2

+ –

V3

+ –

V4

I

I I

▲ FIGURE 21–27 Problem 16

17. •• IP A bird lands on a bare copper wire carrying a current of
32 A. The wire is 8 gauge, which means that its cross-sectional
area is . (a) Find the difference in potential between the
bird’s feet, assuming they are separated by a distance of 6.0 cm.
(b) Will your answer to part (a) increase or decrease if the sepa-
ration between the bird’s feet increases? Explain.

18. •• A current of 0.96 A flows through a copper wire 0.44 mm in
diameter when it is connected to a potential difference of 15 V.
How long is the wire?

19. •• IP BIO Current Through a Cell Membrane A typical cell
membrane is 8.0 nm thick and has an electrical resistivity of

. (a) If the potential difference between the inner
and outer surfaces of a cell membrane is 75 mV, how much cur-
rent flows through a square area of membrane on a
side? (b) Suppose the thickness of the membrane is doubled,

1.0 mm

1.3 * 107 Æ # m

0.13 cm2

C
B

V V

A

C
B

A

I = IAB
I = ?

+– +–

▲ FIGURE 21–28 Problem 23

S E C T I O N  2 1 – 3    E N E R GY  A N D  P O W E R  I N
E L E C T R I C  C I R C U I T S

24. • CE Light A has four times the power rating of light B when
operated at the same voltage. (a) Is the resistance of light A
greater than, less than, or equal to the resistance of light B?
Explain. (b) What is the ratio of the resistance of light A to the
resistance of light B?

25. • CE Two lightbulbs operate on the same potential difference.
Bulb A has four times the power output of bulb B. (a) Which bulb
has the greater current passing through it? Explain. (b) What is
the ratio of the current in bulb A to the current in bulb B?

26. • CE Two lightbulbs operate on the same current. Bulb A has
four times the power output of bulb B. (a) Is the potential
difference across bulb A greater than or less than the potential
difference across bulb B? Explain. (b) What is the ratio of the
potential difference across bulb A to that across bulb B?

27. • A 75-V generator supplies 3.8 kW of power. How much cur-
rent does the generator produce?

28. • A portable CD player operates with a current of 22 mA at a po-
tential difference of 4.1 V. What is the power usage of the player?

29. • Find the power dissipated in a electric heater connected
to a 120-V outlet.

30. • The current in a 120-V reading lamp is 2.6 A. If the cost of elec-
trical energy is $0.075 per kilowatt-hour, how much does it cost
to operate the light for an hour?

25-Æ
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31. • It costs 2.6 cents to charge a car battery at a voltage of 12 V
and a current of 15 A for 120 minutes. What is the cost of elec-
trical energy per kilowatt-hour at this location?

32. •• IP A 75-W lightbulb operates on a potential difference of
95 V. Find (a) the current in the bulb and (b) the resistance of the
bulb. (c) If this bulb is replaced with one whose resistance is
half the value found in part (b), is its power rating greater than
or less than 75 W? By what factor?

33. •• Rating Car Batteries Car batteries are rated by the fol-
lowing two numbers: (1) cranking the battery
can produce for 30.0 seconds while maintaining a terminal
voltage of at least 7.2 V and (2) reserve of
minutes the battery can produce a 25-A current while maintain-
ing a terminal voltage of at least 10.5 V. One particular battery
is advertised as having 905 cranking amps and a 155-minute
reserve capacity. Which of these two ratings represents the
greater amount of energy delivered by the battery?

S E C T I O N  2 1 – 4    R E S I ST O R S  I N  S E R I E S  
A N D  PA R A L L E L

34. • CE Predict/Explain A dozen identical lightbulbs are con-
nected to a given emf. (a) Will the lights be brighter if they are
connected in series or in parallel? (b) Choose the best explanation
from among the following:

I. When connected in parallel each bulb experiences the max-
imum emf and dissipates the maximum power.

II. Resistors in series have a larger equivalent resistance and
dissipate more power.

III. Resistors in parallel have a smaller equivalent resistance
and dissipate less power.

35. • CE Predict/Explain A fuse is a device to protect a circuit from
the effects of a large current. The fuse is a small strip of metal
that burns through when the current in it exceeds a certain
value, thus producing an open circuit. (a) Should a fuse be
connected in series or in parallel with the circuit it is intended
to protect? (b) Choose the best explanation from among the fol-
lowing:

I. Either connection is acceptable; the main thing is to have a
fuse in the circuit.

II. The fuse should be connected in parallel, otherwise it will
interrupt the current in the circuit.

III. With the fuse connected in series, the current in the circuit
drops to zero as soon as the fuse burns through.

36. • CE A circuit consists of three resistors, , con-
nected in series to a battery. Rank these resistors in order of in-
creasing (a) current through them and (b) potential difference
across them. Indicate ties where appropriate.

