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In the last chapter, we studied the
behavior of an oscillator. Here, we
consider the behavior of a series of

oscillators that are connected to one
another. Connecting oscillators leads to
an assortment of new phenomena,
including waves on a string, water waves,
and sound. In this chapter, we focus our

attention on the behavior of such waves,
and in particular on the way they
propagate, their speed of propagation,
and their interactions with one another.
Later, in Chapter 25, we shall see that light
is also a type of wave, and that it displays
many of the same phenomena exhibited
by the waves considered in this chapter.
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Waves and Sound

Have you ever wondered why a grand piano has this somewhat peculiar
shape? It’s not just tradition—there’s also a physical reason, having to
do with the way vibrating strings produce sound. But to understand this
and other aspects of sound, it is first necessary to learn about waves in
general—for sound, as we shall see, is merely a particular kind of wave,
though one that has a special importance in our lives.
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14–1 Types of Waves
Consider a group of swings in a playground swing set. We know that each swing
by itself behaves like a simple pendulum; that is, like an oscillator. Now, let’s con-
nect the swings to one another. To be specific, suppose we tie a rope from the seat of
the first swing to its neighbor, and then another rope from the second swing to the
third swing, and so on. When the swings are at rest—in equilibrium— the connect-
ing ropes have no effect. If you now sit in the first swing and begin oscillating—thus
“disturbing” the equilibrium—the connecting ropes cause the other swings along
the line to start oscillating as well. You have created a traveling disturbance.

In general, a disturbance that propagates from one place to another is referred
to as a wave. Waves propagate with well-defined speeds determined by the prop-
erties of the material through which they travel. In addition, waves carry energy.
For example, part of the energy you put into sound waves when you speak is car-
ried to the ears of others, where some of the sound energy is converted into elec-
trical energy carried by nerve impulses to the brain which, in turn, creates the sen-
sation of hearing.

It is important to distinguish between the motion of the wave itself and the
motion of the individual particles that make up the wave. Common examples in-
clude the waves that propagate through a field of wheat. The individual wheat
stalks sway back and forth as a wave passes, but they do not change their location.
Similarly, a “wave” at a ball game may propagate around the stadium more quickly
than a person can run, but the individual people making up the wave simply
stand and sit in one place. From these simple examples it is clear that waves can
come in a variety of types. We discuss some of the more common types in this sec-
tion. In addition, we show how the speed of a wave is related to some of its basic
properties.

Transverse Waves
Perhaps the easiest type of wave to visualize is a wave on a string, as illustrated
in Figure 14–1. To generate such a wave, start by tying one end of a long string or
rope to a wall. Pull on the free end with your hand, producing a tension in the
string, and then move your hand up and down. As you do so, a wave will travel
along the string toward the wall. In fact, if your hand moves up and down with
simple harmonic motion, the wave on the string will have the shape of a sine or a
cosine; we refer to such a wave as a harmonic wave.

Vibrate end of string to generate a wave.
Wave propagates
away from source.

v FIGURE 14–1 A wave on a string
Vibrating one end of a string with an 
up-and-down motion generates a wave
that travels away from its point of origin.

▲

▲ A wave can be viewed as a disturbance
that propagates through space. Although
the wave itself moves steadily in one di-
rection, the particles that create the wave
do not share in this motion. Instead, they
oscillate back and forth about their equi-
librium positions. The water in an ocean
wave, for example, moves mainly up and
down—as it passes, you bob up and down
with it rather than being carried onto the
shore. Similarly, the people in a human
“wave” at a ballpark simply stand or raise
their arms in place—they do not travel
around the stadium.

Note that the wave travels in the horizontal direction, even though your hand
oscillates vertically about one spot. In fact, if you look at any point on the string,
it too moves vertically up and down, with no horizontal motion at all. This is
shown in Figure 14–2, where we see the location of an individual point on a string
as a wave travels past. Notice, in particular, that the displacement of particles in a
string is at right angles to the direction of propagation of the wave. A wave with
this property is called a transverse wave:

In a transverse wave, the displacement of individual particles is at
right angles to the direction of propagation of the wave.

Other examples of transverse waves include light and radio waves. These will
be discussed in detail in Chapter 25.
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Water Waves
If a pebble is dropped into a pool of water, a series of concentric waves move
away from the drop point. This is illustrated in Figure 14–4. To visualize the move-
ment of the water as a wave travels by, place a small piece of cork into the water.
As a wave passes, the motion of the cork will trace out the motion of the water it-
self, as indicated in Figure 14–5.

Notice that the cork moves in a roughly circular path, returning to approxi-
mately its starting point. Thus, each element of water moves both vertically and
horizontally as the wave propagates by in the horizontal direction. In this sense, a
water wave is a combination of both transverse and longitudinal waves. This
makes the water wave more difficult to analyze. Hence, most of our results will
refer to the simpler cases of purely transverse and purely longitudinal waves.

Points on the string move
vertically up and down.

The wave moves horizontally, as
indicated by the position of a crest.

v

▲ FIGURE 14–2 The motion of a wave 
on a string
As a wave on a string moves horizon-
tally, all points on the string vibrate in
the vertical direction, as indicated by the
blue arrow.

v

Speaker
diaphragm

Compressions
(molecules close together)

Rarefactions
(molecules far apart)

▲ FIGURE 14–3 Sound produced by a speaker
As the diaphragm of a speaker vibrates back and forth, it
alternately compresses and rarefies the surrounding air. These
regions of high and low density propagate away from the
speaker with the speed of sound. Individual particles in the air
oscillate back and forth about a given position, as indicated by
the blue arrow.

As the wave propagates outward ...

... the crests and troughs form concentric
circles.

▲ FIGURE 14–4 Water waves from 
a disturbance
An isolated disturbance in a pool of
water, caused by a pebble dropped into
the water, creates waves that propagate
symmetrically away from the distur-
bance. The crests and troughs form con-
centric circles on the surface of the water
as they move outward.

Longitudinal Waves
Longitudinal waves differ from transverse waves in the way that particles in the
wave move. In particular, a longitudinal wave is defined as follows:

In a longitudinal wave, the displacement of individual particles is
parallel to the direction of propagation of the wave.

The classic example of a longitudinal wave is sound. When you speak, for ex-
ample, the vibrations in your vocal cords create a series of compressions and ex-
pansions (rarefactions) in the air. The same kind of situation occurs with a loud-
speaker, as illustrated in Figure 14–3. Here we see a speaker diaphragm vibrating
horizontally with simple harmonic motion. As it moves to the right it compresses
the air momentarily; as it moves to the left it rarefies the air. A series of compres-
sions and rarefactions then travel horizontally away from the loudspeaker with
the speed of sound.

Figure 14–3 also indicates the motion of an individual particle in the air as a
sound wave passes. Note that the particle moves back and forth horizontally; that
is, in the same direction as the propagation of the wave. The particle does not
travel with the wave—each individual particle simply oscillates about a given
position in space.
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Wavelength, Frequency, and Speed
A simple wave can be thought of as a regular, rhythmic disturbance that propa-
gates from one point to another, repeating itself both in space and in time. We now
show that the repeat length and the repeat time of a wave are directly related to
its speed of propagation.

We begin by considering the snapshots of a wave shown in Figure 14–6. Points
on the wave corresponding to maximum upward displacement are referred to as
crests; points corresponding to maximum downward displacement are called
troughs. The distance from one crest to the next, or from one trough to the next, is
the repeat length—or wavelength, —of the wave.

Definition of Wavelength, 

SI unit: m

Similarly, the repeat time—or period, T—of a wave is the time required for
one wavelength to pass a given point, as illustrated in Figure 14–6. Closely related
to the period of a wave is its frequency, f, which, as with oscillations, is defined by
the relation 

Combining these observations, we see that a wave travels a distance in the
time T. Applying the definition of speed—distance divided by time—it follows
that the speed of a wave is

Speed of a Wave

14–1

SI unit: m/s

This result applies to all waves.

E X E R C I S E  1 4 – 1
Sound waves travel in air with a speed of 343 m/s. The lowest frequency sound we can
hear is 20.0 Hz; the highest frequency is 20.0 kHz. Find the wavelength of sound for fre-
quencies of 20.0 Hz and 20.0 kHz.

S O L U T I O N

Solve Equation 14–1 for 

14–2 Waves on a String
In this section we consider some of the basic properties of waves traveling on a
string, a rope, a wire, or any similar linear medium.

The Speed of a Wave on a String
The speed of a wave is determined by the properties of the medium through
which it propagates. In the case of a string of length L, there are two basic

l =
v
f

=
343 m/s

20,000 s-1
= 1.72 cm

l =
v
f

=
343 m/s

20.0 s-1
= 17.2 m

l:

v =
distance

time
=
l

T
= lf

l

f = 1>T.

l = distance over which a wave repeats

L

l

v
FIGURE 14–5 The motion of a water wave

As a water wave passes a given point, a molecule (or a small piece of
cork) moves in a roughly circular path. This means that the water mol-
ecules move both vertically and horizontally. In this sense, the water
wave has characteristics of both transverse and longitudinal waves.

▲

�

t = 0

t = T/4

t = T/2

t = 3T/4

t = T

Crests

Troughs

v

▲ FIGURE 14–6 The speed of a wave
A wave repeats over a distance equal to
the wavelength, The time necessary
for a wave to move one wavelength is
the period, T. Thus, the speed of a wave
is v = l>T = lf.

l.
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characteristics that determine the speed of a wave: (i) the tension in the string,
and (ii) the mass of the string.

Let’s begin with the tension, which is the force F transmitted through the
string (we will use F for the tension rather than T, to avoid confusion between the
tension and the period). Clearly, there must be a tension in a string in order for it
to propagate a wave. Imagine, for example, that a string lies on a smooth floor
with both ends free. If you take one end into your hand and shake it, the portions
of the string near your hand will oscillate slightly, but no wave will travel to the
other end of the string. If someone else takes hold of the other end of the string
and pulls enough to set up a tension, then any movement you make on your end
will propagate to the other end. In fact, if the tension is increased—so that the
string becomes less slack—waves will travel through the string more rapidly.

Next, we consider the mass m of the string. A heavy string responds slowly to
a given disturbance because of its inertia. Thus, if you try sending a wave through
a kite string or a large rope, both under the same tension, you will find that the
wave in the rope travels more slowly. In general, the heavier a rope or string the
slower the speed of waves in it. Of course, the total mass of a string doesn’t really
matter; a longer string has more mass, but its other properties are basically the
same. What is important is the mass of the string per length. We give this quantity
the label 

Definition of Mass per Length, 

SI unit: kg/m

To summarize, we expect the speed v to increase with the tension F and de-
crease with the mass per length, Assuming these are the only factors determin-
ing the speed of a wave on a string, we can obtain the dependence of v on F and
using dimensional analysis (see Chapter 1, Section 3). First, we identify the di-
mensions of v, F, and

Next, we seek a combination of F and that has the dimensions of v; namely, m/s.
Suppose, for example, that v depends on F to the power a and to the power b.
Then, we have

In terms of dimensions, this equation is

Comparing dimensions, we see that kg does not appear on the left side of the
equation; therefore, we conclude that so that kg does not appear on the
right side of the equation. Hence, Looking at the time dimension, s, we
see that on the left we have thus on the right side we must have or 

It follows that This gives the following result:

Speed of a Wave on a String, v

14–2

SI unit: m/s

As expected, the speed increases with F and decreases with m.

v = AFm

b = -a = -1
2.a = 1

2.
-2a = -1,s-1;

a = -b.
a + b = 0

m/s = 1kg # m/s22a1kg/m2b = kga+bma-bs-2a

v = Famb

m

m

 [m] = kg/m

 [F] = N = kg # m/s2

 [v] = m/s

m:

m

m.

m = mass per length = m>L
M

m:
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Dimensional analysis does not guarantee that this is the complete, final result;
there could be a dimensionless factor like or left unaccounted for. It turns out,
however, that a complete analysis based on Newton’s laws gives precisely the
same result.

E X E R C I S E  1 4 – 2
A 5.0-m length of rope, with a mass of 0.52 kg, is pulled taut with a tension of 46 N. Find
the speed of waves on the rope.

S O L U T I O N

First, calculate the mass per length, 

Now, substitute and F into Equation 14–2:

v = AFm = A 46 N
0.10 kg>m = 21 m/s

m

m = m>L = 10.52 kg2>15.0 m2 = 0.10 kg>m
m:

2p1
2

P R O B L E M - S O L V I N G  N O T E

Mass Versus Mass-per-Length

To find the mass of a string, multiply its
mass per length, by its length L. That is,
m = mL.

m,

E X A M P L E  1 4 – 1 A  W A V E  O N  A  R O P E

A 12-m rope is pulled tight with a tension of 92 N. When one end of the rope is given a “thunk” it takes 0.45 s for the disturbance
to propagate to the other end. What is the mass of the rope?

P I C T U R E  T H E  P R O B L E M

Our sketch shows a wave pulse traveling with a speed v from
one end of the rope to the other, a distance of 12 m. The tension
in the rope is 92 N, and the travel time of the pulse is 0.45 s.

S T R A T E G Y

We know that the speed of waves (disturbances) on a rope is
determined by the tension and the mass per length. Thus, we
first calculate the speed of the wave with the information given
in the problem statement. Next, we solve for the mass per
length, then multiply by the length to get the mass.

S O L U T I O N

1. Calculate the speed of the wave:

2. Use to solve for the mass per length:

3. Substitute numerical values for F and v:

4. Multiply by to find the mass:

I N S I G H T

Note that the speed of a wave on this rope (about 60 mi/h) is comparable to the speed of a car on a highway. This speed could
be increased even further by pulling harder on the rope, thus increasing its tension.

P R A C T I C E  P R O B L E M

If the tension in this rope is doubled, how long will it take for the thunk to travel from one end to the other? [Answer: In this
case the wave speed is hence the time is ]

Some related homework problems: Problem 14, Problem 15, Problem 16

t = 0.32 s.v = 38 m/s;

m = mL = 10.13 kg/m2112 m2 = 1.6 kgL = 12 mm

m =
F

v2
=

92 N

127 m/s22 = 0.13 kg/m

m = F>v2v = 2F>m
v =

d
t

=
12 m
0.45 s

= 27 m/s

v

F = 92 N

12 m

In the following Conceptual Checkpoint, we consider the speed of a wave on
a vertical rope of finite mass.
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C O N C E P T U A L  C H E C K P O I N T  1 4 – 1 S P E E D  O F  A  W A V E

A rope of length L and mass M hangs from a ceiling. If the bottom of the rope is given a
gentle wiggle, a wave will travel to the top of the rope. As the wave travels upward does
its speed (a) increase, (b) decrease, or (c) stay the same?

R E A S O N I N G  A N D  D I S C U S S I O N

The speed of the wave is determined by the tension in the rope and its mass per
length. The mass per length is the same from bottom to top, but not the tension. In par-
ticular, the tension at any point in the rope is equal to the weight of rope below that
point. Thus, the tension increases from almost zero near the bottom to essentially Mg
near the top. Since the tension increases with height, so too does the speed, according
to Equation 14–2.

A N S W E R

(a) The speed increases.

v

A wave pulse that
reflects from a
fixed end ...

... has the same shape as
before but is inverted.

v

v
▲ FIGURE 14–7 A reflected wave pulse:
fixed end
A wave pulse on a string is inverted when
it reflects from an end that is tied down.

A wave pulse reflecting
from an end that is free
to move ...

... is not inverted.

v

v

▲ FIGURE 14–8 A reflected wave pulse:
free end
A wave pulse on a string whose end is free
to move is reflected without inversion.

Reflections
Thus far we have discussed only the situation in which a wave travels along a
string; but at some point the wave must reach the end of the string. What happens
then? Clearly, we expect the wave to be reflected, but the precise way in which the
reflection occurs needs to be considered.

Suppose, for example, that the far end of a string is anchored firmly into a
wall, as shown in Figure 14–7. If you give a flick to your end of the string, you set
up a wave “pulse” that travels toward the far end. When it reaches the end, it
exerts an upward force on the wall, trying to pull it up into the pulse. Since the
end is tied down, however, the wall exerts an equal and opposite downward force
to keep the end at rest. Thus, the wall exerts a downward force on the string that
is just the opposite of the upward force you exerted when you created the pulse.
As a result, the reflection is an inverted, or upside-down, pulse, as indicated in
Figure 14–7. We shall encounter this same type of inversion under reflection when
we consider the reflection of light in Chapter 28.

Another way to tie off the end of the string is shown in Figure 14–8. In this case,
the string is tied to a small ring that slides vertically with little friction on a verti-
cal pole. In this way, the string still has a tension in it, since it pulls on the ring, but
it is also free to move up and down.

Consider a pulse moving along such a string, as in Figure 14–8. When the
pulse reaches the end, it lifts the ring upward and then lowers it back down. In
fact, the pulse flicks the far end of the string in the same way that you flicked it
when you created the pulse. Therefore, the far end of the string simply creates a
new pulse, identical to the first, only traveling in the opposite direction. This is il-
lustrated in the figure.

Thus, when waves reflect, they may or may not be inverted, depending on
how the reflection occurs.

*14–3 Harmonic Wave Functions
If a wave is generated by oscillating one end of a string with simple harmonic mo-
tion, the waves will have the shape of a sine or a cosine. This is shown in Figure 14–9,
where the y direction denotes the vertical displacement of the string, and 
corresponds to the flat string with no wave present. In what follows, we consider
the mathematical formula that describes y as a function of time, t, and position, x,
for such a harmonic wave.

y = 0
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First, note that the harmonic wave in Figure 14–9 repeats when x increases by
an amount equal to the wavelength, Thus, the dependence of the wave on x
must be of the form

14–3

To see that this is the correct dependence, note that replacing x with
gives the same value for y:

It follows that Equation 14–3 describes a vertical displacement that repeats with a
wavelength as desired for a wave.

This is only part of the “wave function,” however, since we have not yet de-
scribed the way the wave changes with time. This is illustrated in Figure 14–9,
where we see a harmonic wave at time and

Note that the peak in the wave that was originally at at moves
to and for the times just given. Thus, the posi-
tion x of this peak can be written as follows:

Equivalently, we can say that the peak that was at is now at the location
given by

Similarly, the peak that was originally at at is at the following position
at the general time t:

In general, if the position of a given point on a wave at is x(0), and its position
at the time t is x(t), the relation between these positions is 
Therefore, to take into account the time dependence of a wave, we replace 
in Equation 14–3 with This yields the harmonic wave function:

14–4

Note that the wave function, y(x, t), depends on both time and position, and that
the wave repeats whenever position increases by the wavelength, or time in-
creases by the period, T.

