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The study of gravity has always
been a central theme in physics,
from Galileo’s early experiments

on free fall in the seventeenth century, to
Einstein’s general theory of relativity in
the early years of the twentieth century,
and Stephen Hawking’s work on black
holes in recent years. Perhaps the
grandest milestone in this endeavor,
however, was the discovery by Newton
of the universal law of gravitation. With
just one simple equation to describe the
force of gravity, Newton was able to
determine the orbits of planets, moons,
and comets, and to explain such earthly

phenomena as the tides and the fall of 
an apple.

Before Newton’s work, it was generally
thought that the heavens were quite
separate from the Earth, and that they
obeyed their own “heavenly” laws. Newton
showed, on the contrary, that the same
law of gravity that operates on the surface
of the Earth applies to the Moon and to
other astronomical objects. As a result of
Newton’s efforts, physics expanded its
realm of applicability to natural
phenomena throughout the universe.

So successful was Newton’s law of
gravitation that Edmond Halley (1656–1742)
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The rings of Saturn, which appear so solid in this sequence of
photographs, are not really rings at all. They consist of countless
chunks of ice and rock, ranging in size from enormous boulders
to tiny grains of sand, each circling the planet in its own individual
orbit. The force that created and preserved the rings is the same
force that binds us to Earth’s surface: gravity. In this chapter we’ll
see how it affects all the matter in the universe, from dust motes
to galaxies.
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▲ In this illustration from his great work,
the Principia, published in 1687, Newton
presents a “thought experiment” to show
the connection between free fall and orbital
motion. Imagine throwing a projectile hori-
zontally from the top of a mountain. The
greater the initial speed of the projectile,
the farther it travels in free fall before strik-
ing the ground. In the absence of air resis-
tance, a great enough initial speed could
result in the projectile circling the Earth and
returning to its starting point. Thus, an ob-
ject orbiting the Earth is actually in free
fall—it simply has a large horizontal speed.

The force of gravity is along
the line connecting the masses.
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F

▲ FIGURE 12–1 Gravitational force
between point masses
Two point masses, and separated
by a distance r exert equal and opposite
attractive forces on one another. The
magnitude of the forces, F, is given by
Equation 12–1.

m2,m1

was able to use it to predict the return of the comet that today bears his name. 
Though he did not live to see its return in 1758, the fact that the comet did reappear
when predicted was an event unprecedented in human history. Roughly a hundred years
later, Newton’s theory of gravity scored an even more impressive success. Astronomers
observing the planet Uranus noticed small deviations in its orbit, which they thought
might be due to the gravitational tug of a previously unknown planet. Using Newton’s law
to calculate the predicted position of the new planet—now called Neptune—it was
found on the very first night of observations, September 23, 1846. The fact that Neptune
was precisely where the law of gravitation said it should be still stands as one of the most
astounding triumphs in the history of science.

Today, Newton’s law of gravitation is used to determine the orbits that take
spacecraft from the Earth to various destinations within our solar system and beyond.
Appropriately enough, spacecraft were even sent to view Halley’s comet at close range in
1986. In addition, the law allows us to calculate with pinpoint accuracy the time of solar
eclipses and other astronomical events in the distant past and remote future. This
incredibly powerful and precise law of nature is the subject of this chapter.

12–1 Newton’s Law of Universal Gravitation
It’s ironic, but the first fundamental force of nature to be recognized as such,
gravity, is also the weakest of the fundamental forces. Still, it is the force most ap-
parent to us in our everyday lives, and is the force responsible for the motion of
the Moon, the Earth, and the planets. Yet the connection between falling objects
on Earth and planets moving in their orbits was not known before Newton.

The flash of insight that came to Newton—whether it was due to seeing an
apple fall to the ground or not—is simply this: The force causing an apple to ac-
celerate downward is the same force causing the Moon to move in a circular path
around the Earth. To put it another way, Newton was the first to realize that the
Moon is constantly falling toward the Earth, though without ever getting closer to
it, and that it falls for the same reason that an apple falls. This is illustrated in a
classic drawing due to Newton, shown to the right.

To be specific, in the case of the apple the motion is linear as it accelerates
downward toward the center of the Earth. In the case of the Moon the motion is
circular with constant speed. As discussed in Section 6–5, an object in uniform cir-
cular motion accelerates toward the center of the circle. It follows, therefore, that
the Moon also accelerates toward the center of the Earth. In fact, the force respon-
sible for the Moon’s centripetal acceleration is the Earth’s gravitational attraction,
the same force responsible for the fall of the apple.