37. • CE Predict/Explain Two resistors are connected in parallel.
(a) If a third resistor is now connected in parallel with the orig-
inal two, does the equivalent resistance of the circuit increase,
decrease, or remain the same? (b) Choose the best explanation
from among the following:

I. Adding a resistor generally tends to increase the resistance,
but putting it in parallel tends to decrease the resistance;
therefore the effects offset and the resistance stays the same.

II. Adding more resistance to the circuit will increase the
equivalent resistance.

III. The third resistor gives yet another path for current to flow
in the circuit, which means that the equivalent resistance
is less.

38. • Find the equivalent resistance between points A and B for the
group of resistors shown in Figure 21–29.

R1 6 R2 6 R3

capacity = number

amps = current 39. • What is the minimum number of resistors that must be
connected in parallel to produce an equivalent resistance of

or less?

40. •• Four lightbulbs (A, B, C, D) are connected together in a cir-
cuit of unknown arrangement. When each bulb is removed one
at a time and replaced, the following behavior is observed:

11 Æ

65-Æ

A B C D

A removed * on on on
B removed on * on off
C removed off off * off
D removed on off on *

35 82

45

A B
� �

�

▲ FIGURE 21–29 Problems 38 and 115

Draw a circuit diagram for these bulbs.

41. •• Your toaster has a power cord with a resistance of 
connected in series with a nichrome heating element. If
the potential difference between the terminals of the toaster is
120 V, how much power is dissipated in (a) the power cord and
(b) the heating element?

42. •• A hobbyist building a radio needs a resistor in her cir-
cuit, but has only a , a , and a resistor available.
How can she connect these resistors to produce the desired
resistance?

43. •• A circuit consists of a 12.0-V battery connected to three
resistors ( , and ) in series. Find (a) the current
that flows through the battery and (b) the potential difference
across each resistor.

44. •• IP Three resistors, , and R, are connected in series
with a 24.0-V battery. The total current flowing through the bat-
tery is 0.16 A. (a) Find the value of resistance R. (b) Find the po-
tential difference across each resistor. (c) If the voltage of the
battery had been greater than 24.0 V, would your answer to part
(a) have been larger or smaller? Explain.

45. •• A circuit consists of a battery connected to three resistors
( , and ) in parallel. The total current through
the resistors is 1.8 A. Find (a) the emf of the battery and (b) the
current through each resistor.

46. •• IP Three resistors, , and R, are connected in par-
allel with a 12.0-V battery. The total current flowing through the
battery is 0.88 A. (a) Find the value of resistance R. (b) Find the
current through each resistor. (c) If the total current in the bat-
tery had been greater than 0.88 A, would your answer to part
(a) have been larger or smaller? Explain.

47. •• An resistor has a current of 0.72 A and is connected in
series with a resistor. What is the emf of the battery to
which the resistors are connected?

48. •• The equivalent resistance between points A and B of the
resistors shown in Figure 21–30 is . Find the value of resis-
tance R.

26 Æ

130-Æ
89-Æ

22 Æ, 67 Æ

170 Æ65 Æ, 25 Æ

11 Æ, 53 Æ

110 Æ42 Æ, 17 Æ

92-Æ79-Æ220-Æ
150-Æ

9.6-Æ
0.020 Æ
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49. •• Find the equivalent resistance between points A and B
shown in Figure 21–31.

S E C T I O N  2 1 – 5    K I R C H H O F F ’ S  R U L E S

58. • Find the magnitude and direction (clockwise or counterclock-
wise) of the current in Figure 21–35.

55

R

A B
�12 �

▲ FIGURE 21–30 Problems 48, 52, and 98

3.3

A

B

1.5 � 2.5 �

�

8.1 � 6.3 �

4.8 �

▲ FIGURE 21–31 Problems 49 and 53

1.0 7.1

5.8

�

4.5 � 3.2 �

�

�

12.0 V

+ –

r

▲ FIGURE 21–32 Problems 51 and 54

12.5 8.45

4.11

�

13.8 �

15.0 �

17.2 �

�

�
+ –

▲ FIGURE 21–33 Problems 55 and 56

R

R

R

R

+
–�

▲ FIGURE 21–34 Problem 57

+
–

8.50 11.5 V

15.1

�

15.0 V 6.22 �

�

+–D C

AB

▲ FIGURE 21–35 Problems 58, 59, and 60

50. •• How many 65-W lightbulbs can be connected in parallel
across a potential difference of 85 V before the total current in
the circuit exceeds 2.1 A?