14–4 Sound Waves
The first thing we do when we come into this world is make a sound. It is many
years later before we realize that sound is a wave propagating through the air at
a speed of about 770 mi/h. More years are required to gain an understanding of
the physics of a sound wave.

A useful mechanical model of a sound wave is provided by a Slinky. If we os-
cillate one end of a Slinky back and forth horizontally, as in Figure 14–10, we send
out a longitudinal wave that also travels in the horizontal direction. The wave

l,

y1x, t2 = A cos c2p
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▲ FIGURE 14–9 A harmonic wave moving
to the right
As a wave moves, the peak that was at

at time moves to the position
at the time t.x = lt>T t = 0x = 0

▲ An oscilloscope connected to a micro-
phone can be used to display the wave
form of a pure tone, created here by a tun-
ing fork. The trace on the screen shows that
the wave form is sinusoidal.

Oscillating one
end of a Slinky ...

... generates a
longitudinal wave.

v

FIGURE 14–10 A wave on a Slinky
If one end of a Slinky is oscillated back
and forth, a series of longitudinal waves
are produced. These Slinky waves are
analogous to sound waves.

▲
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consists of regions where the coils of the Slinky are compressed alternating with
regions where the coils are more widely spaced.

In close analogy with the Slinky model, a speaker produces sound waves by
oscillating a diaphragm back and forth horizontally, as we saw in Figure 14–3. Just
as with the Slinky, a wave travels away from the source horizontally. The wave
consists of compressed regions alternating with rarefied regions.

At first glance, the sound wave seems very different from the wave on a
string. In particular, the sound wave doesn’t seem to have the nice, sinusoidal
shape of a wave. Certainly, Figure 14–3 gives no hint of such a wavelike shape.

If we plot the appropriate quantities, however, the classic wave shape
emerges. For example, in Figure 14–11 (a) we plot the rarefactions and compressions
of a typical sound wave, while in Figure 14–11 (b) we plot the fluctuations in the
density of the air versus x. Clearly, the density oscillates in a wavelike fashion.
Similarly, Figure 14–11 (c) shows a plot of the fluctuations in the pressure of the air
as a function of x. In regions where the density is high, the pressure is also high;
and where the density is low, the pressure is low. Thus, pressure versus position
again shows that a sound wave has the usual wavelike properties.

Just like the speed of a wave on a string, the speed of sound is determined by
the properties of the medium through which it propagates. In air, under normal
atmospheric pressure and temperature, the speed of sound is approximately the
following:

Speed of Sound in Air (at room temperature, 20 °C)

SI unit: m/s

When we refer to the speed of sound in this text we will always assume the value is 343 m/s,
unless stated specifically otherwise.

As we shall see in Chapter 17, where we study the kinetic theory of gases, the
speed of sound in air is directly related to the speed of the molecules themselves. Did
you know, for example, that the air molecules colliding with your body at this mo-
ment have speeds that are essentially the speed of sound? As the air is heated the mol-
ecules will move faster, and hence the speed of sound also increases with temperature.

In a solid, the speed of sound is determined in part by how stiff the material
is. The stiffer the material, the faster the sound wave, just as having more tension
in a string causes a faster wave. Thus the speed of sound in plastic is rather high
(2680 m/s), and in steel it is greater still (5960 m/s). Both speeds are much higher
than the speed in air, which is certainly a “squishy” material in comparison.
Table 14–1 gives a sampling of sound speed in a range of different materials.

v = 343 m/s L 770 mi/h
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▲ FIGURE 14–11 Wave properties of sound
A sound wave moving through the air
(a) produces a wavelike disturbance in
the (b) density and (c) pressure of the air.

C O N C E P T U A L  C H E C K P O I N T  1 4 – 2 H O W  F A R  T O  T H E  L I G H T N I N G ?

Five seconds after a brilliant flash of lightning, thunder shakes the house. Was the lightning
(a) about a mile away, (b) much closer than a mile, or (c) much farther away than a mile?

TABLE 14–1 Speed of Sound in
Various Materials

Material Speed (m/s)

Aluminum 6420
Granite 6000
Steel 5960
Pyrex glass 5640
Copper 5010
Plastic 2680
Fresh water (20 °C) 1482
Fresh water (0 °C) 1402
Hydrogen (0 °C) 1284
Helium (0 °C) 965
Air (20 °C) 343
Air (0 °C) 331
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E X A M P L E  1 4 – 2 W I S H I N G  W E L L

You drop a stone from rest into a well that is 7.35 m deep. How long does it take before you hear the splash?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the well into which the stone is dropped. Notice that the depth of
the well is After the stone falls a distance d, the sound from the splash rises
the same distance d before it is heard.

S T R A T E G Y

The time until the splash is heard is the sum of (i) the time, for the stone to drop a
distance d, and (ii) the time, for sound to travel a distance d.

For the time of drop, we use one-dimensional kinematics with an initial velocity 
since the stone is dropped from rest, and an acceleration g. Therefore, the relationship be-
tween distance and time for the stone is with 

For the sound wave, we use with 

S O L U T I O N

1. Calculate the time for the stone to drop:

2. Calculate the time for sound to travel a distance d:

3. Sum the times found above:

I N S I G H T

Note that the time of travel for the sound is quite small, only a couple hundredths of a second. It is still nonzero, however, and
must be taken into account to obtain the correct total time.

In addition, notice that we use the same speed for a sound wave whether it is traveling horizontally, vertically upward, or ver-
tically downward—its speed is independent of its direction of motion. As a result, the waves emanating from a source of sound
propagate outward in a spherical pattern, with the wave crests forming concentric spheres around the source.

P R A C T I C E  P R O B L E M

You drop a stone into a well and hear the splash 1.47 s later. How deep is the well? [Answer: 10.2 m]

Some related homework problems: Problem 30, Problem 31

t = t1 + t2 = 1.22 s + 0.0214 s = 1.24 s

 t2 =
d
v

=
7.35 m

343 m/s
= 0.0214 s

 d = vt2

 t1 = A2d
g

= A 217.35 m2
9.81 m/s2

= 1.22 s

 d =
1
2

 gt1 

2

v = 343 m/s.d = vt2,

g = 9.81 m/s2.d = 1
2 gt1 

2,

v = 0,

t2,
t1,

d = 7.35 m.

d = 7.35 m

The Frequency of a Sound Wave
When we hear a sound, its frequency makes a great impression on us; in fact, the fre-
quency determines the pitch of a sound. For example, the keys on a piano produce
sound with frequencies ranging from 55 Hz for the key farthest to the left to 4187 Hz
for the rightmost key. Similarly, as you hum a song you change the shape and size of
your vocal chords slightly to change the frequency of the sound you produce.

R E A S O N I N G  A N D  D I S C U S S I O N

As mentioned, the speed of sound is 343 m/s, which is just over 1000 ft/s. Thus, in five
seconds sound travels slightly more than one mile. This gives rise to the following pop-
ular rule of thumb: The distance to a lightning strike (in miles) is the time for the thun-
der to arrive (in seconds) divided by 5.
Notice that we have neglected the travel time of light in our discussion. This is because
light propagates with such a high speed (approximately 186,000 mi/s) that its travel time
is about a million times less than that of sound.

A N S W E R

(a) The lightning was about a mile away.
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The frequency range of human hearing extends well beyond the range of a
piano, however. As a rule of thumb, humans can hear sounds between 20 Hz on
the low-frequency end and 20,000 Hz on the high-frequency end. Sounds with fre-
quencies above this range are referred to as ultrasonic, while those with frequen-
cies lower than 20 Hz are classified as infrasonic. Though we are unable to hear
ultrasound and infrasound, these frequencies occur commonly in nature, and are
used in many technological applications as well.

For example, bats and dolphins produce ultrasound almost continuously as
they go about their daily lives. By listening to the echoes of their calls—that is, by
using echolocation—they are able to navigate about their environment and detect
their prey. As a defense mechanism, some of the insects that are preyed upon by
bats have the ability to hear the ultrasonic frequency of a hunting bat and take
evasive action. For instance, the praying mantis has a specialized ultrasound re-
ceptor on its abdomen that allows it to take cover in response to an approaching
bat. More dramatically, certain moths fold their wings in flight and drop into a
precipitous dive toward the ground when they hear a bat on the prowl.

Medical applications of ultrasound are also common. Perhaps the most familiar
is the ultrasound scan that is used to image a fetus in the womb. By sending bursts
of ultrasound into the body and measuring the time delay of the resulting echoes—
the technological equivalent of echolocation—it is possible to map out the location of
structures that lie hidden beneath the skin. In addition to imaging the interior of a
body, ultrasound can also produce changes within the body that would otherwise
require surgery. For example, in a technique called shock wave lithotripsy (SWL), an in-
tense beam of ultrasound is concentrated onto a kidney stone that must be removed.
After being hit with as many as 1000 to 3000 pulses of sound (at 23 joules per pulse),
the stone is fractured into small pieces that the body can then eliminate on its own.

As for infrasound, it has been discovered in recent years that elephants can com-
municate with one another using sounds with frequencies as low as 15 Hz. In fact, it
may be that most elephant communication is infrasonic. These sounds, which hu-
mans feel as vibration rather than hear as sound, can carry over an area of about
thirty square kilometers on the dry African savanna. And elephants are not alone in
this ability. Whales, such as the blue and the finback, produce powerful infrasonic
calls as well. Since sound generally travels farther in water than in air, the whale calls
can be heard by others of their species over distances of thousands of kilometers.

One final example of infrasound is related to a dramatic event that occurred in
southern New Mexico about a decade ago. At 12:47 in the afternoon of October 10,
1997, a meteor shining as bright as the full Moon streaked across the sky for a few
brief moments. The event was observed not just visually, however, but with

Many animal species use sound waves
with frequencies that are too high (ultra-
sonic) or too low (infrasonic) for human
ears to detect. Bats, for example, navigate
in the dark and locate their prey by means
of a system of biological sonar. They emit a
continuous stream of ultrasonic sounds
and detect the echoes from objects around
them. Blue whales, by contrast, communi-
cate over long distances by means of infra-
sonic sounds.

▲

R E A L - W O R L D  P H Y S I C S :  B I O

Medical applications of 
ultrasound: ultrasonic scans

R E A L - W O R L D  P H Y S I C S :  B I O

Medical applications of 
ultrasound: shock wave lithotripsy

R E A L - W O R L D  P H Y S I C S

Ultrasonic sounds in nature

R E A L - W O R L D  P H Y S I C S

Infrasonic communication 
among animals

R E A L - W O R L D  P H Y S I C S

Infrasound produced by meteors
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infrasound as well. An array of special microphones at the Los Alamos National Lab-
oratory—originally designed to listen for clandestine nuclear weapons tests—heard
the infrasonic boom created by the meteor. By tracking the sonic signals of such
meteors it may be possible to recover fragments that manage to reach the ground.
The Los Alamos detector is in constant operation, and it detects about ten rather
large objects (2 m or more in diameter) entering the Earth’s atmosphere each year.

It should be noted, in light of the wide range of frequencies observed in
sound, that the speed of sound is the same for all frequencies. Thus, in the relation

the speed v remains fixed. For example, if the frequency of a wave is doubled, its
wavelength is halved, so that the speed v stays the same. The fact that different
frequencies travel with the same speed is evident when we listen to an orchestra
in a large room. Different instruments are producing sounds of different frequen-
cies, but we hear the sounds at the same time. Otherwise, listening to music from
a distance would be quite a different and inharmonious experience.

14–5 Sound Intensity
The noise made by a jackhammer is much louder than the song of a sparrow. On
this we can all agree. But how do we express such an observation physically?
What physical quantity determines the loudness of a sound? We address these
questions in this section, and we also present a quantitative scale by which loud-
ness may be measured.

Intensity
The loudness of a sound is determined by its intensity; that is, by the amount of
energy that passes through a given area in a given time. This is illustrated in
Figure 14–12. If the energy E passes through the area A in the time t, the intensity,
I, of the wave carrying the energy is

Recalling that power is energy per time, we can express the intensity as
follows:

Definition of Intensity, I

14–5

SI unit: 

The units are those of power (watts, W) divided by area (meters squared, ).m2

W/m2

I =
P
A

P = E>t,
I =

E
At

v = lf

▲ Ultrasound is used in medicine both as an imaging medium and for therapeutic purposes. Ultrasound
scans, or sonograms, are created by beaming ultrasonic pulses into the body and measuring the time required
for the echoes to return. This technique is commonly used to evaluate heart function (echocardiograms) and
to visualize the fetus in the uterus, as shown above (left). In shock wave lithotripsy (right), pulses of high-
frequency sound waves are used to shatter kidney stones into fragments that can be passed in the urine.

E
A

▲ FIGURE 14–12 Intensity of a wave
If a wave carries an energy E through an
area A in the time t, the corresponding
intensity is where

is the power.P = E>t I = E>At = P>A,
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Though we have introduced the concept of intensity in terms of sound, it ap-
plies to all types of waves. For example, the intensity of light from the Sun as it
reaches the Earth’s upper atmosphere is about If this intensity could
be heard as sound, it would be painfully loud—roughly the equivalent of four jet
airplanes taking off simultaneously. By comparison, the intensity of microwaves
in a microwave oven is even greater, about whereas the intensity of a 
whisper is an incredibly tiny A selection of representative intensities
is given in Table 14–2.

E X E R C I S E  1 4 – 3
A loudspeaker puts out 0.15 W of sound through a square area 2.0 m on each side.
What is the intensity of this sound?

S O L U T I O N

Applying Equation 14–5, with we find

When we listen to a source of sound, such as a person speaking or a radio
playing a song, we notice that the loudness of the sound decreases as we move
away from the source. This means that the intensity of the sound is also decreas-
ing. The reason for this reduction in intensity is simply that the energy emitted
per time by the source spreads out over a larger area—just as spreading a certain
amount of jam over a larger piece of bread reduces the intensity of the taste.

In Figure 14–13 we show a source of sound (a bat) and two observers (moths) lis-
tening at the distances and Notice that the waves emanating from the bat
propagate outward spherically, with the wave crests forming a series of concen-
tric spheres. Assuming no reflections of sound, and a power output by the bat
equal to P, the intensity detected by the first moth is

In writing this expression, we have used the fact that the area of a sphere of radius
r is Similarly, the second moth hears the same sound with an intensity of

The power P is the same in each case—it simply represents the amount of sound
emitted by the bat. Solving for the intensity at moth 2 in terms of the intensity at
moth 1 we find

14–6

In words, the intensity falls off with the square of the distance; doubling the dis-
tance reduces the intensity by a factor of 4.

To summarize, the intensity a distance r from a point source of power P is

Intensity with Distance from a Point Source

14–7

SI unit: 

This result assumes that no sound is reflected—which could increase the amount
of energy passing through a given area—that no sound is absorbed, and that the
sound propagates outward spherically. These assumptions are applied in the next
Example.

W/m2

I =
P

4pr2

I2 = a r1
r2
b2
I1

I2 =
P

4pr22

A = 4pr2.

I1 =
P

4pr12

r2.r1

I =
P
A

=
0.15 W

12.0 m22 = 0.038 W>m2

A = 12.0 m22,

10-10 W/m2.
6000 W/m2,

1380 W/m2.

TABLE 14–2 Sound Intensities 

Loudest sound produced
in laboratory

Saturn V rocket at 50 m
Rupture of the eardrum
Jet engine at 50 m 10
Threshold of pain 1
Rock concert
Jackhammer at 1 m
Heavy street traffic
Conversation at 1 m
Classroom
Whisper at 1 m
Normal breathing
Threshold of hearing 10-12

10-11
10-10
10-7
10-6
10-5
10-3
10-1

104
108
109

(W/m2)

r2

r1

▲ FIGURE 14–13 Echolocation
Two moths, at distances and hear
the sonar signals sent out by a bat. The
intensity of the signal decreases with the
square of the distance from the bat. The
bat, in turn, hears the echoes sent back by
the moths. It can then use the direction
and intensity of the returning echoes to
locate its prey.

r2,r1

P R O B L E M - S O L V I N G  N O T E

Intensity Variation with Distance

Suppose the intensity of a point source is
at a distance This is enough infor-

mation to find its intensity at any other
distance. For example, to find the inten-
sity at a distance we use the relation
I2 = 1r1/r222I1.

r2I2

r1.I1
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E X A M P L E  1 4 – 3 T H E  P O W E R  O F  S O N G

Two people relaxing on a deck listen to a songbird sing. One person, only 1.00 m from the bird, hears the sound with an inten-
sity of (a) What intensity is heard by the second person, who is 4.25 m from the bird? Assume that no re-
flected sound is heard by either person. (b) What is the power output of the bird’s song?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the two observers, one at a distance of
from the bird, the other at a distance of 

The sound emitted by the bird is assumed to spread out spheri-
cally, with no reflections.

S T R A T E G Y

a. The two intensities are related by Equation 14–6, with
and 

b. The power output can be obtained from the definition of
intensity, We can calculate P for either observer,
noting that 

S O L U T I O N

Part (a)

1. Substitute numerical values into Equation 14–6:

Part (b)

2. Solve for the power, P, using data for observer 1:

3. As a check, repeat the calculation for observer 2:

I N S I G H T

The intensity at observer 1 is times the intensity at observer 2. Even so, the bird only seems to be about 2.5 times louder
to observer 1. The connection between intensity and perceived (subjective) loudness is discussed in detail later in this section.

P R A C T I C E  P R O B L E M

If the intensity at observer 2 were how far would he be from the bird? [Answer: ]

Some related homework problems: Problem 36, Problem 41

r2 = 1.95 m7.40 * 10-7 W/m2,

4.252 = 18.1

 = 3.52 * 10-5 W

P = I2A2 = 11.55 * 10-7 W/m22[4p14.25 m22]

 I2 = P>A2

 = 3.52 * 10-5 W

P = I1A1 = 12.80 * 10-6 W/m22[4p11.00 m22]

 I1 = P>A1I = P>A

 = 1.55 * 10-7 W/m2

 I2 = a r1
r2
b2
I1 = a1.00 m

4.25 m
b212.80 * 10-6 W/m22

A = 4pr2.
I = P>A.

r2 = 4.25 m.r1 = 1.00 m

r2 = 4.25 m.r1 = 1.00 m

2.80 * 10-6 W/m2.