To describe the force of gravity, Newton proposed the following simple law:

Newton’s Law of Universal Gravitation
The force of gravity between any two point objects of mass and is at-
tractive and of magnitude

12–1

In this expression, r is the distance between the masses, and G is a constant re-
ferred to as the universal gravitation constant. Its value is

12–2

The force is directed along the line connecting the masses, as indicated in
Figure 12–1.

Note that each mass experiences a force of the same magnitude, 
but acting in opposite directions. That is, the force of gravity between two objects
forms an action-reaction pair.

F = Gm1m2>r2,

G = 6.67 * 10-11 N # m2/kg2

F = G
m1m2

r2

m2m1
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Net Gravitational Force

To find the net gravitational force acting
on an object, you should (i) resolve each of
the forces acting on the object into compo-
nents and (ii) add the forces component
by component.
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The force of gravity
decreases rapidly
with distance ...

... but never
becomes zero.
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▲ FIGURE 12–2 Dependence of the
gravitational force on separation distance, r
The dependence of the gravitational
force means that it decreases rapidly
with distance. Still, it never completely
vanishes. For this reason, we say that
gravity is a force of infinite range; that is,
every mass in the universe experiences a
nonzero force from every other mass in
the universe, no matter how far away.

1/r2

According to Newton’s law, all objects in the universe attract all other objects in
the universe by way of the gravitational interaction. It is in this sense that the force
law is termed “universal.” Thus, the net gravitational force acting on you is due not
only to the planet on which you stand, which is certainly responsible for the major-
ity of the net force, but also to people nearby, planets, and even stars in far-off galax-
ies. In short, everything in the universe “feels” everything else, thanks to gravity.

The fact that G is such a small number means that the force of gravity between
objects of human proportions is imperceptibly small. This is shown in the follow-
ing Exercise.

E X E R C I S E  1 2 – 1
A man takes his dog for a walk on a deserted beach. Treating people and dogs as point
objects for the moment, find the force of gravity between the 105-kg man and his 11.2-kg
dog when they are separated by a distance of (a) 1.00 m and (b) 10.0 m.

S O L U T I O N

a. Substituting numerical values into Equation 12–1 yields

b. Repeating the calculation for gives

The forces found in Exercise 12–1 are imperceptibly small. In comparison, the
force exerted by the Earth on the man is 1030 N and the force exerted on the dog
is 110 N—these forces are several orders of magnitude greater than the force be-
tween the man and the dog. In general, gravitational forces are significant only
when large masses, such as the Earth or the Moon, are involved.

Exercise 12–1 also illustrates how rapidly the force of gravity decreases with
distance. In particular, since F varies as it is said to have an inverse square
dependence on distance. Thus, for example, an increase in distance by a factor of
10 results in a decrease in the force by a factor of A plot of the force of
gravity versus distance is given in Figure 12–2. Note that even though the force di-
minishes rapidly with distance, it never completely vanishes; thus, we say that
gravity is a force of infinite range.

Note also that the force of gravity between two masses depends on the product
of the masses, times With this type of dependence, it follows that if either
mass is doubled, the force of gravity is doubled as well. This would not be the case,
for example, if the force of gravity depended on the sum of the masses, 

Finally, if a given mass is acted on by gravitational interactions with a number
of other masses, the net force acting on it is simply the vector sum of each of the
forces individually. This property of gravity is referred to as superposition. As an
example, superposition implies that the net gravitational force exerted on you at
this moment is the vector sum of the force exerted by the Earth, plus the force ex-
erted by the Moon, plus the force exerted by the Sun, and so on. The following
Example illustrates superposition.

m1 + m2.

m2.m1

102 = 100.

1/r2,

F = G 

m1m2

r2
= 16.67 * 10-11 N # m2/kg221105 kg2111.2 kg2

11.00 m22 = 7.84 * 10-10 N

r = 10.0 m

F = G
m1m2

r2
= 16.67 * 10-11 N # m2/kg221105 kg2111.2 kg2

11.00 m22 = 7.84 * 10-8 N

E X A M P L E  1 2 – 1 H O W  M U C H  F O R C E  I S  W I T H  Y O U ?

As part of a daring rescue attempt, the Millennium Eagle passes between a pair of twin asteroids, as shown. If the mass of the
spaceship is and the mass of each asteroid is find the net gravitational force exerted on the Millennium
Eagle (a) when it is at location A and (b) when it is at location B. Treat the spaceship and the asteroids as if they were point objects.

3.50 * 1011 kg,2.50 * 107 kg
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P I C T U R E  T H E  P R O B L E M

Our sketch shows the spaceship as it follows a path between
the twin asteroids. The relevant distances and masses are in-
dicated, as are the two points of interest, A and B. Note that at
location A the force points above the x axis at the angle 
(to be determined); the force points below the x axis at the
angle as can be seen by symmetry. At location B, the
two forces act in opposite directions.