51. •• The circuit in Figure 21–32 includes a battery with a finite
internal resistance, . (a) Find the current flowing
through the and the resistors. (b) How much
current flows through the battery? (c) What is the potential
difference between the terminals of the battery?

3.2-Æ7.1-Æ
r = 0.50 Æ

52. •• IP A 12-V battery is connected to terminals A and B in Fig-
ure 21–30. (a) Given that , find the current in each re-
sistor. (b) Suppose the value of R is increased. For each resistor
in turn, state whether the current flowing through it increases
or decreases. Explain.

53. •• IP The terminals A and B in Figure 21–31 are connected to a
9.0-V battery. (a) Find the current flowing through each resistor.
(b) Is the potential difference across the resistor greater
than, less than, or the same as the potential difference across the

resistor? Explain.

54. •• IP Suppose the battery in Figure 21–32 has an internal
resistance . (a) How much current flows through
the battery? (b) What is the potential difference between the
terminals of the battery? (c) If the resistor is increased in
value, will the current in the battery increase or decrease?
Explain.

55. ••• IP The current flowing through the resistor in Figure
21–33 is 1.52 A. (a) What is the voltage of the battery? (b) If the

8.45-Æ

3.2-Æ

r = 0.25 Æ

1.5-Æ

6.3-Æ

R = 85 Æ

resistor is increased in value, will the current provided
by the battery increase, decrease, or stay the same? Explain.

56. ••• The current in the resistor in Figure 21–33 is 
0.795 A. Find the current in the other resistors in the circuit.

57. ••• IP Four identical resistors are connected to a battery as
shown in Figure 21–34. When the switch is open, the current
through the battery is . (a) When the switch is closed, will
the current through the battery increase, decrease, or stay the
same? Explain. (b) Calculate the current that flows through
the battery when the switch is closed. Give your answer in
terms of .I0

I0

13.8-Æ

17.2-Æ

59. • IP Suppose the polarity of the 11.5-V battery in Figure 21–35
is reversed. (a) Do you expect this to increase or decrease the
amount of current flowing in the circuit? Explain. (b) Calculate
the magnitude and direction (clockwise or counterclockwise) of
the current in this case.

60. •• IP It is given that point A in Figure 21–35 is grounded
. (a) Is the potential at point B greater than or less than

zero? Explain. (b) Is the potential at point C greater than or less
than zero? Explain. (c) Calculate the potential at point D.

61. •• Consider the circuit shown in Figure 21–36. Find the current
through each resistor using (a) the rules for series and parallel
resistors and (b) Kirchhoff’s rules.

(V = 0)

6.2

11

15 V 12

B

AC

�7.5 �

�

�

+
–

▲ FIGURE 21–36 Problems 61 and 62

62. •• Suppose point A is grounded in Figure 21–36. Find
the potential at points B and C.

63. •• IP (a) Find the current in each resistor in Figure 21–37. (b) Is
the potential at point A greater than, less than, or equal to the

(V = 0)
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potential at point B? Explain. (c) Determine the potential differ-
ence between the points A and B.

69. • A 12-V battery is connected to three capacitors in series. The
capacitors have the following capacitances: , and

. Find the voltage across the capacitor.

70. •• CE You conduct a series of experiments in which you con-
nect the capacitors and to a battery in various
ways. The experiments are as follows: A, alone connected
to the battery; B, alone connected to the battery; C, and

connected to the battery in series; D, and connected
to the battery in parallel. Rank these four experiments in order
of increasing equivalent capacitance. Indicate ties where
appropriate.

71. •• CE Three different circuits, each containing a switch and
two capacitors, are shown in Figure 21–40. Initially, the plates of
the capacitors are charged as shown. The switches are then
closed, allowing charge to move freely between the capacitors.
Rank the circuits in order of increasing final charge on the left
plate of (a) the upper capacitor and (b) the lower capacitor. In-
dicate ties where appropriate.

C2C1C2

C1C2

C1

C2 7 C1C1

32-mF32 mF
4.5 mF, 12 mF

6.7

9.8

12 V 9.0 V

A

B

1.2 �

�

�

3.9 �

+
–

+
–

▲ FIGURE 21–37 Problem 63

6.0 V

5.0 �
2.0 � 4.0 �

+
– 9.0 V

+
–

▲ FIGURE 21–38 Problem 64

8.2 F

A B

� 22 F�

15 F�

▲ FIGURE 21–39 Problems 68 and 72

4.25 F

A

B

C

�7.22 F� 8.35 F�

12.0 F�

▲ FIGURE 21–41 Problems 75 and 118

S E C T I O N  2 1 – 6    C I R C U I T S  C O N TA I N I N G
C A PA C I T O R S

65. • CE Two capacitors, and , are connected to a
battery. (a) Which capacitor stores more energy when they are
connected to the battery in series? Explain. (b) Which capaci-
tor stores more energy when they are connected in parallel?
Explain.