1 2

r1
r2

A C T I V E  E X A M P L E  1 4 – 1 T H E  B I G  H I T :  F I N D  T H E  I N T E N S I T Y

Ken Griffey, Jr., connects with a fast ball and sends it out of the
park. A fan in the outfield bleachers, 140 m away, hears the hit
with an intensity of Assuming no reflected
sounds, what is the intensity heard by the first-base umpire, 
90 ft (27.4 m) away from home plate?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Label the data given in the problem. Let the
umpire be observer 1 and the fan be observer 2:

2. Solve Equation 14–6 for 

3. Substitute numerical values:

CONTINUED ON NEXT PAGE

 I1 = 9.9 * 10-6 W>m2

 I1 = 1r2>r122I2I1:

 I2 = 3.80 * 10-7 W>m2
 r2 = 140 m
 r1 = 27.4 m

3.80 * 10-7 W/m2.
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Human Perception of Sound
Hearing, like most of our senses, is incredibly versatile and sensitive. We can detect
sounds that are about a million times fainter than a typical conversation, and listen
to sounds that are a million times louder before experiencing pain. In addition, we
are able to hear sounds over a wide range of frequencies, from 20 Hz to 20,000 Hz.

When detecting the faintest of sounds, our hearing is more sensitive than
one would ever guess. For example, a faint sound, with an intensity of about

causes a displacement of molecules in the air of about This
displacement is roughly the diameter of an atom!

Equally interesting is the way we perceive the loudness of a sound. As an ex-
ample, suppose you hear a sound of intensity Next, you listen to a second
sound of intensity and this sound seems to be “twice as loud” as the first. If the
two intensities are measured, it turns out that is about 10 times Similarly, a
third sound, twice as loud as has an intensity that is 10 times greater than 
Thus, and 

Our perception of sound, then, is such that uniform increases in loudness cor-
respond to intensities that increase by multiplicative factors. For this reason, a
convenient scale to measure loudness depends on the logarithm of intensity, as
we discuss next.

Intensity Level and Decibels
In the study of sound, loudness is measured by the intensity level of a wave. Des-
ignated by the symbol the intensity level is defined as follows:

Definition of Intensity Level, 

14–8

SI unit: decibel (dB), which is dimensionless

In this expression, log indicates the logarithm to the base 10, and is the intensity
of the faintest sounds that can be heard. Experiments show this lowest detectable
intensity to be

Note that is dimensionless; the only dimensions that enter into the defini-
tion are those of intensity, and they cancel in the logarithm. Still, just as with radi-
ans, it is convenient to label the values of intensity level with a name. The name
we use—the bel—honors the work of Alexander Graham Bell (1847–1922), the in-
ventor of the telephone. Since the bel is a fairly large unit, it is more common to
measure in units that are one-tenth of a bel. This unit is referred to as the
decibel, and its abbreviation is dB.

To get a feeling for the decibel scale, let’s start with the faintest sounds. If a
sound has an intensity the corresponding intensity level is

b = 110 dB2 log1I0>I02 = 10 log112 = 0

I = I0,

b

b

I0 = 10-12 W/m2

I0

b = 110 dB2 log1I>I02
B

b,

I3 = 10 I2 = 100 I1.I2 = 10 I1
I2.I3I2,

I1.I2

I2,
I1.

10-10 m.10-11 W/m2,

R E A L - W O R L D  P H Y S I C S :  B I O

Human perception of sound 
intensity

Physical Physical 
quantity meaning Units

Intensity, I Energy per 
time per 
area

Intensity A measure dB
level, of relative

loudness
b

W/m2

CONTINUED FROM PREVIOUS PAGE

I N S I G H T

For the fan, the sound from the hit is somewhat less intense than normal conversation. For the umpire it is comparable to the
sound of a busy street.

Y O U R  T U R N

Find the distance at which the sound of the hit has the intensity of a whisper. Refer to Table 14–2 for the necessary information.

(Answers to Your Turn problems are given in the back of the book.)

P R O B L E M - S O L V I N G  N O T E

Intensity Versus Intensity Level

When reading a problem statement, be
sure to note carefully whether it refers to
the intensity, I, or to the intensity level, 
These two quantities have similar names
but completely different meanings and
units, as indicated in the following table:

b.
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P R O B L E M - S O L V I N G  N O T E

Calculating the Intensity Level

When determining the intensity level 
be sure to use the base 10 logarithm (log),
as opposed to the “natural,” or base e,
logarithm (ln).

b,

Increasing the intensity by a factor of 10 makes the sound seem twice as loud.
In terms of decibels, we have

Going up in intensity by another factor of 10 doubles the loudness of the
sound again, and yields

Thus, the loudness of a sound doubles with each increase in intensity level of 10 dB.
The smallest increase in intensity level that can be detected by the human ear is
about 1 dB.

The intensity of a number of independent sound sources is simply the sum of
the individual intensities. We use this fact in the following Example.

b = 110 dB2 log1100I0>I02 = 110 dB2 log11002 = 20 dB

b = 110 dB2 log110I0>I02 = 110 dB2 log1102 = 10 dB

E X A M P L E  1 4 – 4 P A S S  T H E  P A C I F I E R

A crying child emits sound with an intensity of Find (a) the intensity level in decibels for the child’s sounds,
and (b) the intensity level for this child and its twin, both crying with identical intensities.

P I C T U R E  T H E  P R O B L E M

We consider the crying sounds of either one or two children.
Each child emits sound with an intensity 
If two children are crying together, the total intensity of their
sound is 2I.

S T R A T E G Y

The intensity level, is obtained by applying Equation 14–8.

S O L U T I O N

Part (a)

1. Calculate for 

Part (b)

2. Repeat the calculation with I replaced by 2I:

I N S I G H T

Note that the intensity level is increased by (10 dB) This is a general rule: When the intensity is doubled, the in-
tensity level, increases by 3 dB. Similarly, when the intensity is halved, decreases by 3 dB.

P R A C T I C E  P R O B L E M

What is the intensity level of four identically crying quadruplets? [Answer: ]

Some related homework problems: Problem 38, Problem 39

b = 75 dB

bb,
log122 = 3 dB.

 = 3.0 dB + 69 dB = 72 dB

 = 110 dB2 log122 + 110 dB2 log1I>I02
 b = 110 dB2 log12I>I02

 = 110 dB2 log18.02 + 110 dB2 log11062 = 69 dB

 = 110 dB2 loga8.0 * 10-6 W/m2

10-12 W/m2
b = 110 dB2 log18.0 * 1062

 b = 110 dB2 log1I>I02I = 8.0 * 10-6 W/m2:b

b,

I = 8.0 * 10-6 W/m2.

8.0 * 10-6 W/m2.

(a) (b)

I 2I

Even though a change of 3 dB is relatively small—after all, a change of 10 dB
is required to make a sound seem twice as loud—it still requires changing the in-
tensity by a factor of two. For example, suppose a large nursery in a hospital has
so many crying babies that the intensity level is 6 dB above the safe value, as de-
termined by OSHA (Occupational Safety and Health Administration). To reduce
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the level by 6 dB it would be necessary to remove three-quarters of the children,
leaving only one-quarter the original number. To our ears, however, the nursery
will sound only 40 percent quieter!

Figure 14–14 shows the decibel scale with representative values indicated for a
variety of common sounds.

14–6 The Doppler Effect
One of the most common physical phenomena involving sound is the change in
pitch of a train whistle or a car horn as the vehicle moves past us. This change in
pitch, due to the relative motion between a source of sound and the receiver, is
called the Doppler effect, after the Austrian physicist Christian Doppler
(1803–1853). If you listen carefully to the Doppler effect, you will notice that the
pitch increases when the observer and the source are moving closer together, and
decreases when the observer and source are separating.

One of the more fascinating aspects of the Doppler effect is the fact that it ap-
plies to all wave phenomena, not just to sound. In particular, the frequency of
light is also Doppler-shifted when there is relative motion between the source and
receiver. For light, this change in frequency means a change in color. In fact, most
distant galaxies are observed to be red-shifted in the color of their light, which
means they are moving away from the Earth. Some galaxies, however, are moving
toward us, and their light shows a blue shift.

In the remainder of this section, we focus on the Doppler effect in sound
waves. We show that the effect is different depending on whether the observer or
the source is moving. Finally, both observer and source may be in motion, and we
present results for such cases as well.

Moving Observer
In Figure 14–15 we see a stationary source of sound in still air. The radiated sound is
represented by the circular patterns of compressions moving away from the source
with a speed v. The distance between the compressions is the wavelength, and
the frequency of the sound is f. As for any wave, these quantities are related by

For an observer moving toward the source with a speed u, as in Figure 14–15,
the sound appears to have a higher speed, (though, of course, the speed of
sound relative to the air is always the same). As a result, more compressions move
past the observer in a given time than if the observer had been at rest. To the ob-
server, then, the sound has a frequency, that is higher than the frequency of the
source, f.

We can find the frequency by first noting that the wavelength of the sound
does not change—it is still The speed, however, has increased to 
Thus, we can solve for the frequency, which yields

f¿ =
v¿
l

=
v + u
l

v¿ = lf¿
v¿ = v + u.l.

f¿

f¿,

v + u

v = lf

l,

Decibels

160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

Eardrum ruptures

Jet taking off
Pain

Loud rock band
Subway

Heavy traffic
Conversation

Classroom

Whisper
Rustling leaves

Threshold of hearing

10-dB increment
= 2 × loudness

▲ FIGURE 14–14 Representative intensity
levels for common sounds

Stationary
source

Wave
speed

Observer
speed

�

v u
FIGURE 14–15 The Doppler effect: 

a moving observer
Sound waves from a stationary source
form concentric circles moving outward
with a speed v. To the observer, who
moves toward the source with a speed u,
the waves are moving with a speed v + u.

▲
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P R O B L E M - S O L V I N G  N O T E

Using the Correct Sign for the 
Doppler Effect

When an observer approaches a source,
the frequency heard by the observer is
greater than the frequency of the source;
that is, This means that we must
use the plus sign in Sim-
ilarly, we must use the minus sign when
the observer moves away from the source.

f¿ = 11 ; u>v2f.
f¿ 7 f.

Finally, we recall from Equation 14–1 that and hence

Note that is greater than f. This is the Doppler effect.
If the observer had been moving away from the source with a speed u, the

sound would appear to the observer to have the reduced speed Re-
peating the calculation just given, we find that

In this case the Doppler effect results in being less than f.
Combining these results, we have

Doppler Effect for Moving Observer

14–9

SI unit: 

In this expression u and v are speeds, and hence are always positive. The appro-
priate signs are obtained by using the plus sign when the observer moves toward
the source, and the minus sign when the observer moves away from the source.

1>s = s-1

f¿ = 11 ; u>v2f

f¿

f¿ =
v¿
l

=
v - u
l

= 11 - u>v2f

v¿ = v - u.

f¿

f¿ =
v + u
1v>f2 = av + u

v
bf = 11 + u>v2f
l = v>f,

E X A M P L E  1 4 – 5 A  M O V I N G  O B S E R V E R

A street musician sounds the A string of his violin, producing a tone of 440 Hz. What frequency does a bicyclist hear as he
(a) approaches and (b) recedes from the musician with a speed of 11.0 m/s?

P I C T U R E  T H E  P R O B L E M

The sketch shows a stationary source of sound and a moving
observer. In part (a) the observer approaches the source with a
speed in part (b) the observer has passed the
source and is moving away with the same speed.

S T R A T E G Y

The frequency heard by the observer is given by Equation 14–9,
with the plus sign for part (a) and the minus sign for part (b).

S O L U T I O N

Part (a)

1. Apply Equation 14–9 with the plus sign and 

Part (b)

2. Now use the minus sign in Equation 14–9:

CONTINUED ON NEXT PAGE

f¿ = 11 - u>v2f = a1 -
11.0 m/s
343 m/s

b1440 Hz2 = 426 Hz

f¿ = 11 + u>v2f = a1 +
11.0 m/s
343 m/s

b1440 Hz2 = 454 Hzu = 11.0 m/s:

u = 11.0 m/s; u

u

(a)

(b)
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CONTINUED FROM PREVIOUS PAGE

I N S I G H T

As the bicyclist passes the musician, the observed frequency of sound decreases, giving a “wow” effect. The difference in fre-
quency is about 1 semitone, the frequency difference between adjacent notes on the piano. See Table 14–3 on p. 481 for semitones
in the vicinity of middle C.

P R A C T I C E  P R O B L E M

If the bicyclist hears a frequency of 451 Hz when approaching the musician, what is his speed? [Answer: ]

Some related homework problems: Problem 47, Problem 50

u = 8.58 m/s

Wave speed

Moving source
Stationary
observer

Source speed
u

v�'

FIGURE 14–16 The Doppler effect: 
a moving source
Sound waves from a moving source are
bunched up in the forward direction,
causing a shorter wavelength and a
higher frequency.

▲

u

vT

uT = vT – uT�

Location of
source at t = 0

Location of
source at t = T

Wave emitted at
t = 0 is at this
location at t = T.

'

FIGURE 14–17 The Doppler-shifted
wavelength
During one period, T, the wave emitted
at moves through a distance vT. In
the same time, the source moves toward
the observer through the distance uT.
At the time the next wave is emit-
ted from the source; hence, the distance
between the waves (the wavelength) is
l¿ = vT - uT.

t = T

t = 0

▲

Moving Source
With a stationary observer and a moving source, the Doppler effect is not due to
the sound wave appearing to have a higher or lower speed, as when the observer
moves. On the contrary, the speed of a wave is determined by the properties of the
medium through which it propagates. Thus, once the source emits a sound wave,
it travels through the medium with its characteristic speed v regardless of what
the source is doing.

By way of analogy, consider a water wave. The speed of such waves is the
same whether they are created by a rock dropped into the water or by a stick
moved rapidly through the water. To take an extreme case, the waves coming to
the beach from a slow-moving tugboat move with the same speed as the waves
produced by a 100-mph speed boat. The same is true of sound waves.

Consider, then, a source moving toward an observer with a speed u, as shown
in Figure 14–16. If the frequency of the source is f, it emits one compression every T
seconds, where Therefore, during one cycle of the wave a compression
travels a distance vT while the source moves a distance uT. As a result, the next
compression is emitted a distance behind the previous compression, as il-
lustrated in Figure 14–17. This means that the wavelength in the forward direction is

Now, the speed of the wave is still v, as mentioned, hence

v = l¿f¿

l¿ = vT - uT = 1v - u2T

vT - uT

T = 1>f.
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Solving for the new frequency, we find

Finally, recalling that we have

Note that is greater than f, as expected.
In the reverse direction, the wavelength is increased by the amount uT. Thus,

It follows that the Doppler-shifted frequency is

This is less than the source frequency, f.
Finally, we can combine these results to yield

Doppler Effect for Moving Source

14–10

SI unit: 

As before, u and v are positive quantities. The minus sign is used when the source
moves toward the observer, and the plus sign when the source moves away from the
observer.

1>s = s-1

f¿ = a 1
1 < u>v bf

f¿ =
v

1v + u2T = a 1
1 + u>v bf

l¿ = vT + uT = 1v + u2T

f¿

f¿ =
v

1v - u211>f2 =
v

v - u
 f = a 1

1 - u>v bf
T = 1>f,

f¿ =
v
l¿

=
v

1v - u2T

f¿,

E X A M P L E  1 4 – 6 W H I S T L E  S T O P

A train sounds its whistle as it approaches a tunnel in a cliff. The whistle produces a tone of 650.0 Hz, and the train travels with
a speed of 21.2 m/s. (a) Find the frequency heard by an observer standing near the tunnel entrance. (b) The sound from the whis-
tle reflects from the cliff back to the engineer in the train. What frequency does the engineer hear?

P I C T U R E  T H E  P R O B L E M

The train moves with a speed and emits sound
with a frequency The observer near the tunnel
hears the Doppler-shifted frequency and the engineer on the
train hears the reflected sound at an even higher frequency 

S T R A T E G Y

Two Doppler shifts are involved in this problem. The first is
due to the motion of the train toward the cliff. This shift causes
the observer at the cliff to hear sound with a higher frequency

given by Equation 14–10 with the minus sign. The reflected
sound has the same frequency, 

The second shift is due to the engineer moving toward the re-
flected sound. Thus, the engineer hears a frequency that is
greater than We find using Equation 14–9 with the plus sign.

S O L U T I O N

Part (a)

1. Use Equation 14–10, with the minus sign, to Doppler shift 
from f to 

CONTINUED ON NEXT PAGE

 = a 1
1 - 0.0618

b1650.0 Hz2 = 693 Hz

f¿.
 f¿ = a 1

1 - u>v bf = £ 1

1 -
21.2 m/s
343 m/s

≥1650.0 Hz2

f–f¿.
f–

f¿.
f¿,

f–.
f¿,

f = 650.0 Hz.
u = 21.2 m/s

u

Horn
sounds

fEngineer hears f"

Observer
hears f '

P R O B L E M - S O L V I N G  N O T E

Using Correct Signs

When a source approaches an observer,
the frequency heard by the observer is
greater than the frequency of the source;
that is, This means that we must
use the minus sign in Equation 14–10,

since this makes the de-
nominator less than one. Similarly, use the
plus sign when the source moves away
from the observer.

f¿ = f>11 - u>v2,
f¿ 7 f.
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CONTINUED FROM PREVIOUS PAGE

Part (b)

2. Now use Equation 14–9, with the plus sign, to Doppler
shift from to 

I N S I G H T

Note that the reflected sound has the same frequency heard by the stationary observer, since all the cliff does is reverse the
direction of motion of the sound heard at the cliff. Therefore, the cliff acts as a stationary source of sound at the frequency 
The engineer’s motion toward this stationary source results in the Doppler shift from to 

P R A C T I C E  P R O B L E M

If the stationary observer hears a frequency of 700.0 Hz, what are (a) the speed of the train and (b) the frequency heard by the
engineer? [Answer: (a) (b) ]

Some related homework problems: Problem 45, Problem 103

f– = 750 Hzu = 24.5 m/s,

f–.f¿
f¿.

f¿

 = 11 + 0.061821693 Hz2 = 736 Hz
f–.f¿

 f– = 11 + u>v2f¿ = a1 +
21.2 m/s
343 m/s

b1693 Hz2

Speed, u (m/s)
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▲ FIGURE 14–18 Doppler-shifted
frequency versus speed for a 400-Hz 
sound source
The upper curve corresponds to a mov-
ing source, the lower curve to a moving
observer. Notice that while the two cases
give similar results for low speed, the
high-speed behavior is quite different. In
fact, the Doppler frequency for the mov-
ing source grows without limit for
speeds near the speed of sound, while
the Doppler frequency for the moving
observer is relatively small. If a source
moves faster than the speed of sound, the
sound it produces is perceived not as a
pure tone, but as a shock wave, com-
monly referred to as a sonic boom.