S T R A T E G Y

To find the net gravitational force exerted on the spaceship, we
first determine the magnitude of the force exerted on it by each
asteroid. This is done by using Equation 12–1 and the distances
given in our sketch. Next, we resolve these forces into x and y
components. Finally, we sum the force components to find the
net force.

S O L U T I O N

Part (a)

u2 = -u1,
F
!
2

u1F
!
1

m

r

r

A B

M

M

F2

F1

F1

F2

1.50 km

x

y

1.50 km

3.00 km�

�
1

2

1. Use the Pythagorean theorem to find the distance r
from point A to each asteroid. Also, refer to the sketch
to find the angle between and the x axis. The angle
between and the x axis has the same magnitude but
the opposite sign:

F
!
2

F
!
1

 u2 = -u1 = -26.6°

 u1 = tan-1a1.50 * 103 m

3.00 * 103 m
b = tan-110.5002 = 26.6°

r = 413.00 * 103 m22 + 11.50 * 103 m22 = 3350 m

2. Use r and Equation 12–1 to calculate the magnitude of
the forces and at point A:F

!
2F

!
1

 = 52.0 N

 = 16.67 * 10-11 N # m2/kg2212.50 * 107 kg213.50 * 1011 kg2
13350 m22

 F1 = F2 = G
mM

r2

3. Use the values of and found in Step 1 to calculate
the x and y components of and F

!
2:F

!
1

u2u1

 F2,y = F2 sin u2 = 152.0 N2 sin1-26.6°2 = -23.3 N

 F2,x = F2 cos u2 = 152.0 N2 cos1-26.6°2 = 46.5 N

 F1,y = F1 sin u1 = 152.0 N2 sin 26.6° = 23.3 N

 F1,x = F1 cos u1 = 152.0 N2 cos 26.6° = 46.5 N

4. Add the components of and to find the compo-
nents of the net force, F

!
:

F
!
2F

!
1

 Fy = F1,y + F2,y = 0

 Fx = F1,x + F2,x = 93.0 N

Part (b)

5. Use Equation 12–1 to find the magnitude of the forces
exerted on the spaceship by the asteroids at location B:

 = 259 N

 = 16.67 * 10-11 N # m2/kg2212.50 * 107 kg213.50 * 1011 kg2
11.50 * 103 m22

 F1 = F2 = G
mM

r2

6. Use the fact that and have equal magnitudes and
point in opposite directions to determine the net force, 
acting on the spaceship:

F
!
,

F
!
2F

!
1

CONTINUED ON NEXT PAGE

F
!
= F

!
1 + F

!
2 = 0
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CONTINUED FROM PREVIOUS PAGE

I N S I G H T

We find that the net force at location A is in the positive x direction, as one would expect by symmetry. At location B, where the force
exerted by each asteroid is about 5 times greater than it is at location A, the net force is zero since the attractive forces exerted by the
two asteroids are equal and opposite, and thus cancel. Note that the forces in our sketch have been drawn in correct proportion.

Rocket scientists often use the gravitational force between astronomical objects and spacecraft to accelerate the spacecraft and
send them off to distant parts of the solar system. In fact, this gravitational attraction makes possible the “slingshot” effect illus-
trated in Figure 9–31.

P R A C T I C E  P R O B L E M

Find the net gravitational force acting on the spaceship when it is at the location [Answer: 41.0 N in
the negative x direction]

Some related homework problems: Problem 9, Problem 11, Problem 12

x = 5.00 * 103 m, y = 0.

M

M
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▲ FIGURE 12–3 Gravitational force
between a point mass and a sphere
The force is the same as if all the mass of
the sphere were concentrated at its center.

12–2 Gravitational Attraction of Spherical Bodies
Newton’s law of gravity applies to point objects. How, then, do we calculate the
force of gravity for an object of finite size? In general, the approach is to divide the
finite object into a collection of small mass elements, then use superposition and
the methods of calculus to determine the net gravitational force. For an arbitrary
shape, this calculation can be quite difficult. For objects with a uniform spherical
shape, however, the final result is remarkably simple, as was shown by Newton.