66. • CE Predict/Explain Two capacitors are connected in series.
(a) If a third capacitor is now connected in series with the orig-
inal two, does the equivalent capacitance increase, decrease, or
remain the same? (b) Choose the best explanation from among
the following:

I. Adding a capacitor generally tends to increase the capaci-
tance, but putting it in series tends to decrease the capaci-
tance; therefore, the net result is no change.

II. Adding a capacitor in series will increase the total amount
of charge stored, and hence increase the equivalent capaci-
tance.

III. Adding a capacitor in series decreases the equivalent ca-
pacitance since each capacitor now has less voltage across
it, and hence stores less charge.

67. • CE Predict/Explain Two capacitors are connected in parallel.
(a) If a third capacitor is now connected in parallel with the
original two, does the equivalent capacitance increase, de-
crease, or remain the same? (b) Choose the best explanation from
among the following:

I. Adding a capacitor tends to increase the capacitance, but
putting it in parallel tends to decrease the capacitance;
therefore, the net result is no change.

II. Adding a capacitor in parallel will increase the total
amount of charge stored, and hence increase the equivalent
capacitance.

III. Adding a capacitor in parallel decreases the equivalent ca-
pacitance since each capacitor now has less voltage across
it, and hence stores less charge.

68. • Find the equivalent capacitance between points A and B for
the group of capacitors shown in Figure 21–39.

C2 = 2CC1 = C

C

2C

A

2q –2q

q –q

3C

C

B

–4q 4q

0 0

2C

C

C

–2q 2q

8q –8q

▲ FIGURE 21–40 Problem 71

72. •• Terminals A and B in Figure 21–39 are connected to a 9.0-V
battery. Find the energy stored in each capacitor.

73. •• IP Two capacitors, one and the other , are
connected in parallel across a 15-V battery. (a) Find the equiva-
lent capacitance of the two capacitors. (b) Which capacitor
stores more charge? Explain. (c) Find the charge stored on each
capacitor.

74. •• IP Two capacitors, one and the other , are con-
nected in series across a 15-V battery. (a) Find the equivalent ca-
pacitance of the two capacitors. (b) Which capacitor stores more
charge? Explain. (c) Find the charge stored on each capacitor.

75. •• The equivalent capacitance of the capacitors shown in Figure
21–41 is . Find the value of capacitance C.9.22 mF

15 mF7.5 mF

15 mF7.5 mF

76. ••• Two capacitors, and , are connected in series and
charged by a battery. Show that the energy stored in plus the
energy stored in is equal to the energy stored in the equiva-
lent capacitor, , when it is connected to the same battery.

77. ••• With the switch in position A, the capacitor in
Figure 21–42 is fully charged by the 12.0-V battery, and the

11.2-mF

Ceq

C2

C1

C2C1

64. ••• Two batteries and three resistors are connected as shown in
Figure 21–38. How much current flows through each battery
when the switch is (a) closed and (b) open?
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9.50

12.0 V

F

A S

B

�

11.2 F�

+
–

▲ FIGURE 21–42 Problem 77

E (V) R ( ) C ( F)

Circuit A 12 4 3
Circuit B 9 3 1
Circuit C 9 9 2

Mæ

capacitor is uncharged. The switch is now moved to po-
sition B. As a result, charge flows between the capacitors until
they have the same voltage across their plates. Find this voltage.

9.50-mF

86. ••• The capacitor in an RC circuit is initially uncharged. In
terms of R and C, determine (a) the time required for the charge
on the capacitor to rise to 50% of its final value and (b) the time
required for the initial current to drop to 10% of its initial value.

G E N E R A L  P R O B L E M S

87. • CE A given car battery is rated as 250 amp-hours. Is this rat-
ing a measure of energy, power, charge, voltage, or current? 
Explain.

88. • CE Predict/Explain The resistivity of tungsten increases
with temperature. (a) When a light containing a tungsten fila-
ment heats up, does its power consumption increase, decrease,
or stay the same? (b) Choose the best explanation from among
the following:

I. The voltage is unchanged, and therefore an increase in
resistance implies a reduced power, as we can see from

.
II. Increasing the resistance increases the power, as is clear

from .
III. The power consumption is independent of resistance, as

we can see from .

89. • CE A cylindrical wire is to be doubled in length, but it is de-
sired that its resistance remain the same. (a) Must its radius be
increased or decreased? Explain. (b) By what factor must the ra-
dius be changed?