Now that we have obtained the Doppler effect for both moving observers and
moving sources, it is interesting to compare the results. Figure 14–18 shows the
Doppler-shifted frequency versus speed for a 400-Hz source of sound. The upper
curve corresponds to a moving source, the lower curve to a moving observer. No-
tice that while the two cases give similar results for low speed, the high-speed be-
havior is quite different. In fact, the Doppler frequency for the moving source
grows without limit for speeds near the speed of sound, while the Doppler fre-
quency for the moving observer is relatively small.

These results can be understood both in terms of mathematics—by simply
comparing Equations 14–9 and 14–10—and physically. In physical terms, recall
that a moving observer encounters wave crests separated by the wavelength, as
indicated in Figure 14–15. Doubling the speed of the observer simply reduces
the time required to move from one crest to the next by a factor of 2, which dou-
bles the frequency. Thus, in general, the frequency is proportional to the speed,
as we see in the lower curve in Figure 14–18. In contrast, when the source
moves, as in Figure 14–16, the wave crests become “bunched up” in the forward
direction, since the source is almost keeping up with the propagating waves. As
the speed of the source approaches the speed of sound, the separation between
crests approaches zero. Consequently, the frequency with which the crests pass
a stationary observer approaches infinity, as indicated by the upper curve in
Figure 14–18.

General Case
The results derived earlier in this section can be combined to give the Doppler ef-
fect for situations in which both observer and source move. Letting be the
speed of the source, and be the speed of the observer, we have

Doppler Effect for Moving Source and Observer

14–11

SI unit: 

As in the previous cases, and v are positive quantities. In the numerator, the
plus sign corresponds to the case in which the observer moves in the direction of
the source, whereas the minus sign indicates motion in the opposite direction. In
the denominator, the minus sign corresponds to the case in which the source
moves in the direction of the observer, whereas the plus sign indicates motion in
the opposite direction.

us, uo,

1>s = s-1

f¿ = a 1 ; uo>v
1 < us>v bf

uo

us
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Measuring the speed of 
blood flow
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E X E R C I S E  1 4 – 4
A car moving at 18 m/s sounds its 550-Hz horn. A bicyclist, traveling with a speed of
7.2 m/s, moves toward the approaching car. What frequency is heard by the bicyclist?

S O L U T I O N

We use Equation 14–11 with and Since the source and ob-
server are approaching, we use the plus sign in the numerator and the minus sign in
the denominator:

The Doppler effect is used in an amazing variety of technological applications.
Perhaps one of the most familiar of these is the “radar gun” which is used to mea-
sure the speed of a pitched baseball or a car breaking the speed limit. Though the
radar gun uses radio waves rather than sound waves, the basic physical principle
is the same—by measuring the Doppler-shifted frequency of waves reflected from
an object, it is possible to determine its speed. Doppler radar, used in weather
forecasting, applies this same technology to tracking the motion of precipitation
caused by storm clouds.

In medicine, the Doppler shift is used to measure the speed of blood flow in
an artery or in the heart itself. In this application, a beam of ultrasound is directed
toward an artery in a patient. Some of the sound is reflected back by red blood
cells moving through the artery. The reflected sound is detected, and its frequency
is used to determine the speed of blood flow. If this information is color coded,
with different colors indicating different speeds and directions of flow, an impres-
sive image of blood flow can be constructed.

Finally, the Doppler effect applies to the light of distant galaxies as well. For
example, if a galaxy moves away from us—as most do—the light we observe from
that galaxy has a lower frequency than if the galaxy were at rest relative to our
galaxy, the Milky Way. Since red light has the lowest frequency of visible light, we
refer to this reduction in frequency as a “red shift.” Thus, by measuring the red
shift of a galaxy, we can determine its speed relative to us. Such measurements
show that the more distant a galaxy, the greater its speed relative to us—a result
known as Hubble’s law. This is just what one would expect from an explosion, or

f¿ = a1 + uo>v
1 - us>v bf = a1 + 7.2>343

1 - 18>343
b1550 Hz2 = 590 Hz

uo = 7.2 m/s.us = 18 m/s

▲ Many familiar and not-so-familiar devices utilize the Doppler effect. Doppler radar, now widely used at airports and for
weather forecasting, makes it possible to determine the speed and direction of winds in a distant storm by measuring the
Doppler shift they produce—winds shift the radar frequency upward if they blow toward the source and downward if they
blow away from the source. The image at left is the Doppler radar scan of a severe thunderstorm that struck the town of
Ogden, Illinois, on April 19, 1996. Reddish colors indicate winds blowing toward the radar station, bluish colors indicate
winds blowing away. The hook-shaped echo marked on the image is characteristic of tornadoes in the making. In the photo 
at right, a medical technician uses a Doppler blood flow meter instead of a stethoscope while measuring the blood pressure 
of a patient.

R E A L - W O R L D  P H Y S I C S

Radar guns

R E A L - W O R L D  P H Y S I C S

Red shift of distant galaxies
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“Big Bang,” in which rapidly moving pieces travel farther in a given amount of
time. Thus the Doppler effect, and red-shift measurements, provide strong evi-
dence for the Big Bang and an expanding universe.

14–7 Superposition and Interference
So far we have considered only a single wave at a time. In this section we turn our
attention to the way waves combine when more than one is present. As we shall
see, the behavior of waves is quite simple in this respect.

Superposition
The combination of two or more waves to form a resultant wave is referred to as
superposition. When waves are of small amplitude, they superpose in the sim-
plest of ways—they just add. For example, consider two waves on a string, as in
Figure 14–19, described by the wave functions and If these two waves are pre-
sent on the same string at the same time, the result is a wave given by

To see how superposition works as a function of time, consider a string with
two wave pulses on it, one traveling in each direction as shown in Figure 14–20 (a).
When the pulses arrive in the same region, they add, as stated. This is illustrated
in Figure 14–20 (a). The question is, “What do the pulses look like after they
have passed through one another? Does their interaction change them in any
way?”

The answer is that the waves are completely unaffected by their interaction.
This is also shown in Figure 14–20 (a). After the wave pulses pass through one
another they continue on as if nothing had happened. It is like listening to an or-
chestra, where many different instruments are playing simultaneously, and
their sounds are combining throughout the concert hall. Even so, you can still
hear individual instruments, each making its own sound as if the others were
not present.

y = y1 + y2

y2.y1

y1

y2

y = y1 + y2

▲ FIGURE 14–19 Wave superposition
Waves of small amplitude superpose
(that is, combine) by simple addition.

(a) Two waves combine constructively (b) Two waves combine destructively

Constructive interferenceTi
m

e

Destructive interference

▲ FIGURE 14–20 Interference
Wave pulses superpose as they pass through one another. Afterward, the pulses continue on unchanged. In (a), the pulses combine to
give a larger amplitude. This is an example of constructive interference. When a positive pulse superposes with a negative pulse (b), the
result is destructive interference. In this case, with symmetrical pulses, there is one moment of complete cancellation.
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C O N C E P T U A L  C H E C K P O I N T  1 4 – 3 A M P L I T U D E  O F  A  R E S U L T A N T  W A V E

Since waves add, does the resultant wave y always have a greater amplitude than the in-
dividual waves and ?

R E A S O N I N G  A N D  D I S C U S S I O N

The wave y is the sum of and , but remember that and are sometimes positive
and sometimes negative. Thus, if is positive at a given time, for example, and is neg-
ative, the sum can be zero or even negative. For example, if and both have
the amplitude A, the amplitude of y can take any value from 0 to 2A.

A N S W E R

No. The amplitude of y can be greater than, less than, or equal to the amplitudes of 
and .y2

y1

y2y1y1 + y2
y2y1

y2y1y2y1

y2y1

Interference
As simple as the principle of superposition is, it still leads to interesting conse-
quences. For example, consider the wave pulses on a string shown in Figure
14–20 (a). When they combine, the resulting pulse has an amplitude equal to the
sum of the amplitudes of the individual pulses. This is referred to as constructive
interference.

On the other hand, two pulses like those in Figure 14–20 (b) may combine.
When this happens, the positive displacement of one wave adds to the negative
displacement of the other to create a net displacement of zero. That is, the pulses
momentarily cancel one another. This is destructive interference.

It is important to note that the waves don’t simply disappear when they ex-
perience destructive interference. For example, in Figure 14–20 (b) the wave
pulses continue on unchanged after they interact. This makes sense from an en-
ergy point of view—after all, each wave carries energy, hence the waves, along
with their energy, cannot simply vanish. In fact, when the string is flat in Figure
14–20 (b) it has its greatest transverse speed—just like a swing has its highest
speed when it is in its equilibrium position. Therefore, the energy of the wave is
still present at this instant of time—it is just in the form of the kinetic energy of
the string.

It should also be noted that interference is not limited to waves on a string; all
waves exhibit interference effects. In fact, you could say that interference is one of
the key characteristics that define waves. In general, when waves combine, they
form interference patterns that include regions of both constructive and destruc-
tive interference. An example is shown in Figure 14–21, where two circular waves
are interfering. Note the regions of constructive interference separated by regions
of destructive interference.

To understand the formation of such patterns, consider a system of two iden-
tical sources, as in Figure 14–22. Each source sends out waves consisting of alternat-
ing crests and troughs. We set up the system so that when one source emits a crest,
the other emits a crest as well. Sources that are synchronized like this are said to
be in phase.

Now, at a point like A, the distance to each source is the same. Thus, if the
wave from one source produces a crest at point A, so too does the wave from the
other source. As a result, with crest combining with crest, the interference at A is
constructive.

Constructive interference along
this line, where crest meets crest.

Destructive interference along this
line, where crest meets trough.

▲ FIGURE 14–21 Interference of 
circular waves
Interference pattern formed by the super-
position of two sets of circular waves.
The light radial “rays” are regions where
crest meets crest and trough meets
trough (constructive interference). The
dark areas in between the light rays are
regions where the crest of one wave
overlaps the trough of another wave 
(destructive interference).

A B C

Source 1 Source 2

FIGURE 14–22 Interference with two sources
Suppose the two sources emit waves in phase. At point A the distance to each source is the
same, and, hence, crest meets crest. The result is constructive interference. At B the distance
from source 1 is greater than that from source 2 by half a wavelength. The result is crest
meeting trough and destructive interference. Finally, at C the distance from source 1 is one
wavelength greater than the distance from source 2. Hence, we find constructive interference
at C. If the sources had been opposite in phase, then A and C would be points of destructive
interference, and B would be a point of constructive interference.

▲
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Next consider point B. At this location the wave from source 1 must travel a
greater distance than the wave from source 2. If the extra distance is half a wave-
length, it follows that when the wave from source 2 produces a crest at B the wave
from source 1 produces a trough. As a result, the waves combine to give destruc-
tive interference at B. At point C, on the other hand, the distance from source 1 is
one wavelength greater than the distance from source 2. Hence the waves are in
phase again at C, with crest meeting crest for constructive interference.

In general, then, we can say that constructive and destructive interference
occur under the following conditions for two sources that are in phase:

Constructive interference occurs when the path length from the two
sources differs by 

Destructive interference occurs when the path length from the two
sources differs by 

Other path length differences result in intermediate degrees of interference,
between the extremes of destructive and constructive interference.

A specific example of interference patterns is provided by sound, using speak-
ers that emit sound in phase with the same frequency. This situation is analogous
to the two sources in Figure 14–22. As a result, constructive and destructive inter-
ference is to be expected, depending on the path length from each speaker. This is
illustrated in the next Example.

l>2, 3l>2, 5l>2, Á .

0, l, 2l, 3l, Á .

E X A M P L E  1 4 – 7 S O U N D  O F F

Two speakers separated by a distance of 4.30 m emit sound of frequency 221 Hz. The speakers are in phase with one another. A
person listens from a location 2.80 m directly in front of one of the speakers. Does the person hear constructive or destructive
interference?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the two speakers emitting sound in phase at
the frequency The speakers are separated by the
distance and the observer is a distance 
directly in front of one of the speakers.

S T R A T E G Y

The type of interference depends on whether the difference in
path length, is one or more wavelengths or an odd
multiple of half a wavelength. Thus, we begin by calculating
the wavelength, Next, we find and compare the differ-
ence in path length to 

S O L U T I O N

1. Calculate the wavelength of this sound, using As usual,
let be the speed of sound:

2. Find the path length 

3. Determine the difference in path length, 

4. Divide into to find the number of wavelengths that fit
into the path difference:

I N S I G H T

Since the path difference is we expect destructive interference. In the ideal case, the person would hear no sound. As a prac-
tical matter, some sound will be reflected from objects in the vicinity, resulting in a finite sound intensity.

P R A C T I C E  P R O B L E M

We know that 221 Hz gives destructive interference. What is the lowest frequency that gives constructive interference for the
case described in this Example? [Answer: Set This gives ]

Some related homework problems: Problem 61, Problem 63

f = 147 Hz.l = d2 - d1 = 2.33 m.

3l>2,

d2 - d1
l

=
2.33 m
1.55 m

= 1.50d2 - d1l

d2 - d1 = 5.13 m - 2.80 m = 2.33 md2 - d1:

d2 = 4D2 + d1 

2 = 414.30 m22 + 12.80 m22 = 5.13 md2:

v = 343 m/s
l =

v
f

=
343 m/s
221 Hz

= 1.55 mv = lf.

l.
d2,l.

d2 - d1,

d1 = 2.80 mD = 4.30 m,
f = 221 Hz.

d2

D

d1
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A C T I V E  E X A M P L E  1 4 – 2 O P P O S I T E  P H A S E  I N T E R F E R E N C E

The speakers shown to the right have opposite phase. They are sepa-
rated by a distance of 5.20 m and emit sound with a frequency of 
104 Hz. A person stands 3.00 m in front of the speakers and 1.30 m to
one side of the center line between them. What type of interference oc-
curs at the person’s location?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Calculate the wavelength:

2. Find the path length 

3. Find the path length 

4. Calculate the path length difference, 

5. Divide the path length difference by the wavelength:

I N S I G H T

The path difference is half a wavelength, and the speakers have opposite phase. As a result, the person experiences constructive
interference.

Y O U R  T U R N

Find the next higher frequency for which constructive interference occurs at the person’s location.

(Answers to Your Turn problems are given in the back of the book.)

1d1 - d22>l = 0.500

d1 - d2 = 1.65 md1 - d2:

d2 = 3.27 md2:

d1 = 4.92 md1:

l = 3.30 m

d2d1

1.30 m

5.20 m

3.00 m

Destructive interference can be used to reduce the intensity of noise in a vari-
ety of situations, such as a factory, a busy office, or even the cabin of an airplane.
The process, referred to as Active Noise Reduction (ANR), begins with a micro-
phone that picks up the noise to be reduced. The signal from the microphone is
then reversed in phase and sent to a speaker. As a result, the speaker emits sound
that is opposite in phase to the incoming noise—in effect, the speaker produces
“anti-noise.” In this way, the noise is actively canceled by destructive interference,
rather than simply reduced by absorption. The effect when wearing a pair of ANR
headphones can be as much as a 30-dB reduction in the intensity level of noise.

It is possible to connect a speaker with its wires reversed, which can result in
a set of speakers that have opposite phase. In this case, as one speaker emits a
compression the other sends out a rarefaction. When you set up a stereo system,
it is important to be sure the wires are connected in a consistent fashion so that
your speakers will be in phase.

If the two speakers in Figure 14–22 have opposite phase, for example, the con-
ditions for constructive and destructive interference are changed, as are the inter-
ference patterns. For example, at point A, where the distances from the two speak-
ers are the same, the wave from one speaker is a compression when the wave
from the other speaker is a rarefaction. Thus, point A is now a point of destruc-
tive interference rather than constructive interference. In general, then, the con-
ditions for constructive and destructive interference are simply reversed—a path
difference of results in destructive interference, a path difference of

results in constructive interference.l>2, 3l>2, Á
0, l, 2l, Á

R E A L - W O R L D  P H Y S I C S

Connecting speakers in phase

R E A L - W O R L D  P H Y S I C S

Active noise reduction



478 C H A P T E R  1 4 W A V E S  A N D  S O U N D

14–8 Standing Waves
If you have ever plucked a guitar string, or blown across the mouth of a pop bot-
tle to create a tone, you have generated standing waves. In general, a standing
wave is one that oscillates with time, but remains fixed in its location. It is in this
sense that the wave is said to be “standing.”

In some respects, a standing wave can be considered as resulting from con-
structive interference of a wave with itself. As one might expect, then, standing
waves occur only if specific conditions are satisfied. We explore these conditions
in this section for two cases: (i) waves on a string and (ii) sound waves in a hollow,
cylindrical structure.

Waves on a String
We begin by considering a string of length L that is tied down at both ends, as in
Figure 14–23 (a). If you pluck this string in the middle it vibrates as shown in Figure
14–23 (b). This is referred to as the fundamental mode of vibration for this string or,
also, as the first harmonic. Clearly, the string assumes a wavelike shape, but be-
cause of the boundary conditions—the ends tied down—the wave stays in place.

As is clear from Figure 14–23 (c), the fundamental mode corresponds to half a
wavelength of a usual wave on a string. One can think of the fundamental as
being formed by this wave reflecting back and forth between the walls holding
the string. If the frequency is just right, the reflections combine to give construc-
tive interference and the fundamental is formed; if the frequency differs from the
fundamental frequency, the reflections result in destructive interference and a
standing wave does not result.

We can find the frequency of the fundamental, or first harmonic, as follows:
First use the fact that the wavelength of the first harmonic is twice the distance be-
tween the walls. Thus,

If the speed of waves on the string is v, it follows that the frequency of the first
harmonic, is determined by Therefore,

Note that the frequency of the first harmonic increases with the speed of the
waves, and decreases as the string is lengthened.

The first harmonic is not the only standing wave that can exist on a string,
however. In fact, there are an infinite number of standing wave modes—or
harmonics—for any given string, with frequencies that are integer multiples of
the first harmonic. To find the higher harmonics, note that the two ends of the
string must remain fixed. Points on a standing wave that stay fixed are referred to
as nodes. Halfway between any two nodes is a point on the wave that has a max-
imum displacement, as indicated in Figure 14–24. Such a point is called an anti-
node. Referring to Figure 14–24 (a), then, we see that the first harmonic consists of
two nodes (N) and one antinode (A); the sequence is N-A-N.

f1 =
v
l1

=
v

2L

v = l1f1 = 12L2f1.f1,

l1 = 2L

L

�

�

(a)

(b)

(c)

/2

▲ FIGURE 14–23 A standing wave
(a) A string is tied down at both ends.
(b) If the string is plucked in the middle,
a standing wave results. This is the 
fundamental mode of oscillation of the
string. (c) The fundamental consists of
one-half a wavelength between 
the two ends of the string. Hence, its
wavelength is 2L.