90. • CE Predict/Explain An electric space heater has a power rat-
ing of 500 W when connected to a given voltage V. (a) If two of
these heaters are connected in series to the same voltage, is the
power consumed by the two heaters greater than, less than, or
equal to 1000 W? (b) Choose the best explanation from among
the following:

I. Each heater consumes 500 W; therefore two of them will
consume 

II. The voltage is the same, but the resistance is doubled by
connecting the heaters in series. Therefore, the power con-
sumed ( ) is less than 1000 W.

III. Connecting two heaters in series doubles the resistance.
Since power depends on the resistance squared, it follows
that the power consumed is greater than 1000 W.

91. • CE Two resistors, and , are connected to a bat-
tery. (a) Which resistor dissipates more power when they are con-
nected to the battery in series? Explain. (b) Which resistor dissi-
pates more power when they are connected in parallel? Explain.

92. • CE Consider the circuit shown in Figure 21–45, in which three
lights, each with a resistance R, are connected in series. The
circuit also contains an open switch. (a) When the switch is
closed, does the intensity of light 2 increase, decrease, or stay

R2 = 2RR1 = R

P = V2/R

500 W + 500 W = 1000 W.

P = IV

P = I2R

P = V2/R

+
–

140

9.0 V

F�
50.0 k�

S1

S2

▲ FIGURE 21–43 Problem 84

+
–

6.5

15 V

�

13 � 24 �

62 F�

▲ FIGURE 21–44 Problems 85 and 119

81. •• Consider an RC circuit with , and
. Find (a) the time constant for the circuit, (b) the

maximum charge on the capacitor, and (c) the initial current in
the circuit.

82. •• The resistor in an RC circuit has a resistance of . (a) What
capacitance must be used in this circuit if the time constant is to
be 3.5 ms? (b) Using the capacitance determined in part (a), cal-
culate the current in the circuit 7.0 ms after the switch is closed.
Assume that the capacitor is uncharged initially and that the
emf of the battery is 9.0 V.

83. •• A flash unit for a camera has a capacitance of . What
resistance is needed in this RC circuit if the flash is to charge to
90% of its full charge in 21 s?

84. •• Figure 21–43 shows a simplified circuit for a photographic
flash unit. This circuit consists of a 9.0-V battery, a 
resistor, a capacitor, a flashbulb, and two switches. Ini-
tially, the capacitor is uncharged and the two switches are open.
To charge the unit, switch is closed; to fire the flash, switch S2S1

140-mF
50.0-kÆ

1500 mF

145 Æ

C = 55.7 mF
E = 12.0 V, R = 175 Æ

(which is connected to the camera’s shutter) is closed. How
long does it take to charge the capacitor to 5.0 V?

85. •• IP Consider the RC circuit shown in Figure 21–44. Find (a) the
time constant and (b) the initial current for this circuit. (c) It is
desired to increase the time constant of this circuit by adjusting the
value of the resistor. Should the resistance of this resistor be
increased or decreased to have the desired effect? Explain.

6.5-Æ

S E C T I O N  2 1 – 7    RC C I R C U I T S

78. • The switch on an RC circuit is closed at . Given that
, and , how much charge is on

the capacitor at time ?

79. • The capacitor in an RC circuit is
initially uncharged. Find (a) the charge on the capacitor and
(b) the current in the circuit one time constant after
the circuit is connected to a 9.0-V battery.

80. •• CE Three RC circuits have the emf, resistance, and capaci-
tance given in the accompanying table. Initially, the switch on
the circuit is open and the capacitor is uncharged. Rank these
circuits in order of increasing (a) initial current (immediately
after the switch is closed) and (b) time for the capacitor to ac-
quire half its final charge. Indicate ties where appropriate.

(t = RC)

(R = 120 Æ, C = 45 mF)

t = 4.2 ms
C = 23 mFE = 9.0 V, R = 150 Æ

t = 0
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▲ FIGURE 21–48 Problem 103

93. • CE Predict/Explain (a) Referring to Problem 92 and the cir-
cuit in Figure 21–45, does the current supplied by the battery in-
crease, decrease, or remain the same when the switch is closed?
(b) Choose the best explanation from among the following:

I. The current decreases because only two resistors can draw
current from the battery when the switch is closed.

II. Closing the switch makes no difference to the current since
the second resistor is still connected to the battery as be-
fore.

III. Closing the switch shorts out the second resistor, decreases
the total resistance of the circuit, and increases the current.

94. • CE Predict/Explain (a) Referring to Problem 92 and the
circuit in Figure 21–45, does the total power dissipated in the
circuit increase, decrease, or remain the same when the switch
is closed? (b) Choose the best explanation from among the fol-
lowing:

I. Closing the switch shorts out one of the resistors, which
means that the power dissipated decreases.

II. The equivalent resistance of the circuit is reduced by
closing the switch, but the voltage remains the same.
Therefore, from we see that the power dissi-
pated increases.

III. The power dissipated remains the same because power,
, is independent of resistance.

95. • CE Consider the circuit shown in Figure 21–46, in which three
lights, each with a resistance R, are connected in parallel. The
circuit also contains an open switch. (a) When the switch is
closed, does the intensity of light 3 increase, decrease, or stay the
same? Explain. (b) Do the intensities of lights 1 and 2 increase,
decrease, or stay the same when the switch is closed? Explain.

P = IV

P = V2/R

97. • CE Predict/Explain (a) When the switch is closed in the cir-
cuit shown in Figure 21–46, does the total power dissipated in
the circuit increase, decrease, or stay the same? (b) Choose the
best explanation from among the following:

I. Closing the switch adds one more resistor to the circuit.
This makes it harder for the battery to supply current,
which decreases the power dissipated.

II. The equivalent resistance of the circuit is reduced by clos-
ing the switch, but the voltage remains the same. Therefore,
from we see that the power dissipated increases.

III. The power dissipated remains the same because power,
, is independent of resistance.

98. • Suppose that points A and B in Figure 21–30 are connected to
a 12-V battery. Find the power dissipated in each of the resistors
assuming that .

99. • You are given resistors of , and . Describe
how these resistors must be connected to produce an equiva-
lent resistance of .

100. • You are given capacitors of , and . Describe
how these capacitors must be connected to produce an equiva-
lent capacitance of .

101. • Suppose your car carries a charge of . What current does
it produce as it travels from Dallas to Fort Worth (35 mi) in 0.75 h?

102. •• CE The circuit shown in Figure 21–47 shows a resistor and two
capacitors connected in series with a battery of voltage V. The
circuit also has an ammeter and a switch. Initially, the switch is
open and both capacitors are uncharged. The following ques-
tions refer to a time long after the switch is closed and current
has ceased to flow. (a) In terms of V, what is the voltage across
the capacitor ? (b) In terms of CV, what is the charge on the
right plate of ? (c) What is the net charge that flowed through
the ammeter during charging? Give your answer in terms of CV.

C2

C1

85 mC

22 mF

9.0 mF18 mF, 7.2 mF

255 Æ

146 Æ413 Æ, 521 Æ

R = 65 Æ

P = IV

P = V2>R

C1 = C C2 = 2C

R

Ammeter

V

+ –

▲ FIGURE 21–47 Problem 102
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▲ FIGURE 21–46 Problems 95, 96, and 97

96. • CE Predict/Explain (a) When the switch is closed in the cir-
cuit shown in Figure 21–46, does the current supplied by the
battery increase, decrease, or stay the same? (b) Choose the best
explanation from among the following:

I. The current increases because three resistors are drawing
current from the battery when the switch is closed, rather
than just two.

II. Closing the switch makes no difference to the current be-
cause the voltage is the same as before.

III. Closing the switch decreases the current because an addi-
tional resistor is added to the circuit.

103. •• CE The three circuits shown in Figure 21–48 have identical
batteries, resistors, and capacitors. Initially, the switches are
open and the capacitors are uncharged. Rank the circuits in
order of increasing (a) final charge on the capacitor and (b)
time for the current to drop to 90% of its initial value. Indicate
ties where appropriate.

104. •• It is desired to construct a resistor from a 1.2-m length
of tungsten wire. What diameter is needed for this wire?

5.0-Æ

the same? Explain. (b) Do the intensities of lights 1 and 3 in-
crease, decrease, or stay the same when the switch is closed?
Explain.
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R1

R2

A

B

C

▲ FIGURE 21–49 Problem 106

11 � 5.6 �

9.0 V

+ –

45 F�

▲ FIGURE 21–50 Problems 109 and 116

105. •• Electrical Safety Codes For safety reasons, electrical
codes have been established that limit the amount of current a
wire of a given size can carry. For example, an 18-gauge (cross-
sectional ), rubber-insulated extension cord
with copper wires can carry a maximum current of 5.0 A. Find
the voltage drop in a 12-ft, 18-gauge extension cord carrying a
current of 5.0 A. (Note: In an extension cord, the current must
flow through two lengths—down and back.)