11>22

L

(a) First harmonic (fundamental) (b) Second harmonic

N A N NNA N N N NA A AAN

(c) Third harmonic

▲ FIGURE 14–24 Harmonics
The first three harmonics for a string tied down at both ends. Note that an extra half wavelength is added to go from one harmonic to the
next. (a) (b) (c) 3l>2 = L, l = 2L>3.l = L;l>2 = L, l = 2L;
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The second harmonic can be constructed by including one more half wave-
length in the standing wave, as in Figure 14–24 (b). This mode has the sequence
N-A-N-A-N, and has one complete wavelength between the walls; that is, 
Therefore, the frequency of the second harmonic, is

Similarly, the third harmonic again includes one more half wavelength, as
in Figure 14–24 (c). Now there are one-and-a-half wavelengths in the length L,
and hence or The corresponding third-harmonic fre-
quency, is

Note that the frequencies of the harmonics are increasing in integer steps; that
is, each harmonic has a frequency that is an integer multiple of the first-harmonic
frequency. Clearly, then, the sequence of standing waves is characterized by the
following:

Standing Waves on a String
First harmonic (fundamental) frequency and wavelength:

14–12

Frequency and wavelength of the nth harmonic, with 

14–13
ln = l1>n = 2L>n
fn = nf1 = n

v
2L

n = 1, 2, 3, Á :

l1 = 2L

f1 =
v

2L

f3 =
v
l3

=
v

2
3L

= 3
v

2L
= 3f1

f3,
l3 = 2L>3.13>22l3 = L,

f2 =
v
l2

=
v
L

= 2f1

f2,
l2 = L.

▲ The string in these multiflash photographs vibrates in one of three different standing wave patterns, each with its own characteristic frequency.
The lowest frequency standing wave—the fundamental, or first harmonic—is shown in the photograph at left. In this case, there are only two
nodes, one at each end of the string where it is tied down. If the length of the string is L, we see that the wavelength of the fundamental is twice
this length, or . Thus, if waves have a speed v on this string, their frequency is . Higher harmonics are produced by adding one
node at a time to the standing wave pattern. The second harmonic, shown in the middle photograph, has a node at either end and one in the mid-
dle. In this case the wavelength is and the frequency is . The photograph at right shows the third harmonic, where

and . In general, the nth harmonic on a string tied down at both ends is .fn = nf1f3 = v>(2L>3) = 3v>2L = 3f1l3 = 2L>3
f2 = v>L = 2f1l2 = L

f1 = v>2Ll1 = 2L

▲ The photos above show a time sequence (from left to right) as a square metal plate that is initially at rest is vibrated vertically about its cen-
ter. Initially the plate is covered with a uniform coating of salt crystals. As the plate is vibrated, however, a standing wave develops. The salt
makes the wave pattern visible by collecting at the nodes, where the plate is at rest. Clearly, standing waves on a two-dimensional plate can be
much more complex than the standing waves on a string.
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E X A M P L E  1 4 – 8 I T ’ S  F U N D A M E N T A L

One of the harmonics on a string 1.30 m long has a frequency of 15.60 Hz. The next higher harmonic has a frequency of 23.40 Hz.
Find (a) the fundamental frequency, and (b) the speed of waves on this string.

P I C T U R E  T H E  P R O B L E M

The problem statement does not tell us directly which two
harmonics have the given frequencies. We do know, however,
that they are successive harmonics of the string. For example, if
one harmonic has one node between the two ends of the 
string, the next harmonic has two nodes. Our sketch illustrates
this case, which turns out to be appropriate for this problem.

S T R A T E G Y

a. We know from Equation 14–13 that the frequencies of succes-
sive harmonics increase by That is, 

Therefore, we
can find the fundamental frequency, by taking the differ-
ence between the given frequencies.

b. Once the fundamental frequency is determined, we can
find the speed of waves in the string from the relation

S O L U T I O N

Part (a)

1. The fundamental frequency is the difference between the
two given frequencies:

Part (b)

2. Solve for the speed, v:

3. Substitute numerical values:

I N S I G H T

Now that we know the fundamental frequency, we can identify the harmonics given in the problem statement. First,
so this is the second harmonic. The next mode, is the third harmonic, as expected.

P R A C T I C E  P R O B L E M

Suppose the tension in this string is increased until the speed of the waves is 22.0 m/s. What are the frequencies of the first three
harmonics in this case? [Answer: ]

Some related homework problems: Problem 72, Problem 73

f1 = 8.46 Hz, f2 = 16.9 Hz, f3 = 25.4 Hz

23.4 Hz = 317.80 Hz2,15.6 Hz = 217.80 Hz2,

v = 2Lf1 = 211.30 m217.80 Hz2 = 20.3 m/s

v = 2Lf1

 f1 = v>2Lf1 = v>2L

f1 = 23.40 Hz - 15.60 Hz = 7.80 Hz

f1 = v>2L.

f1,
f3 = f2 + f1 = 3f1, f4 = f3 + f1 = 4f1, Á .

f2 = f1 + f1 = 2f1,f1.

L

When a guitar string is plucked or a piano string is struck, it vibrates primar-
ily in its fundamental mode, with smaller contributions coming from the higher
harmonics. It follows that notes of different pitch can be produced by using
strings of different length. Recalling that the fundamental frequency for a string of
length L is we see that long strings produce low frequencies and short
strings produce high frequencies—all other variables remaining the same.

This fact accounts for the general shape of a piano. Note that the strings
shorten toward the right side of the piano, where the notes are of higher frequency.
Similarly, a double bass is a larger instrument with longer strings than a violin, as
one would expect by the different frequencies the instruments produce. To tune a
stringed instrument, the tension in the strings is adjusted—since changing the
length of the instrument is impractical. This in turn varies the speed v of waves
on the string, and hence the fundamental frequency can be adjusted 
as desired.

f1 = v>2L

f1 = v>2L,

Note that the difference in frequency between any two successive harmonics is
equal to the first-harmonic frequency, and that n represents the number of half
wavelengths in the standing wave.

f1,

R E A L - W O R L D  P H Y S I C S

The shape of a piano
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The human ear responds to frequency in a rather interesting and unexpected
way. In particular, frequencies that seem to increase by the same amount are in
fact increasing by the same multiplicative factor. For example, if three frequencies,

and sound equally spaced to our ears, you might think that is greater
than by a certain amount, x, and that is greater than by the same amount.
Mathematically, we would write this as and 
In fact, when we measure the frequencies and compare, we find that is greater 
than by a multiplicative factor x, and that is greater than by the same factor;
that is and 

For instance, middle C on the piano has a frequency of 261.7 Hz. If we move
up one octave to the next C, the frequency is 523.3 Hz; going up one more octave,
the next C is 1047 Hz. Note that with each octave the frequency doubles; that is, it
goes up by a multiplicative factor of 2. Since there are 12 semitones in one octave
of the chromatic scale, the frequency increase from one semitone to the next is

The frequencies for a full chromatic octave are given in Table 14–3.
On a guitar two full octaves and more can be produced on a single string by

pressing the string down against frets to effectively change its length. Notice that
the separation between frets is not uniform. In particular, suppose the unfretted
string has a fundamental frequency of 250 Hz. Since one octave up on the scale
would be twice the frequency, 500 Hz, the length of the string must be halved to pro-
duce that note. To go to the next octave, and double the frequency again to 1000 Hz,
the string must be shortened by a factor of two again, to one quarter its original
length. This is illustrated in Figure 14–25. Since the distance between successive
octaves is decreasing—in this case from to —it follows that the spacing
between frets must decrease as one goes to higher notes. As a result, the frets on a
guitar are always more closely spaced as one moves toward the base of the neck.

L>4L>2

1221>12.

f3 = xf2 = x2f1.f2 = xf1
f2f3f1

f2

f3 = f2 + x = f1 + 2x.f2 = f1 + x
f2f3f1

f2f3,f1, f2,

R E A L - W O R L D  P H Y S I C S :  B I O

Human perception of pitch

TABLE 14–3 Chromatic Musical Scale

Note Frequency (Hz)

Middle C 261.7
C� (C-sharp)
D� (D-flat) 277.2

D 293.7
D�, E� 311.2
E 329.7
F 349.2
F�, G� 370.0
G 392.0
G�, A� 415.3
A 440.0
A�, B� 466.2
B 493.9
C 523.3

L/2

First
octave
above
fundamental

L/4

Second
octave

L

▲ FIGURE 14–25 Frets on a guitar
To go up one octave from the fundamen-
tal, the effective length of a guitar string
must be halved. To increase one more
octave, it is necessary to halve the length
of the string again. Thus, the distance
between frets is not uniform; they are
more closely spaced near the base of 
the neck.

▲ Three factors determine the pitch of a vibrating string: mass per unit length, ; tension, F;
and length, L. In an instrument such as a guitar, the first of these factors is fixed once the strings
are put on. (Note in the photos that the strings vary in thickness; other things being equal, the
heavier the string, the lower the pitch.) The second factor, the tension, can be varied by means
of pegs that the player uses to tune the instrument (left), adjusting the pitch of each “open”
string to its correct value. The third factor, the length of the string, is the only one that the
performer controls while playing. Pressing a string against one of the frets (right), changes its
effective length—the length of string that is free to vibrate—and thus the note that is produced.

m

Vibrating Columns of Air
If you blow across the open end of a pop bottle, as in Figure 14–26, you hear a tone
of a certain frequency. If you pour some water into the bottle and repeat the
experiment, the sound you hear has a higher frequency. In both cases you have ex-
cited the fundamental mode of the column of air within the bottle. When water
was added to the bottle, however, the column of air was shortened, leading to a
higher frequency—in the same way that a shortened string has a higher frequency.

R E A L - W O R L D  P H Y S I C S

Frets on a guitar
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Let’s examine the situation more carefully. When you blow across the opening
in the bottle, the result is a swirling movement of air that excites rarefactions and
compressions, as illustrated in the figure. For this reason, the opening is an anti-
node (A) for sound waves. On the other hand, the bottom of the bottle is closed,
preventing movement of the air; hence, it must be a node (N). Any standing wave
in the bottle must have a node at the bottom and an antinode at the top.

The lowest frequency standing wave that is consistent with these conditions is
shown in Figure 14–27 (a). If we plot the density variation of the air for this wave,
we see that one-quarter of a wavelength fits into the column of air in the bottle.
Thus, if the length of the bottle is L, the first harmonic (fundamental) has a wave-
length satisfying the following:

The first-harmonic frequency, is given by

Solving for we find

This is half the corresponding fundamental frequency for a wave on a string.
The next harmonic is produced by adding half a wavelength, just as in the case of

the string. Thus, if the fundamental is represented by N-A, the second harmonic can
be written as N-A-N-A. Since the distance from a node to an antinode is a quarter of
a wavelength, we see that three-quarters (3 4) of a wavelength fits into the bottle for
this mode. This is shown in Figure 14–27 (b). Therefore, and, hence,

As a result, the frequency is

Notice that this is the third harmonic of the pipe, since its frequency is three times 
Similarly, the next-higher harmonic is represented by N-A-N-A-N-A, as indi-

cated in Figure 14–27 (c). In this case, and the frequency is

This is the fifth harmonic of the pipe.
Clearly, the progression of harmonics for a column of air that is closed at one end

and open at the other end is described by the following frequencies and wavelengths:

Standing Waves in a Column of Air Closed at One End

14–14

Note that only the odd harmonics are present in this case, as opposed to waves on
a string, in which all integer harmonics occur.

The human ear canal is an example of a column of air that is closed at one end
(the eardrum) and open at the other end. Standing waves in the ear canal can lead
to an increased sensitivity of hearing. This is illustrated in Figure 14–28, which
shows “curves of equal loudness” as a function of frequency. Where these curves
dip downward, sounds of lower intensity seem just as loud as sounds of higher
intensity at other frequencies. The two prominent dips near 3500 Hz and 11,000 Hz
are due to standing waves in the ear canal corresponding to Figures 14–27 (a) and
(b), respectively.

ln = l1>n = 4L>n
fn = nf1 = n

v
4L

  n = 1, 3, 5, Á

f1 =
v

4L

v
l

=
v

4
5L

= 5
v

4L
= 5f1

5l>4 = L,

f1.

v
l

=
v

4
3L

= 3
v

4L
= 3f1

l = 4
3L

3l>4 = L,
>

f1 =
v
l

=
v

4L

f1

v = lf1

f1,

l = 4L

1
4l = L

A

N

▲ FIGURE 14–26 Exciting a standing wave
When air is blown across the open top of
a soda pop bottle, the turbulent air flow
can cause an audible standing wave. The
standing wave will have an antinode, A,
at the top (where the air is moving) and a
node, N, at the bottom (where the air
cannot move).

L

(a)
First

harmonic
(fundamental)

(b)
Third

harmonic

(c)
Fifth

harmonic

A

N N

A

N

A

N

A

N

N

A

A

▲ FIGURE 14–27 Standing waves in a pipe
that is open at one end
The first three harmonics for waves in 
a column of air of length L that is open 
at one end: (a)
(b) (c)
l = 4L>5.

5l>4 = L,3l>4 = L, l = 4L>3;
l>4 = L, l = 4L;

R E A L - W O R L D  P H Y S I C S :  B I O

Human hearing and the ear canal
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▲ FIGURE 14–28 Human response to sound
The human ear is more sensitive to some frequencies of sound than to others. For example,
every point on a “curve of equal loudness” seems just as loud to us as any other point, even
though the corresponding physical intensities may be quite different. To illustrate, note that
the threshold of hearing is not equal to 0 dB for all frequencies. In fact, it is approximately
25 dB at 100 Hz, about 5 dB at 1000 Hz, and is even slightly negative near 3500 Hz. Thus,
regions where the curves dip downward correspond to increased sensitivity of the ear—in
fact, near 3500 Hz we can hear sounds that are a thousand times less intense than sounds at
100 Hz. The two most prominent dips occur near 3500 Hz and 11,000 Hz, corresponding to
standing waves in the ear canal analogous to those shown in Figure 14–27 (a) and (b),
respectively. (See Problem 71.)

E X A M P L E  1 4 – 9 P O P  M U S I C

An empty soda pop bottle is to be used as a musical instrument in a band. In order to be tuned properly, the fundamental fre-
quency of the bottle must be 440.0 Hz. (a) If the bottle is 26.0 cm tall, how high should it be filled with water to produce the de-
sired frequency? Treat the bottle as a pipe that is closed at one end (the surface of the water) and open at the other end. (b) What
is the frequency of the next higher harmonic for this bottle?

P I C T U R E  T H E  P R O B L E M

In our sketch, we label the height of the bottle with , and the
unknown height of water with h. Clearly, then, the length of the vibrating
column of air is .

S T R A T E G Y

a. Given the frequency of the fundamental and the speed of
sound in air , we can use to solve for the length L
of the air column. The height of water is then .

b. The next higher harmonic for a pipe open at one end is the third harmonic
( in Equation 14–14). Thus, the next higher harmonic frequency for
this bottle is .

S O L U T I O N

Part (a)

1. Solve for the length L: or

2. Substitute numerical values:

3. Use to find the height of the water:

CONTINUED ON NEXT PAGE

h = H - L = 0.260 m - 0.195 m = 0.065 m = 6.5 cmh = H - L

L =
v

4f1
=

343 m >  s
4(440.0 Hz)

= 0.195 m

L = v >  4f1f1 = v >  4Lf1 = v >  4L

f3 = 3f1
n = 3

h = H - L
f1 = v >  4L(v = 343 m >  s)

(f1 = 440.0 Hz)

L = H - h

H = 26.0 cm

H

L

h
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CONTINUED FROM PREVIOUS PAGE

Part (b)

4. Calculate the frequency of the third harmonic 
(the next highest) with :

I N S I G H T

If more water is added to the bottle, the air column will shorten and the fundamental frequency will become higher than 440.0 Hz.
All higher harmonics would be increased in frequency as well.

P R A C T I C E  P R O B L E M

Calculate the fundamental frequency if the water level is increased to 7.00 cm. [Answer: ]

Some related homework problems: Problem 68, Problem 75

f1 = 451 Hz

f3 = 3f1
f3 = 3f1 = 3(440.0 Hz) = 1320 Hz

L

(a)
First

harmonic
(fundamental)

(b)
Second

harmonic

(c)
Third

harmonic

A

A

N

A

N

N

A

A

A

A

N

N

N
A

A

▲ FIGURE 14–29 Standing waves in a pipe
that is open at both ends
The first three harmonics for waves in a
column of air of length L that is open at
both ends: (a)
(b) (c) 3l/2 = L, l = 2L/3.l = L;

l/2 = L, l = 2L;

It is also possible to excite standing waves in columns of air that are open at
both ends, as illustrated in Figure 14–29. In this case there is an antinode at each end
of the column. Hence, the first harmonic, or fundamental, is A-N-A, as shown in
Figure 14–29 (a). Note that half a wavelength fits into the pipe, thus

This is the same as the corresponding result for a wave on a string.
The next harmonic is A-N-A-N-A, which fits one complete wavelength in the

pipe. This harmonic is shown in Figure 14–29 (b), and has the frequency

This is the second harmonic of the pipe. The rest of the harmonics continue in ex-
actly the same manner as for waves on a string, with all integer harmonics present.
Thus, the frequencies and wavelengths in a column of air open at both ends are as
follows:

Standing Waves in a Column of Air Open at Both Ends

14–15

 ln = l1>n = 2L>n
 fn = nf1 = n 

v
2L

 n = 1, 2, 3, Á

 f1 =
v

2L

f2 =
v
L

= 2f1

f1 =
v

2L

C O N C E P T U A L  C H E C K P O I N T  1 4 – 4 T A L K I N G  W I T H  H E L I U M

If you fill your lungs with helium and speak, you sound something like Donald Duck.
From this observation, we can conclude that the speed of sound in helium must be (a) less
than, (b) the same as, or (c) greater than the speed of sound in air.

R E A S O N I N G  A N D  D I S C U S S I O N

When we speak with helium, our words are higher pitched. Looking at Equation 14–15,
we see that for the frequency to increase, while the length of the vocal chords remains the
same, the speed of sound must be higher.

A N S W E R

(c) The speed of sound is greater in helium than in air.

A pipe organ uses a variety of pipes of different length, with some being open
at both ends, others open at one end only. When a key is pressed on the console of
the organ, air is forced through a given pipe. By accurately adjusting the length of
the pipe it can be given the desired tone. In addition, since open and closed pipes

R E A L - W O R L D  P H Y S I C S

Organ pipes
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have different harmonic frequencies, they sound distinctly different to the ear,
even if they have the same fundamental frequency. Thus, by judiciously choosing
both the length and the type of a pipe, an organ can be given a range of different
sounds, allowing it to mimic a trumpet, a trombone, a clarinet, and so on.