106. •• A Three-Way Lightbulb A three-way lightbulb has two fil-
aments with resistances and connected in series. The re-
sistors are connected to three terminals, as indicated in Figure
21–49, and the light switch determines which two of the three
terminals are connected to a potential difference of 120 V at any
given time. When terminals A and B are connected to 120 V the
bulb uses 75.0 W of power. When terminals A and C are con-
nected to 120 V the bulb uses 50.0 W of power. (a) What is the re-
sistance ? (b) What is the resistance ? (c) How much power
does the bulb use when 120 V is connected to terminals B and C?

R2R1

R2R1

area = 1.17 mm2

110. •• A silver wire and a copper wire have the same volume and
the same resistance. Find the ratio of their radii, .

111. •• Two resistors are connected in series to a battery with an
emf of 12 V. The voltage across the first resistor is 2.7 V and the
current through the second resistor is 0.15 A. Find the resis-
tance of the two resistors.

112. •• BIO Pacemaker Pulses A pacemaker sends a pulse to a
patient’s heart every time the capacitor in the pacemaker
charges to a voltage of 0.25 V. It is desired that the patient re-
ceive 75 pulses per minute. Given that the capacitance of the
pacemaker is and that the battery has a voltage of 9.0 V,
what value should the resistance have?

110 mF

rsilver>rcopper

113. •• A long, thin wire has a resistance R. The wire is now cut
into three segments of equal length, which are connected in
parallel. In terms of R, what is the equivalent resistance of the
three wire segments?

114. •• Three resistors are connected to a battery. (a) If
the resistors are connected in series, which one has the greatest
rate of energy dissipation? (b) Repeat part (a), this time as-
suming that the resistors are connected in parallel.

115. •• IP Suppose we connect a 12.0-V battery to terminals A and
B in Figure 21–29. (a) Is the current in the resistor greater
than, less than, or the same as the current in the resistor?
Explain. (b) Calculate the current flowing through each of the
three resistors in this circuit.

116. •• IP Suppose the battery in Figure 21–50 has an internal re-
sistance of . (a) What is the potential difference across
the terminals of the battery when the switch is open? (b) When
the switch is closed, does the potential difference of the battery
increase or decrease? Explain. (c) Find the potential difference
across the battery after the switch has been closed a long time.

117. •• National Electric Code In the United States, the National
Electric Code sets standards for maximum safe currents in in-
sulated copper wires of various diameters. The accompanying
table gives a portion of the code. Notice that wire diameters
are identified by the gauge of the wire, and that .
Find the maximum power dissipated per length in (a) an
8-gauge wire and (b) a 10-gauge wire.

1 mil = 10-3 in

0.73 Æ

35-Æ
45-Æ

(R, 1
2R, 2R)

Gauge Diameter (mils) Safe current (A)

8 129 35
10 102 25

107. •• A portable CD player uses a current of 7.5 mA at a potential
difference of 3.5 V. (a) How much energy does the player use
in 35 s? (b) Suppose the player has a mass of 0.65 kg. For what
length of time could the player operate on the energy required
to lift it through a height of 1.0 m?

108. •• An electrical heating coil is immersed in 4.6 kg of water at
22 °C. The coil, which has a resistance of , warms the
water to 32 °C in 15 min. What is the potential difference at
which the coil operates?

109. •• IP Consider the circuit shown in Figure 21–50. (a) Is the cur-
rent flowing through the battery immediately after the switch
is closed greater than, less than, or the same as the current
flowing through the battery long after the switch is closed?
Explain. (b) Find the current flowing through the battery im-
mediately after the switch is closed. (c) Find the current in the
battery long after the switch is closed.

250 Æ
118. ••• IP A 15.0-V battery is connected to terminals A and B in Fig-

ure 21–41. (a) Given that , find the charge on each of
the capacitors. (b) Find the total energy stored in this system. (c)
If the capacitor is increased in value, will the total en-
ergy stored in the circuit increase or decrease? Explain.

119. ••• IP The switch in the RC circuit shown in Figure 21–44 is
closed at . (a) How much power is dissipated in each re-
sistor just after and in the limit ? (b) What is the
charge on the capacitor at the time ? (c) How much
energy is stored in the capacitor in the limit ? (d) If the
voltage of the battery is doubled, by what factor does your an-
swer to part (c) change? Explain.

120. ••• Two resistors, and , are connected in parallel and con-
nected to a battery. Show that the power dissipated in plus
the power dissipated in is equal to the power dissipated in
the equivalent resistor, , when it is connected to the same
battery.

121. ••• A battery has an emf and an internal resistance r. When
the battery is connected to a resistor, the current through
the battery is 0.65 A. When the battery is connected to a 
resistor, the current is 0.45 A. Find the battery’s emf and inter-
nal resistance.