Standing waves have also been observed in the Sun. Like an enormous, low-
frequency musical instrument, the Sun vibrates once roughly every five minutes,
a result of the roiling nuclear reactions that take place within its core. One of the
goals of SOHO, the Solar and Heliospheric Observatory, is to study these solar vi-
brations in detail. By observing the variety of standing waves produced in the
Sun, we can learn more about its internal structure and dynamics.

▲ Blowing across the mouth of a bottle (Figure 14–26) sets the air column within the bottle vibrating, producing a
tone. This principle is put to use in the pipe organ. A large organ may have hundreds of pipes of different lengths,
some open at both ends and some at only one, affording the performer great control over the tonal quality of the
sound produced, as well as its pitch.

14–9 Beats
An interference pattern, such as that shown in Figure 14–21, is a snapshot at a
given time, showing locations where constructive and destructive interference
occur. It is an interference pattern in space. Beats, on the other hand, can be
thought of as an interference pattern in time.

To be specific, imagine plucking two guitar strings that have slightly different
frequencies. If you listen carefully, you notice that the sound produced by the
strings is not constant in time. In fact, the intensity increases and decreases with a
definite period. These fluctuations in intensity are the beats, and the frequency of
successive maximum intensities is the beat frequency.

As an example, suppose two waves, with frequencies and 
interfere at a given, fixed location. At this location, each wave moves up and
down with simple harmonic motion, as described by Equation 13–2. Applying
this result to the vertical position, y, of each wave yields the following:

14–16

These equations are plotted in Figure 14–30 (a), with and their superposi-
tion, is shown in Figure 14–30 (b).ytotal = y1 + y2,

A = 1 m,

y2 = A cosa 2p
T2
tb = A cos12pf2t2

y1 = A cosa 2p
T1
tb = A cos12pf1t2

f2 = 1>T2,f1 = 1>T1
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Note that at the time both and are equal to A; thus their superpo-
sition gives 2A. Since the waves have different frequencies, however, they do not
stay in phase. At a later time, we find that and their superpo-
sition gives zero at this time. At a still later time, the waves are again in
phase and add to give 2A. Thus, a person listening to these two waves hears a sound
whose amplitude and loudness vary with time; that is, the person hears beats.

Superposing these waves mathematically, we find

14–17

The final step in the expression follows from the trigonometric identities given in
Appendix A. The first part of is

This gives the slowly varying amplitude of the beats, as indicated in Figure 14–31.
Since a loud sound is heard whenever this term is equal to or 2A—which
happens twice during any given oscillation—the beat frequency is

Definition of Beat Frequency

14–18

SI unit: 

Finally, the rapid oscillations within each beat are due to the second part of 

Note that these oscillations have a frequency that is the average of the two input
frequencies.

These results apply to any type of wave. In particular, if two sound waves pro-
duce beats, your ear will hear the average frequency with a loudness that varies
with the beat frequency. For example, suppose the two guitar strings mentioned at
the beginning of this section have the frequencies 438 Hz and 442 Hz. If you sound
them simultaneously, you will hear the average frequency, 440 Hz, increasing

cosa2p
f1 + f2

2
tb

ytotal:

1>s = s-1

fbeat = ƒf1 - f2 ƒ

-2A

2A cosa2p
f1 - f2

2
tb

ytotal

= 2A cosa2p
f1 - f2

2
tb  cosa2p

f1 + f2
2
tb

= A cos12pf1t2 + A cos12pf2t2
ytotal = y1 + y2

t2 = 2t1,
y2 = -A;y1 = At1,

y2y1t = 0,
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▲ FIGURE 14–30 Interference of two waves with slightly different frequencies
(a) A plot of the two waves, (blue) and (red), given in Equations 14–16. (b) The resultant wave for the two waves shown in 
part (a). Note the alternately constructive and destructive interference leading to beats.

ytotaly2y1



1 4 – 9 B E A T S 487

and decreasing in loudness with a beat frequency of 4 Hz. This means that you
will hear maximum loudness 4 times a second. If the frequencies are brought
closer together, the beat frequency will be less and fewer maxima will be heard
each second.

Clearly, beats can be used to tune a musical instrument to a desired frequency.
To tune a guitar string to 440 Hz, for example, the string can be played simultane-
ously with a 440-Hz tuning fork. Listening to the beats, the tension in the string
can be increased or decreased until the beat frequency becomes vanishingly small.
This technique applies only to frequencies that are reasonably close to begin with,
since the maximum beat frequencies the ear can detect are about 15 to 20 Hz.

t (s)
12020 40 60 80 100

2

ytotal: oscillates with

average frequency, 

1

y to
ta

l (m
)

–1

–2

f1 + f2
2

Amplitude: oscillates with
beat frequency,   f1 – f2

FIGURE 14–31 Beats
Beats can be understood as oscillations at
the average frequency, modulated by a
slowly varying amplitude.

▲
E X A M P L E  1 4 – 1 0 G E T T I N G  A  T U N E - U P

An experimental way to tune the soda pop bottle in Example 14–9 is to compare its frequency with that of a 440-Hz tuning fork.
Initially, a beat frequency of 4 Hz is heard. As a small amount of water is added to that already present, the beat frequency in-
creases steadily to 5 Hz. What were the initial and final frequencies of the bottle?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the before and after situations for this prob-
lem. With the low water level the beat frequency is 4 Hz, with
the higher level it is 5 Hz.

S T R A T E G Y / S O L U T I O N

The fact that the initial beat frequency is 4 Hz means the initial
frequency of the bottle is either 436 Hz or 444 Hz.

As water is added, we know from Example 14–9 that the bot-
tle’s frequency will increase. We also know that the new beat
frequency is 5 Hz, and hence the final frequency is either 
435 Hz or 445 Hz. Only 445 Hz satisfies the condition that the
frequency must have increased.

Therefore, the initial frequency is 444 Hz, and the final fre-
quency is 445 Hz.

I N S I G H T

In this case, the initial frequency was too high. To tune the bottle properly, it is necessary to lower the water level.

P R A C T I C E  P R O B L E M

Suppose the initial beat frequency was 4 Hz and that adding a small amount of water caused the beat frequency to decrease steadily
to 2 Hz. What were the initial and final frequencies in this case? [Answer: Initial frequency, 436 Hz; final frequency, 438 Hz]

Some related homework problems: Problem 82, Problem 84

P R O B L E M - S O L V I N G  N O T E

Calculating the Beat Frequency

The beat frequency of two waves is the
magnitude of the difference in their fre-
quencies. Thus, the beat frequency is al-
ways positive.

Beats
4 Hz

Beats
5 Hz

440 Hz 440 Hz
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C H A P T E R  S U M M A RY

1 4 – 1 T Y P E S  O F  WAV E S

A wave is a propagating disturbance.
Transverse Waves and Longitudinal Waves
In a transverse wave individual particles move at right angles to the direction of
wave propagation. In a longitudinal wave individual particles move in the same
direction as the wave propagation.
Wavelength, Frequency, and Speed
The wavelength, frequency, f, and speed, v, of a wave are related by

14–1

1 4 – 2 WAV E S  O N  A  ST R I N G

Transverse waves can propagate on a string held taut with a tension force, F.

Mass per Length
The mass per length of a string is .

Speed of a Wave on a String
The speed of a wave on a string with a tension force F and a mass per length is

14–2

Reflections
If the end of a string is fixed, the reflection of a wave is inverted. If the end of a
string is free to move transversely, waves are reflected with no inversion.

* 1 4 – 3 H A R M O N I C  WAV E  F U N C T I O N S

A harmonic wave has the shape of a sine or a cosine.

Wave Function
A harmonic wave of wavelength and period T is described by the following
expression:

14–4

1 4 – 4 S O U N D  WAV E S

A sound wave is a longitudinal wave of compressions and rarefactions that can
travel through the air, as well as through other gases, liquids, and solids.

Speed of Sound
The speed of sound in air, under typical conditions, is 

Frequency of Sound
The frequency of sound determines its pitch. High-pitched sounds have high
frequencies; low-pitched sounds have low frequencies.
Human Hearing Range
Human hearing extends from 20 Hz to 20,000 Hz.

v = 343 m/s.

y1x, t2 = A cosa2p
l
x -

2p
T
tb

l

v = AFm
m

m = m>L

v = lf

l,

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The concept of frequency, first introduced in terms of
oscillations (Chapter 13), is applied here to waves and
sound in Sections 14–1 and 14–4, to the Doppler effect in
14–6, to standing waves in 14–8, and to beats in 14–9.

We next encounter waves when we study electricity and
magnetism. In fact, we shall see in Chapter 25 that light is an
electromagnetic wave, with both the electric and magnetic
fields propagating much like a wave on a string.

We use power (Chapter 7) in our definition of the intensity
of a wave in Section 14–5.

We return to the wave properties of light in Chapter 28, where
we see that superposition and interference play a similar role
for light as they do for sound.

Basic concepts from kinematics (Chapter 2) are used to
derive the Doppler effect in Section 14–6. Another type of wave behavior is known as diffraction. This

concept is also developed in Chapter 28.
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1 4 – 5 S O U N D  I N T E N S I T Y

The loudness of a sound is determined by its intensity.

Intensity
Intensity, I, is a measure of the amount of energy per time that passes through a
given area. Since energy per time is power, P, the intensity of a wave is

14–5

Point Source
If a point source emits sound with a power P, and there are no reflections, the
intensity a distance r from the source is

14–7

Human Perception of Loudness
The intensity of a sound must be increased by a factor of 10 in order for it to
seem twice as loud to our ears.

Intensity Level and Decibels
The intensity level, of a sound gives an indication of how loud it sounds to
our ears. The intensity level is defined as follows:

14–8

The value of is given in decibels.

1 4 – 6 T H E  D O P P L E R  E F F E C T

The change in frequency due to relative motion between a source and a receiver
is called the Doppler effect.

Moving Observer
Suppose an observer is moving with a speed u relative to a stationary source. If
the frequency of the source is f, and the speed of the waves is v, the frequency 
detected by the observer is

14–9

The plus sign applies to the observer approaching the source, and the minus
sign to the observer receding from the source.

Moving Source
If the source is moving with a speed u and the observer is at rest, the observed
frequency is

14–10

The minus sign applies to the source approaching the observer, and the plus
sign to the source receding from the observer.

General Case
If the observer moves with a speed and the source moves with a speed the
Doppler effect gives

14–11

The meaning of the plus and minus signs is the same as for the moving-observer
and moving-source cases given above.

1 4 – 7 S U P E R P O S I T I O N  A N D  I N T E R F E R E N C E

Waves can combine to give a variety of effects.

Superposition
When two or more waves occupy the same location at the same time they sim-
ply add, 

Constructive Interference
Waves that add to give a larger amplitude exhibit constructive interference.
Destructive Interference
Waves that add to give a smaller amplitude exhibit destructive interference.

ytotal = y1 + y2.

f¿ = a1 ; uo>v
1 < us>v bf

us,uo

f¿ = a 1
1 < u>v bf

f¿ = 11 ; u>v2f
f¿

b

b = 10 log1I>I02

b,

I =
P

4pr2

I =
P
A

E
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Interference Patterns
Waves that overlap can create patterns of constructive and destructive interfer-
ence. These are referred to as interference patterns.
In Phase/Opposite Phase
Two sources are in phase if they both emit crests at the same time.

Sources have opposite phase if one emits a crest at the same time the other emits
a trough.

1 4 – 8 STA N D I N G  WAV E S

Standing waves oscillate in a fixed location.
Waves on a String
The fundamental, or first harmonic, corresponds to half a wavelength fitting
into the length of the string. The fundamental for waves of speed v on a string of
length L is

14–12

The higher harmonics, with , are described by

14–13

Vibrating Columns of Air
The harmonics for a column of air closed at one end are

14–14

The harmonics for a column of air open at both ends are

14–15

In both of these expressions the speed of sound is v and the length of the
column is L.

1 4 – 9 B E AT S

Beats occur when waves of slightly different frequencies interfere.

They can be thought of as interference patterns in time. To the ear, beats are
perceived as an alternating loudness and softness to the sound.
Beat Frequency
If waves of frequencies and interfere, the beat frequency is

14–18

P R O B L E M - S O L V I N G  S U M M A RY

Type of Problem Relevant Physical Concepts Related Examples

Find the speed of a wave on a string, The speed of a wave on a string is related to the tension in Example 14–1
or relate the speed of a wave to the the string, F, and the string’s mass per length, by 
mass of a string. the expression 

Relate the intensity of a sound wave The intensity level of a sound wave, depends on the Example 14–4
to its intensity level. logarithm of the wave’s intensity, I. The relation between

and I is where 

Calculate the Doppler shift for a If an observer and a source of sound with frequency f Examples 14–5, 14–6
moving source or observer. approach one another, the frequency heard by the observer   

is greater than f. If the source and observer recede from one  
another, the frequency heard by the observer is less than f.

Calculate the beat frequency. The beat frequency produced when sounds of frequency Example 14–10
and are heard simultaneously is the magnitude of the 
difference in frequencies: fbeat = ƒf1 - f2 ƒ .
f2

f1

I0 = 10-12 W/m2.b = 10 log1I>I02,b

b,

v = 1F>m.
m = m>L,

fbeat = ƒf1 - f2 ƒ
f2f1

ln = l1>n = 2L>n
fn = nf1 = n1v>2L2 n = 1, 2, 3, Á

ln = l1>n = 4L>n
fn = nf1 = n1v>4L2 n = 1, 3, 5, Á

ln = l1>n = 2L>n
fn = nf1 = n1v>2L2

n = 1, 2, 3, Á
l1 = 2L

f1 =
v

2L
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P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•,••,•••)
are used to indicate the level of difficulty.

S E C T I O N  1 4 – 1    T Y P E S  O F  WAV E S

1. • A wave travels along a stretched horizontal rope. The vertical
distance from crest to trough for this wave is 13 cm and the hor-
izontal distance from crest to trough is 28 cm. What are (a) the
wavelength and (b) the amplitude of this wave?

2. • A surfer floating beyond the breakers notes 14 waves per
minute passing her position. If the wavelength of these waves
is 34 m, what is their speed?

3. • The speed of surface waves in water decreases as the water
becomes shallower. Suppose waves travel across the surface of
a lake with a speed of 2.0 m/s and a wavelength of 1.5 m. When
these waves move into a shallower part of the lake, their speed
decreases to 1.6 m/s, though their frequency remains the same.
Find the wavelength of the waves in the shallower water.

4. • Tsunami A tsunami traveling across deep water can have a
speed of 750 km/h and a wavelength of 310 km. What is the fre-
quency of such a wave?

5. •• IPA 4.5-Hz wave with an amplitude of 12 cm and a wave-
length of 27 cm travels along a stretched horizontal string.
(a) How far does a given peak on the wave travel in a time inter-
val of 0.50 s? (b) How far does a knot on the string travel in the
same time interval? (c) How would your answers to parts (a) and
(b) change if the amplitude of the wave were halved? Explain.

6. •• Deepwater Waves The speed of a deepwater wave with a
wavelength is given approximately by . Findv = 2gl/2pl

the speed and frequency of a deepwater wave with a wave-
length of 4.5 m.

7. •• Shallow-Water Waves In shallow water of depth d the
speed of waves is approximately . Find the speed and
frequency of a wave with wavelength 0.75 cm in water that is
2.6 cm deep.

S E C T I O N  1 4 – 2    WAV E S  O N  A  ST R I N G

8. • CE Consider a wave on a string with constant tension. If the
frequency of the wave is doubled, by what multiplicative factor
does (a) the speed and (b) the wavelength change?

9. • CE Suppose you would like to double the speed of a wave on
a string. By what multiplicative factor must you increase the
tension?

10. • CE Predict/Explain Two strings are made of the same mate-
rial and have equal tensions. String 1 is thick; string 2 is thin.
(a) Is the speed of waves on string 1 greater than, less than, or
equal to the speed of waves on string 2? (b) Choose the best
explanation from among the following:

I. Since the strings are made of the same material, the wave
speeds will also be the same.

II. A thick string implies a large mass per length and a slow
wave speed.

III. A thick string has a greater force constant, and therefore a
greater wave speed.

v = 2gd

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. A long nail has been driven halfway into the side of a barn. How
should you hit the nail with a hammer to generate a longitudinal
wave? How should you hit it to generate a transverse wave?

2. What type of wave is exhibited by “amber waves of grain”?
3. At a ball game, a “wave” circulating through the stands can be an

exciting event. What type of wave (longitudinal or transverse)
are we talking about? Is it possible to change the type of wave?
Explain how people might move their bodies to accomplish this.

4. In a classic TV commercial, a group of cats feed from bowls
of cat food that are lined up side by side. Initially there is one
cat for each bowl. When an additional cat is added to the scene,
it runs to a bowl at the end of the line and begins to eat. The cat
that was there originally moves to the next bowl, displacing
that cat, which moves to the next bowl, and so on down the line.
What type of wave have the cats created? Explain.

5. Describe how the sound of a symphony played by an orchestra
would be altered if the speed of sound depended on the fre-
quency of sound.

6. A “radar gun” is often used to measure the speed of a major
league pitch by reflecting a beam of radio waves off a moving
ball. Describe how the Doppler effect can give the speed of the
ball from a measurement of the frequency of the reflected beam.

7. When you drive a nail into a piece of wood, you hear a tone
with each blow of the hammer. In fact, the tone increases in
pitch as the nail is driven farther into the wood. Explain.

8. Explain the function of the sliding part of a trombone.
9. When you tune a violin string, what causes its frequency to

change?
10. On a guitar, some strings are single wires, others are wrapped

with another wire to increase the mass per length. Which type
of string would you expect to be used for a low-frequency note?
Explain.

11. As a string oscillates in its fundamental mode, there are times
when it is completely flat. Is the energy of oscillation zero at
these times? Explain.

12. On a rainy day, while driving your car, you notice that your
windshield wipers are moving in synchrony with the wiper
blades of the car in front of you. After several cycles, however
your wipers and the wipers of the other car are moving opposite
to one another. A short time later the wipers are synchronous
again. What wave phenomena do the wipers illustrate? Explain.

13. To play a C major chord on the piano, you hit the C, E, and G
keys simultaneously. When you do so, you hear no beats. Why?
(Refer to Table 14–3.)

For instructor-assigned homework, go to www.masteringphysics.com
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11. • CE Predict/Explain Two strings are made of the same mate-
rial and have waves of equal speed. String 1 is thick; string 2 is
thin. (a) Is the tension in string 1 greater than, less than, or equal
to the tension in string 2? (b) Choose the best explanation from
among the following:

I. String 1 must have a greater tension to compensate for its
greater mass per length.

II. String 2 will have a greater tension because it is thinner
than string 1.

III. Equal wave speeds implies equal tensions.

12. • CE The three waves, A, B and C, shown in Figure 14–32 propa-
gate on strings with equal tensions and equal mass per length.
Rank the waves in order of increasing (a) frequency, (b) wave-
length, and (c) speed. Indicate ties where appropriate.

* S E C T I O N  1 4 – 3    H A R M O N I C  WAV E  F U N C T I O N S

19. • Write an expression for a harmonic wave with an amplitude of
0.16 m, a wavelength of 2.1 m, and a period of 1.8 s. The wave is
transverse, travels to the right, and has a displacement of 0.16 m
at and .

20. • Write an expression for a transverse harmonic wave that has
a wavelength of 2.6 m and propagates to the right with a speed
of 14.3 m/s. The amplitude of the wave is 0.11 m, and its dis-
placement at and is 0.11 m.

21. •• CE The vertical displacement of a wave on a string is de-
scribed by the equation , in which A, B,
and C are positive constants. (a) Does this wave propagate in
the positive or negative x direction? (b) What is the wavelength
of this wave? (c) What is the frequency of this wave? (d) What
is the smallest positive value of x where the displacement of
this wave is zero at ?

22. •• CE The vertical displacement of a wave on a string is de-
scribed by the equation , in which A, B,
and C are positive constants. (a) Does this wave propagate in
the positive or negative x direction? (b) What is the physical
meaning of the constant A? (c) What is the speed of this wave?
(d) What is the smallest positive time t for which the wave has
zero displacement at the point ?

23. •• IP A wave on a string is described by the following equation:

(a) What is the amplitude of this wave? (b) What is its wave-
length? (c) What is its period? (d) What is its speed? (e) In
which direction does the wave travel?

24. •• Consider the wave function given in the previous problem.
Sketch this wave from to for the following
times: (a) ; (b) ; (c) . (d) What is the least
amount of time required for a given point on this wave to move
from to ? Verify your answer by referring to
the sketches for parts (a), (b), and (c).

25. •• IP Four waves are described by the following equations, in
which all distances are measured in centimeters and all times
are measured in seconds:

(a) Which of these waves travel in the direction? (b) Which
of these waves travel in the direction? (c) Which wave has
the highest frequency? (d) Which wave has the greatest wave-
length? (e) Which wave has the greatest speed?

S E C T I O N  1 4 – 4    S O U N D  WAV E S

26. • At Zion National Park a loud shout produces an echo 1.80 s
later from a colorful sandstone cliff. How far away is the cliff?

27. • BIO Dolphin Ultrasound Dolphins of the open ocean are
classified as Type II Odontocetes (toothed whales). These ani-
mals use ultrasonic “clicks” with a frequency of about 55 kHz to
navigate and find prey. (a) Suppose a dolphin sends out a series
of clicks that are reflected back from the bottom of the ocean
75 m below. How much time elapses before the dolphin hears
the echoes of the clicks? (The speed of sound in seawater is ap-
proximately 1530 m/s.) (b) What is the wavelength of 55-kHz
sound in the ocean?

-x
+x

yD = 20 cos(-4x - 20t)
yC = 20 cos(-10x + 60t)
yB = 10 cos(5x + 4t)
yA = 10 cos(3x - 4t)
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t = 6.0 st = 3.0 st = 0
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x = 0

y(x, t) = A sin(Bx + Ct)

t = 0

y(x, t) = A sin(Bx - Ct)

x = 0t = 0

x = 0t = 0

A B C

▲ FIGURE 14–32 Problem 12

13. • Waves on a particular string travel with a speed of 16 m/s. By
what factor should the tension in this string be changed to pro-
duce waves with a speed of 32 m/s?

14. •• A brother and sister try to communicate with a string tied
between two tin cans (Figure 14–33). If the string is 9.5 m long,
has a mass of 32 g, and is pulled taut with a tension of 8.6 N,
how much time does it take for a wave to travel from one end
of the string to the other?

9.5 m

▲ FIGURE 14–33 Problems 14 and 15

15. •• IP (a) Suppose the tension is increased in the previous prob-
lem. Does a wave take more, less, or the same time to travel
from one end to the other? Calculate the time of travel for ten-
sions of (b) 9.0 N and (c) 10.0 N.

16. •• IP A 5.2-m wire with a mass of 87 g is attached to the mast
of a sailboat. If the wire is given a “thunk” at one end, it takes
0.094 s for the resulting wave to reach the other end. (a) What
is the tension in the wire? (b) Would the tension found in part
(a) be larger or smaller if the mass of the wire is greater than
87 g? (c) Calculate the tension for a 97-g wire.

17. •• Two steel guitar strings have the same length. String A has a
diameter of 0.50 mm and is under 410.0 N of tension. String B
has a diameter of 1.0 mm and is under a tension of 820.0 N. Find
the ratio of the wave speeds, , in these two strings.

18. ••• Use dimensional analysis to show how the speed v of a wave
on a string of circular cross section depends on the tension in the
string, T, the radius of the string, R, and its mass per volume, .r

vA>vB
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28. • The lowest note on a piano is A, four octaves below the A
given in Table 14–3. The highest note on a piano is C, four oc-
taves above middle C. Find the frequencies and wavelengths
(in air) of these notes.

29. •• IP A sound wave in air has a frequency of 425 Hz. (a) What
is its wavelength? (b) If the frequency of the sound is increased,
does its wavelength increase, decrease, or stay the same? Ex-
plain. (c) Calculate the wavelength for a sound wave with a fre-
quency of 475 Hz.

30. •• IP When you drop a rock into a well, you hear the splash
1.5 seconds later. (a) How deep is the well? (b) If the depth of
the well were doubled, would the time required to hear the
splash be greater than, less than, or equal to 3.0 seconds?
Explain.

31. •• A rock is thrown downward into a well that is 8.85 m deep.
If the splash is heard 1.20 seconds later, what was the initial
speed of the rock?

S E C T I O N  1 4 – 5    S O U N D  I N T E N S I T Y

32. • CE If the distance to a point source of sound is doubled, by
what multiplicative factor does the intensity change?

33. • The intensity level of sound in a truck is 92 dB. What is the in-
tensity of this sound?

34. • The distance to a point source is decreased by a factor of
three. (a) By what multiplicative factor does the intensity in-
crease? (b) By what additive amount does the intensity level
increase?

35. • Sound 1 has an intensity of . Sound 2 has an inten-
sity level that is 2.5 dB greater than the intensity level of sound
1. What is the intensity of sound 2?

36. •• A bird-watcher is hoping to add the white-throated sparrow
to her “life list” of species. How far could she be from the bird
described in Example 14–3 and still be able to hear it? Assume
no reflections or absorption of the sparrow’s sound.

37. •• Residents of Hawaii are warned of the approach of a
tsunami by sirens mounted on the tops of towers. Suppose a
siren produces a sound that has an intensity level of 120 dB at a
distance of 2.0 m. Treating the siren as a point source of sound,
and ignoring reflections and absorption, find the intensity level
heard by an observer at a distance of (a) 12 m and (b) 21 m from
the siren. (c) How far away can the siren be heard?

38. •• In a pig-calling contest, a caller produces a sound with an in-
tensity level of 110 dB. How many such callers would be re-
quired to reach the pain level of 120 dB?

39. •• IP Twenty violins playing simultaneously with the same in-
tensity combine to give an intensity level of 82.5 dB. (a) What is
the intensity level of each violin? (b) If the number of violins is
increased to 40, will the combined intensity level be more than,
less than, or equal to 165 dB? Explain.

40. •• BIO The Human Eardrum The radius of a typical human
eardrum is about 4.0 mm. Find the energy per second received
by an eardrum when it listens to sound that is (a) at the thresh-
old of hearing and (b) at the threshold of pain.

41. ••• A point source of sound that emits uniformly in all direc-
tions is located in the middle of a large, open field. The intensity
at Brittany’s location directly north of the source is twice that at
Phillip’s position due east of the source. What is the distance
between Brittany and Phillip if Brittany is 12.5 m from the
source?

38.0 W/m2

S E C T I O N  1 4 – 6    T H E  D O P P L E R  E F F E C T

42. • CE Predict/Explain A horn produces sound with frequency
. Let the frequency you hear when you are at rest and the horn

moves toward you with a speed u be ; let the frequency you
hear when the horn is at rest and you move toward it with a
speed u be . (a) Is greater than, less than, or equal to ?
(b) Choose the best explanation from among the following:

I. A moving observer encounters wave crests more often than
a stationary observer, leading to a higher frequency.

II. The relative speeds are the same in either case. Therefore,
the frequencies will be the same as well.

III. A moving source causes the wave crests to “bunch up,”
leading to a higher frequency than for a moving observer.

43. • CE You are heading toward an island in your speedboat when
you see a friend standing on shore at the base of a cliff. You
sound the boat’s horn to get your friend’s attention. Let the
wavelength of the sound produced by the horn be , the wave-
length as heard by your friend be , and the wavelength of the
echo as heard on the boat be . Rank these wavelengths in
order of increasing length. Indicate ties where appropriate.

44. • A person with perfect pitch sits on a bus bench listening to the
450-Hz horn of an approaching car. If the person detects a fre-
quency of 470 Hz, how fast is the car moving?

45. • A train moving with a speed of 31.8 m/s sounds a 136-Hz
horn. What frequency is heard by an observer standing near the
tracks as the train approaches?

46. • In the previous problem, suppose the stationary observer
sounds a horn that is identical to the one on the train. What fre-
quency is heard from this horn by a passenger in the train?

47. • BIO A bat moving with a speed of 3.25 m/s and emitting
sound of 35.0 kHz approaches a moth at rest on a tree trunk.
(a) What frequency is heard by the moth? (b) If the speed of
the bat is increased, is the frequency heard by the moth higher
or lower? (c) Calculate the frequency heard by the moth when
the speed of the bat is 4.25 m/s.

48. • A motorcycle and a police car are moving toward one another.
The police car emits sound with a frequency of 502 Hz and has
a speed of 27.0 m/s. The motorcycle has a speed of 13.0 m/s.
What frequency does the motorcyclist hear?

49. • In the previous problem, suppose that the motorcycle and the
police car are moving in the same direction, with the motorcy-
cle in the lead. What frequency does the motorcyclist hear in
this case?

50. •• Hearing the siren of an approaching fire truck, you pull over
to the side of the road and stop. As the truck approaches, you
hear a tone of 460 Hz; as the truck recedes, you hear a tone of
410 Hz. How much time will it take for the truck to get from
your position to the fire 5.0 km away, assuming it maintains a
constant speed?

51. •• With what speed must you approach a source of sound to
observe a 15% change in frequency?

52. •• IP A particular jet engine produces a tone of 495 Hz. Sup-
pose that one jet is at rest on the tarmac while a second identi-
cal jet flies overhead at 82.5% of the speed of sound. The pilot
of each jet listens to the sound produced by the engine of the
other jet. (a) Which pilot hears a greater Doppler shift? Ex-
plain. (b) Calculate the frequency heard by the pilot in the
moving jet. (c) Calculate the frequency heard by the pilot in the
stationary jet.

l3

l2

l1

f2f1f2

f1

f0
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1.1 m from the speaker. What is the lowest frequency that will
produce constructive interference at your location?

62. •• IP Two violinists, one directly behind the other, play for a
listener directly in front of them. Both violinists sound concert
A (440 Hz). (a) What is the smallest separation between the vio-
linists that will produce destructive interference for the lis-
tener? (b) Does this smallest separation increase or decrease if
the violinists produce a note with a higher frequency? (c) Re-
peat part (a) for violinists who produce sounds of 540 Hz.

63. •• Two loudspeakers are placed at either end of a gymnasium,
both pointing toward the center of the gym and equidistant
from it. The speakers emit 266-Hz sound that is in phase. An ob-
server at the center of the gym experiences constructive inter-
ference. How far toward either speaker must the observer walk
to first experience destructive interference?

64. •• IP (a) In the previous problem, does the required distance
increase, decrease, or stay the same if the frequency of the
speakers is lowered? (b) Calculate the distance to the first posi-
tion of destructive interference if the frequency emitted by the
speakers is lowered to 238 Hz.

65. •• Two speakers with opposite phase are positioned 3.5 m apart,
both pointing toward a wall 5.0 m in front of them (Figure 14–36).
An observer standing against the wall midway between the
speakers hears destructive interference. If the observer hears con-
structive interference after moving 0.84 m to one side along the
wall, what is the frequency of the sound emitted by the speakers?

53. •• IP Two bicycles approach one another, each traveling with a
speed of 8.50 m/s. (a) If bicyclist A beeps a 315-Hz horn, what
frequency is heard by bicyclist B? (b) Which of the following
would cause the greater increase in the frequency heard by bi-
cyclist B: (i) bicyclist A speeds up by 1.50 m/s, or (ii) bicyclist B
speeds up by 1.50 m/s? Explain.

54. •• A train on one track moves in the same direction as a second
train on the adjacent track. The first train, which is ahead of the
second train and moves with a speed of 36.8 m/s, blows a horn
whose frequency is 124 Hz. If the frequency heard on the sec-
ond train is 135 Hz, what is its speed?

55. •• Two cars traveling with the same speed move directly away
from one another. One car sounds a horn whose frequency is
205 Hz and a person in the other car hears a frequency of 192 Hz.
What is the speed of the cars?

56. ••• The Bullet Train The Shinkansen, the Japanese “bullet”
train, runs at high speed from Tokyo to Nagoya. Riding on the
Shinkansen, you notice that the frequency of a crossing signal
changes markedly as you pass the crossing. As you approach
the crossing, the frequency you hear is f; as you recede from the
crossing the frequency you hear is . What is the speed of
the train?

S E C T I O N  1 4 – 7    S U P E R P O S I T I O N  A N D
I N T E R F E R E N C E

57. • Two wave pulses on a string approach one another at the time
, as shown in Figure 14–34. Each pulse moves with a speed

of 1.0 m/s. Make a careful sketch of the resultant wave at the
times , 2.0 s, 2.5 s, 3.0 s, and 4.0 s, assuming that the su-
perposition principle holds for these waves.

t = 1.0 s

t = 0

2f>3

x
0 2.0 m 4.0 m 6.0 m 8.0 m

1.0 m/s 1.0 m/s

Pulse 1 Pulse 2

▲ FIGURE 14–34 Problems 57 and 58

x
0 2.0 m 4.0 m 6.0 m 8.0 m

1.0 m/s 1.0 m/s

Pulse 1 Pulse 2

▲ FIGURE 14–35 Problems 59 and 60

58. • Suppose pulse 2 in Problem 57 is inverted, so that it is a
downward deflection of the string rather than an upward de-
flection. Repeat Problem 57 in this case.

59. • Two wave pulses on a string approach one another at the time
, as shown in Figure 14–35. Each pulse moves with a speed

of 1.0 m/s. Make a careful sketch of the resultant wave at the
times , 2.0 s, 2.5 s, 3.0 s, and 4.0 s, assuming that the su-
perposition principle holds for these waves.

t = 1.0 s

t = 0
66. •• Suppose, in Example 14–7, that the speakers have opposite

phase. What is the lowest frequency that gives destructive in-
terference in this case?

S E C T I O N  1 4 – 8    STA N D I N G  WAV E S

67. • CE Predict/Explain When you blow across the opening of a
partially filled 2-L soda pop bottle you hear a tone. (a) If you
take a sip of the pop and blow across the opening again, does
the tone you hear have a higher frequency, a lower frequency,
or the same frequency as before? (b) Choose the best explanation
from among the following:

I. The same pop bottle will give the same frequency regard-
less of the amount of pop it contains.

II. The greater distance from the top of the bottle to the level of
the pop results in a higher frequency.

III. A lower level of pop results in a longer column of air, and
hence a lower frequency.

3.5 m

Out-of-phase
speakers

Destructive
interference

Constructive
interference

5.0 m

0.84 m

▲ FIGURE 14–36 Problem 65

60. • Suppose pulse 2 in Problem 59 is inverted, so that it is a
downward deflection of the string rather than an upward de-
flection. Repeat Problem 59 in this case.

61. •• A pair of in-phase stereo speakers is placed side by side,
0.85 m apart. You stand directly in front of one of the speakers,
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68. • An organ pipe that is open at both ends is 3.5 m long. What is
its fundamental frequency?

69. • A string 1.5 m long with a mass of 2.6 g is stretched between
two fixed points with a tension of 93 N. Find the frequency of
the fundamental on this string.

70. •• CE A string is tied down at both ends. Some of the standing
waves on this string have the following frequencies: 100 Hz,
200 Hz, 250 Hz, and 300 Hz. It is also known that there are no
standing waves with frequencies between 250 Hz and 300 Hz.
(a) What is the fundamental frequency of this string? (b) What
is the frequency of the third harmonic?

71. •• IP BIO Standing Waves in the Human Ear The human
ear canal is much like an organ pipe that is closed at one end (at
the tympanic membrane or eardrum) and open at the other
(Figure 14–37). A typical ear canal has a length of about 2.4 cm.
(a) What are the fundamental frequency and wavelength of the
ear canal? (b) Find the frequency and wavelength of the ear
canal’s third harmonic. (Recall that the third harmonic in this
case is the standing wave with the second-lowest frequency.)
(c) Suppose a person has an ear canal that is shorter than 
2.4 cm. Is the fundamental frequency of that person’s ear canal
greater than, less than, or the same as the value found in part
(a)? Explain. [Note that the frequencies found in parts (a) and
(b) correspond closely to the frequencies of enhanced sensitiv-
ity in Figure 14–28.]

72. •• A guitar string 66 cm long vibrates with a standing wave
that has three antinodes. (a) Which harmonic is this? (b) What
is the wavelength of this wave?

73. •• IP A 12.5-g clothesline is stretched with a tension of 22.1 N
between two poles 7.66 m apart. What is the frequency of (a) the
fundamental and (b) the second harmonic? (c) If the tension in
the clothesline is increased, do the frequencies in parts (a) and
(b) increase, decrease, or stay the same? Explain.

74. •• IP (a) In the previous problem, will the frequencies increase,
decrease, or stay the same if a more massive rope is used? (b)
Repeat Problem 73 for a clothesline with a mass of 15.0 g.

75. •• The organ pipe in Figure 14–38 is 2.75 m long. (a) What is the
frequency of the standing wave shown in the pipe? (b) What is
the fundamental frequency of this pipe?

76. •• The frequency of the standing wave shown in Figure 14–39
is 202 Hz. (a) What is the fundamental frequency of this pipe?
(b) What is the length of the pipe?