122. ••• When two resistors, and , are connected in series
across a 6.0-V battery, the potential difference across is 4.0 V.
When and are connected in parallel to the same battery,
the current through is 0.45 A. Find the values of and .

123. ••• The circuit shown in Figure 21–51 is known as a Wheat-
stone bridge. Find the value of the resistor R such that the cur-
rent through the resistor is zero.85.0-Æ

R2R1R2

R2R1

R1

R2R1

55-Æ
25-Æ

E

Req

R2

R1

R2R1

t: q
t = 0.35 ms
t: qt = 0

t = 0

7.22-mF

C = 15.0 mF
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BIO Footwear Safety
The American National Standards Institute (ANSI) specifies
safety standards for a number of potential workplace hazards.
For example, ANSI requires that footwear provide protection
against the effects of compression from a static weight, impact
from a dropped object, puncture from a sharp tool, and cuts
from saws. In addition, to protect against the potentially lethal
effects of an electrical shock, ANSI provides standards for the
electrical resistance that a person and footwear must offer to the
flow of electric current.

Specifically, regulation ANSI Z41-1999 states that the resis-
tance of a person and his or her footwear must be tested with the
circuit shown in Figure 21–52. In this circuit, the voltage supplied
by the battery is and the resistance in the circuit is

. Initially the circuit is open and no current flows.
When a person touches the metal sphere attached to the battery,
however, the circuit is closed and a small current flows through
the person, the shoes, and back to the battery. The amount of
current flowing through the person can be determined by using
a voltmeter to measure the voltage drop V across the resistor R.
To be safe, the current should not exceed .150 mA

R = 1.00 MÆ
E = 50.0 V

124. • Suppose the voltmeter measures a potential difference of
3.70 V across the resistor. What is the current that flows
through the person’s body?

A. A B. A

C. 0.0740 A D. 3.70 A

125. • What is the resistance of the person and footwear when the
voltmeter reads 3.70 V?

A. B.

C. D.

126. • The resistance of a given person and footwear is .
What is the reading on the voltmeter when this person is
tested?

A. 0.976 V B. 1.22 V

C. 1.25 V D. 50.0 V

127. • Suppose that during one test a person’s shoes become wet
when water spills onto the floor. When this happens, do you
expect the reading on the voltmeter to increase, decrease, or
stay the same?

I N T E R A C T I V E  P R O B L E M S

128. •• Referring to Example 21–7 Suppose the three resistors in
this circuit have the values , and

, and that the emf of the battery is 12.0 V. (The re-
sistor numbers are given in the Interactive Figure.) (a) Find the
potential difference across each resistor. (b) Find the current
that flows through each resistor.

129. •• Referring to Example 21–7 Suppose
and . The emf of the battery is 12.0 V. (The resistor
numbers are given in the Interactive Figure.) (a) Find the value
of R such that the current supplied by the battery is 0.0750 A.
(b) Find the value of R that gives a potential difference of 
2.65 V across resistor 2.

130. •• IP Referring to Example 21–9 Suppose the resistance of
the resistor is reduced by a factor of 2. The other resistor
is , the capacitor is , and the battery has an emf of
3.00 V. (a) Does the final value of the charge on the capacitor
increase, decrease, or stay the same? Explain. (b) Does the time
for the capacitor to charge to 80.0% of its final value increase,
decrease, or stay the same? Explain. (c) Find the time referred
to in part (b).

131. •• IP Referring to Example 21–9 Suppose the capacitance
of the capacitor is reduced by a factor of 2. The two re-
sistors are and , and the battery has an emf of 
3.00 V. (a) Find the final value of the charge on the capacitor.
(b) Does the time for the capacitor to charge to 80.0% of its
final value increase, decrease, or stay the same? Explain. (c)
Find the time referred to in part (b).

275 Æ126 Æ
182-mF

182 mF275 Æ
126-Æ

R3 = R
R1 = R2 = 225 Æ

R3 = 300.0 Æ
R1 = 100.0 Æ, R2 = 200.0 Æ

4.00 * 107Æ

1.71 * 108 Æ4.63 * 107 Æ

1.35 * 107 Æ1.25 * 107 Æ

5.00 * 10-53.70 * 10-6
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Notice that the experimental setup in Figure 21–52 is a dc
circuit with two resistors in series—the resistance R and the
resistance of the person and footwear, . It follows that the 
current in the circuit is . We also know that 
the current is , where V is the reading of the voltmeter.
These relations can be combined to relate the voltage V to the
resistance , with the result shown in Figure 21–53. According
to ANSI regulations, Type II footwear must give a resistance 
in the range of to .100 * 107 Æ0.1 * 107 Æ

Rpf

Rpf

I = V/R
I = E>1R + Rpf2

Rpf