Outer ear Middle ear Inner ear

Semicircular
canals

Auditory
ossicles

2.4 cm

Oval
window

Nerves
(to brain)

Vestibular
complex

Cochlea

Eustachian
tube

Internal
jugular vein

Round
window

Tympanic
membrane

Ear
canal

▲ FIGURE 14–37 Problem 71

▲ FIGURE 14–38 Problem 75

▲ FIGURE 14–39 Problem 76

77. ••• An organ pipe open at both ends has a harmonic with a fre-
quency of 440 Hz. The next higher harmonic in the pipe has a
frequency of 495 Hz. Find (a) the frequency of the fundamental
and (b) the length of the pipe.

S E C T I O N  1 4 – 9    B E AT S

78. • CE When guitar strings A and B are plucked at the same time,
a beat frequency of 2 Hz is heard. If string A is tightened, the
beat frequency increases to 3 Hz. Which of the two strings had
the lower frequency initially?

79. • CE Predict/Explain (a) Is the beat frequency produced when
a 245-Hz tone and a 240-Hz tone are played together greater
than, less than, or equal to the beat frequency produced when a
140-Hz tone and a 145-Hz tone are played together? (b) Choose
the best explanation from among the following:

I. The beat frequency is determined by the difference in fre-
quencies and is independent of their actual values.

II. The higher frequencies will produce a higher beat frequency.
III. The percentage change in frequency for 240 and 245 Hz is less

than for 140 and 145 Hz, resulting in a lower beat frequency.

80. • Two tuning forks have frequencies of 278 Hz and 292 Hz.
What is the beat frequency if both tuning forks are sounded si-
multaneously?

81. • Tuning a Piano To tune middle C on a piano, a tuner hits the
key and at the same time sounds a 261-Hz tuning fork. If the
tuner hears 3 beats per second, what are the possible frequen-
cies of the piano key?

82. • Two musicians are comparing their clarinets. The first clarinet
produces a tone that is known to be 441 Hz. When the two clar-
inets play together they produce eight beats every 2.00 seconds.
If the second clarinet produces a higher pitched tone than the
first clarinet, what is the second clarinet’s frequency?

83. •• IP Two strings that are fixed at each end are identical, except
that one is 0.560 cm longer than the other. Waves on these strings
propagate with a speed of 34.2 m/s, and the fundamental fre-
quency of the shorter string is 212 Hz. (a) What beat frequency is
produced if each string is vibrating with its fundamental fre-
quency? (b) Does the beat frequency in part (a) increase or de-
crease if the longer string is increased in length? (c) Repeat part
(a), assuming that the longer string is 0.761 cm longer than the
shorter string.

84. •• IP A tuning fork with a frequency of 320.0 Hz and a tuning
fork of unknown frequency produce beats with a frequency of
4.5 Hz. If the frequency of the 320.0-Hz fork is lowered slightly
by placing a bit of putty on one of its tines, the new beat fre-
quency is 7.5 Hz. (a) Which tuning fork has the lower fre-
quency? Explain. (b) What is the final frequency of the 320.0-Hz
tuning fork? (c) What is the frequency of the other tuning fork?

85. •• Identical cellos are being tested. One is producing a funda-
mental frequency of 130.9 Hz on a string that is 1.25 m long
and has a mass of 109 g. On the second cello the same string is
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fingered to reduce the length that can vibrate. If the beat fre-
quency produced by these two strings is 4.33 Hz, what is the vi-
brating length of the second string?

86. ••• A friend in another city tells you that she has two organ
pipes of different lengths, one open at both ends, the other open
at one end only. In addition, she has determined that the beat
frequency caused by the second-lowest frequency of each pipe
is equal to the beat frequency caused by the third-lowest fre-
quency of each pipe. Her challenge to you is to calculate the
length of the organ pipe that is open at both ends, given that the
length of the other pipe is 1.00 m.

G E N E R A L  P R O B L E M S

87. • CE A harmonic wave travels along a string. (a) At a point
where the displacement of the string is greatest, is the kinetic
energy of the string a maximum or a minimum? Explain. (b) At
a point where the displacement of the string is zero, is the ki-
netic energy of the string a maximum or a minimum? Explain.

88. • CE A harmonic wave travels along a string. (a) At a point
where the displacement of the string is greatest, is the poten-
tial energy of the string a maximum or a minimum? Explain.
(b) At a point where the displacement of the string is zero, is
the potential energy of the string a maximum or a minimum?
Explain.

89. • CE Figure 14–40 shows a wave on a string moving to the right.
For each of the points indicated on the string, A–F, state
whether it is (I, moving upward; II, moving downward; or III,
instantaneously at rest) at the instant pictured.

elephants. How far away can you be from a 127-dB sound and
still just barely hear it?(Assume a point source, and ignore re-
flections and absorption.)

94. • Hearing a Good Hit Physicist Robert Adair, once ap-
pointed the “official physicist to the National League” by the
commissioner of baseball, believes that the “crack of the bat”
can tell an outfielder how well the ball has been hit. According
to Adair, a good hit makes a sound of 510 Hz, while a poor hit
produces a sound of 170 Hz. What is the difference in wave-
length of these sounds?

95. • A standing wave of 603 Hz is produced on a string that is
1.33 m long and fixed on both ends. If the speed of waves on
this string is 402 m/s, how many antinodes are there in the
standing wave?

96. • BIO Measuring Hearing Loss To determine the amount of
temporary hearing loss loud music can cause in humans, re-
searchers studied a group of 20 adult females who were ex-
posed to 110-dB music for 60 minutes. Eleven of the 20 subjects
showed a 20.0-dB reduction in hearing sensitivity at 4000 Hz.
What is the intensity corresponding to the threshold of hearing
for these subjects?

97. •• BIO Hearing a Pin Drop The ability to hear a “pin drop”
is the sign of sensitive hearing. Suppose a 0.55-g pin is dropped
from a height of 28 cm, and that the pin emits sound for 1.5 s
when it lands. Assuming all of the mechanical energy of the pin
is converted to sound energy, and that the sound radiates uni-
formly in all directions, find the maximum distance from
which a person can hear the pin drop. (This is the ideal maxi-
mum distance, but atmospheric absorption and other factors
will make the actual maximum distance considerably smaller.)

98. •• A machine shop has 120 equally noisy machines that
together produce an intensity level of 92 dB. If the intensity
level must be reduced to 82 dB, how many machines must be
turned off?

99. •• IP When you blow across the top of a soda pop bottle you
hear a fundamental frequency of 206 Hz. Suppose the bottle is
now filled with helium. (a) Does the fundamental frequency in-
crease, decrease, or stay the same? Explain. (b) Find the new
fundamental frequency. (Assume that the speed of sound in he-
lium is three times that in air.)

100. •• Speed of a Tsunami Tsunamis can have wavelengths
between 100 and 400 km. Since this is much greater than the
average depth of the oceans (about 4.3 km), the ocean can be
considered as shallow water for these waves. Using the speed of
waves in shallow water of depth d given in Problem 7, find the
typical speed for a tsunami. (Note: In the open ocean, tsunamis
generally have an amplitude of less than a meter, allowing them
to pass ships unnoticed. As they approach shore, however, the
water depth decreases and the waves slow down. This can re-
sult in an increase of amplitude to as much as 37 m or more.)

101. •• Two trains with 124-Hz horns approach one another. The
slower of the two trains has a speed of 26 m/s. What is the
speed of the fast train if an observer standing near the tracks
between the trains hears a beat frequency of 4.4 Hz?

102. •• IP Jim is speeding toward James Island with a speed of
24 m/s when he sees Betsy standing on shore at the base of a
cliff (Figure 14–41). Jim sounds his 330-Hz horn. (a) What fre-
quency does Betsy hear? (b) Jim can hear the echo of his horn
reflected back to him by the cliff. Is the frequency of this echo
greater than or equal to the frequency heard by Betsy? Ex-
plain. (c) Calculate the frequency Jim hears in the echo from
the cliff.

A

C

D

E

F
x

B

y

▲ FIGURE 14–40 Problem 89

90. • CE You stand near the tracks as a train approaches with con-
stant speed. The train is operating its horn continuously, and
you listen carefully to the sound it makes. For each of the
following properties of the sound, state whether it increases,
decreases, or stays the same as the train gets closer: 
(a) the intensity; (b) the frequency; (c) the wavelength; (d) the
speed.

91. • Sitting peacefully in your living room one stormy day, you
see a flash of lightning through the windows. Eight and a half
seconds later thunder shakes the house. Estimate the distance
from your house to the bolt of lightning.

92. • The fundamental of an organ pipe that is closed at one end
and open at the other end is 261.6 Hz (middle C). The second
harmonic of an organ pipe that is open at both ends has the
same frequency. What are the lengths of these two pipes?

93. • The Loudest Animal The loudest sound produced by a liv-
ing organism on Earth is made by the bowhead whale (Balaena
mysticetus). These whales can produce a sound that, if heard
in air at a distance of 3.00 m, would have an intensity level of
127 dB. This is roughly the equivalent of 5000 trumpeting



P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S 497

108. •• IP Thundersticks at Ball Games “Thundersticks” are a
popular noisemaking device at many sporting events. A typi-
cal thunderstick is a hollow plastic tube about 82 cm long and 
8.5 cm in diameter. When two thundersticks are hit sharply
together, they produce a copious amount of noise. (a) Which
dimension, the length or diameter, is more important in deter-
mining the frequency of the sound emitted by the thunder-
sticks? Explain. (b) Estimate the characteristic frequency of the
thunderstick’s sound. (c) Suppose a single pair of thundersticks
produces sound with an intensity level of 95 dB. What is the
intensity level of 1200 pairs of thundersticks clapping simul-
taneously?

109. •• An organ pipe 2.5 m long is open at one end and closed at
the other end. What is the linear distance between a node and
the adjacent antinode for the third harmonic in this pipe?

110. •• Two identical strings with the same tension vibrate at 631
Hz. If the tension in one of the strings is increased by 2.25%,
what is the resulting beat frequency?

111. •• The Sound of a Black Hole Astronomers using the Chan-
dra X-ray Observatory have discovered that the Perseus Black
Hole, some 250 million light years away, produces sound
waves in the gaseous halo that surrounds it. The frequency of
this sound is the same as the frequency of the 59th B-flat below
the B-flat given in Table 14–3. How long does it take for this
sound wave to complete one cycle? Give your answer in years.

112. •• BIO The Love Song of the Midshipman Fish When the
plainfin midshipman fish (Porichthys notatus) migrates from
deep Pacific waters to the west coast of North America each
summer, the males begin to sing their “love song,” which
some describe as sounding like a low-pitched motorboat.
Houseboat residents and shore dwellers are kept awake for
nights on end by the amorous fish. The love song consists of a
single note, the second A flat below middle C. (a) If the speed
of sound in seawater is 1531 m/s, what is the wavelength of
the midshipman’s song? (b) What is the wavelength of the
sound after it emerges into the air? (Information on the musi-
cal scale is given in Table 14–3.)

113. ••• IP A rope of length L and mass M hangs vertically from a
ceiling. The tension in the rope is only that due to its own
weight. (a) Suppose a wave starts near the bottom of the rope
and propagates upward. Does the speed of the wave increase,
decrease, or stay the same as it moves up the rope? Explain.
(b) Show that the speed of waves a height y above the bottom
of the rope is .

114. ••• Experiments on water waves show that the speed of
waves in shallow water is independent of their wavelength
(see Problem 7). Using this observation and dimensional
analysis, determine how the speed v of shallow-water waves
depends on the depth of the water, d, the mass per volume of
water, , and the acceleration of gravity, g.

115. ••• A deepwater wave of wavelength has a speed given
approximately by . Find an expression for the
period of a deepwater wave in terms of its wavelength. (Note
the similarity of your result to the period of a pendulum.)

116. ••• Beats and Standing Waves In Problem 63, suppose the
observer walks toward one speaker with a speed of 1.35 m/s.
(a) What frequency does the observer hear from each speaker?
(b) What beat frequency does the observer hear? (c) How far
must the observer walk to go from one point of constructive
interference to the next? (d) How many times per second does
the observer hear maximum loudness from the speakers?
Compare your result with the beat frequency from part (b).

v = 2gl/2p
l

r

v = 2gy

330 Hz

24 m/s

▲ FIGURE 14–41 Problem 102

103. •• Two ships in a heavy fog are blowing their horns, both of
which produce sound with a frequency of 175.0 Hz (Figure
14–42). One ship is at rest; the other moves on a straight line
that passes through the one at rest. If people on the stationary
ship hear a beat frequency of 3.5 Hz, what are the two possible
speeds and directions of motion of the moving ship?

v = 0

v = ?

▲ FIGURE 14–42 Problem 103

104. •• BIO Cracking Your Knuckles When you “crack” a
knuckle, you cause the knuckle cavity to widen rapidly. This, in
turn, allows the synovial fluid to expand into a larger volume.
If this expansion is sufficiently rapid, it causes a gas bubble to
form in the fluid in a process known as cavitation. This is the
mechanism responsible for the cracking sound. (Cavitation can
also cause pits in rapidly rotating ship’s propellers.) If a “crack”
produces a sound with an intensity level of 57 dB at your ear,
which is 18 cm from the knuckle, how far from your knuckle
can the “crack” be heard? Assume the sound propagates uni-
formly in all directions, with no reflections or absorption.

105. •• A steel guitar string has a tension T, length L, and diameter
D. Give the multiplicative factor by which the fundamental
frequency of the string changes under the following condi-
tions: (a) The tension in the string is increased by a factor of 4.
The diameter is D and the length is L. (b) The diameter of the
string is increased by a factor of 3. The tension is T and the
length is L. (c) The length of the string is halved. The tension is
T and the diameter is D.

106. •• A Slinky has a mass of 0.28 kg and negligible length. When
it is stretched 1.5 m, it is found that transverse waves travel the
length of the Slinky in 0.75 s. (a) What is the force constant, k, of
the Slinky? (b) If the Slinky is stretched farther, will the time re-
quired for a wave to travel the length of the Slinky increase, de-
crease, or stay the same? Explain. (c) If the Slinky is stretched
3.0 m, how much time does it take a wave to travel the length
of the Slinky? (The Slinky stretches like an ideal spring, and
propagates transverse waves like a rope with variable tension.)

107. •• IP BIO OSHA Noise Standards OSHA, the Occupational
Safety and Health Administration, has established standards
for workplace exposure to noise. According to OSHA’s Hear-
ing Conservation Standard, the permissible noise exposure
per day is 95.0 dB for 4 hours or 105 dB for 1 hour. Assuming
the eardrum is 9.5 mm in diameter, find the energy absorbed
by the eardrum (a) with 95.0 dB for 4 hours and (b) with 105
dB for 1 hour. (c) Is OSHA’s safety standard simply a measure
of the amount of energy absorbed by the ear? Explain.
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BIO The Sound of a Dinosaur
Modern-day animals make extensive use of sounds in their in-
teractions with others. Some sounds are meant primarily for
members of the same species, like the cooing calls of a pair of
doves, the long-range infrasound communication between ele-
phants, or the songs of the hump-backed whale. Other sounds
may be used as a threat to other species, such as the rattle of a
rattlesnake or the roar of a lion.

There is little doubt that extinct animals used sounds in
much the same ways. But how can we ever hear the call of a
long-vanished animal like a dinosaur when sounds don’t fos-
silize? In some cases, basic physics may have the answer.

Consider, for example, the long-crested, duck-billed dinosaur
Parasaurolophus walkeri, which roamed the Earth 75 million years
ago. This dinosaur possessed the largest crest of any duck bill—
so long, in fact, that there was a notch in P. walkeri’s spine to make
room for the crest when its head was tilted backward. Many
paleontologists believe the air passages in the dinosaur’s crest
acted like bent organ pipes open at both ends, and that they
produced sounds P. walkeri used to communicate with others of
its kind. As air was forced through the passages, the predomi-
nant sound they produced would be the fundamental standing
wave, with a small admixture of higher harmonics as well. The
frequencies of these standing waves can be determined with
basic physical principles. Figure 14–43 presents a plot of the low-
est ten harmonics of a pipe that is open at both ends as a func-
tion of the length of the pipe.

117. • Suppose the air passages in a certain P. walkeri crest pro-
duce a bent tube 2.7 m long. What is the fundamental fre-
quency of this tube, assuming the bend has no effect on the
frequency? (For comparison, a typical human hearing range
is 20 Hz to 20 kHz.)

A. 0.0039 Hz B. 32 Hz

C. 64 Hz D. 130 Hz

118. • Paleontologists believe the crest of a female P. walkeri was
probably shorter than the crest of a male. If this was the case,
would the fundamental frequency of a female be greater than,
less than, or equal to the fundamental frequency of a male?

119. • Suppose the fundamental frequency of a particular female
was 74 Hz. What was the length of the air passages in this
female’s crest?

A. 1.2 m B. 2.3 m

C. 2.7 m D. 4.6 m

120. • As a young P. walkeri matured, the air passages in its crest
might increase in length from 1.5 m to 2.7 m, causing a decrease
in the standing wave frequencies. Referring to Figure 14–43, do
you expect the change in the fundamental frequency to be
greater than, less than, or equal to the change in the second
harmonic frequency?

I N T E R A C T I V E  P R O B L E M S

121. •• IP Referring to Example 14–6 Suppose the engineer ad-
justs the speed of the train until the sound he hears reflected
from the cliff is 775 Hz. The train’s whistle still produces a tone
of 650.0 Hz. (a) Is the new speed of the train greater than, less
than, or equal to 21.2 m/s? Explain. (b) Find the new speed of
the train.

122. •• Referring to Example 14–6 Suppose the train is backing
away from the cliff with a speed of 18.5 m/s and is sounding
its 650.0-Hz whistle. (a) What is the frequency heard by the ob-
server standing near the tunnel entrance? (b) What is the fre-
quency heard by the engineer?

123. •• IP Referring to Example 14–9 Suppose we add more
water to the soda pop bottle. (a) Does the fundamental fre-
quency increase, decrease, or stay the same? Explain. (b) Find
the fundamental frequency if the height of water in the bottle
is increased to 7.5 cm. The height of the bottle is still 26.0 cm.

124. •• IP Referring to Example 14–9 The speed of sound in-
creases slightly with temperature. (a) Does the fundamental
frequency of the bottle increase, decrease, or stay the same as
the air heats up on a warm day? Explain. (b) Find the funda-
mental frequency if the speed of sound in air increases to 348
m/s. Assume the bottle is 26.0 cm tall, and that it contains
water to a depth of 6.5 cm.

▲ FIGURE 14–43 Standing wave frequencies
as a function of length for a pipe open at both
ends. The first ten harmonics ( ) are
shown. (Problems 117, 118, 119, and 120)
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The long crest of Parasaurolophus walkeri played
a key role in its communications with others.