Uniform Sphere
Consider a uniform sphere of radius R and mass M, as in Figure 12–3. A point ob-
ject of mass m is brought near the sphere, though still outside it at a distance r
from its center. The object experiences a relatively strong attraction from mass
near the point A, and a weaker attraction from mass near point B. In both cases the
force is along the line connecting the mass m and the center of the sphere; that is,
along the x axis. In addition, mass at the points C and D exert a net force that is
also along the x axis—just as in the case of the twin asteroids in Example 12–1.
Thus, the symmetry of the sphere guarantees that the net force it exerts on m is di-
rected toward the sphere’s center. The magnitude of the force exerted by the
sphere must be calculated with the methods of calculus—which Newton invented
and then applied to this problem. As a result of his calculations, Newton was able
to show that the net force exerted by the sphere on the mass m is the same as if
all the mass of the sphere were concentrated at its center. That is, the force be-
tween the mass m and the sphere of mass M has a magnitude that is simply

12–3

Let’s apply this result to the case of a mass m on the surface of the Earth. If the
mass of the Earth is and its radius is it follows that the force exerted on m
by the Earth is

We also know, however, that the gravitational force experienced by a mass m on
the Earth’s surface is simply where g is the acceleration due to gravity.
Therefore, we see that

or

12–4g =
GME

RE 

2 =
16.67 * 10-11 N # m2/kg2215.97 * 1024 kg2

16.37 * 106 m22 = 9.81 m/s2

maGME

RE 

2 b = mg

F = mg,

F = G
mME

RE 

2 = maGME

RE 

2 b

RE,ME,

F = G
mM

r2
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This global model of the Earth’s gravita-
tional strength was constructed from a
combination of surface gravity measure-
ments and satellite tracking data. It shows
how the acceleration of gravity varies from
the value at an idealized “sea level” that
takes into account the Earth’s nonspherical
shape. (The Earth is somewhat flattened at
the poles—its radius is greatest at the equa-
tor.) Gravity is strongest in the red areas
and weakest in the dark blue areas.

▲

This result can be extended to objects above the Earth’s surface, and hence farther
from the center of the Earth, as we show in the next Example.

E X A M P L E  1 2 – 2 T H E  D E P E N D E N C E  O F  G R A V I T Y  O N  A L T I T U D E

If you climb to the top of Mt. Everest, you will be about 5.50 mi above sea level. What is the acceleration
due to gravity at this altitude?

P I C T U R E  T H E  P R O B L E M

At the top of the mountain, your distance from the center of
the Earth is where is the altitude.

S T R A T E G Y

First, use to find the force due to gravity on the
mountaintop. Then, set to find the acceleration at
the height h.

S O L U T I O N

ghF = mgh
F = GmME/r2

h = 5.50 mir = RE + h,

h = 5.50 mi

r = RE + h

RE

R E A L - W O R L D
P H Y S I C S

1. Calculate the force F due to gravity at a height h above
the Earth’s surface:

F = G
mME

1RE + h22
2. Set F equal to and solve for gh:mgh

3. Factor out from the denominator, and use the fact
that GME/RE 

2 = g:
RE 

2

4. Substitute numerical values, with 
and RE = 6.37 * 106 m:15.50 mi211609 m/mi2 = 8850 m,
h = 5.50 mi =

gh = G
ME

1RE + h22

F = G
mME

1RE + h22 = mgh

gh = aGME

RE 

2
b  

1

a1 +
h
RE
b2

=
g

a1 +
h
RE
b2

CONTINUED ON NEXT PAGE

gh =
g

a1 +
h
RE
b2

=
9.81 m/s2

a1 +
8850 m

6.37 * 106 m
b2

= 9.78 m/s2
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(a) Acceleration of gravity near the Earth’s surface
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FIGURE 12–4 ▲ The acceleration due to gravity at a height h above the Earth’s surface
(a) In this plot, the peak of Mt. Everest is at about and the space shuttle orbit is at roughly (b) This
shows the decrease in the acceleration of gravity from the surface of the Earth to an altitude of about 25,000 mi. The orbit of
geosynchronous satellites—ones that orbit above a fixed point on the Earth—is at roughly h = 22,300 mi.

h = 150 mi.h = 5.50 mi,

CONTINUED FROM PREVIOUS PAGE

I N S I G H T

As expected, the acceleration due to gravity is less as one moves farther from the center of the Earth. Thus, if you were to climb
to the top of Mt. Everest, you would lose weight—not only because of the physical exertion required for the climb, but also be-
cause of the reduced gravity. In particular, a person with a mass of 60 kg (about 130 lb) would lose about half a pound of weight
just by standing on the summit of the mountain.

A plot of as a function of h is shown in Figure 12–4 (a). The plot indicates the altitude of Mt. Everest and the orbit of the space shut-
tle. Figure 12–4 (b) shows out to the orbit of communications and weather satellites, which orbit at an altitude of roughly 22,300 mi.

P R A C T I C E  P R O B L E M

Find the acceleration due to gravity at the altitude of the space shuttle’s orbit, 250 km above the Earth’s surface.
[Answer: a reduction of only 7.44% compared to the acceleration of gravity on the surface of the Earth.]

Some related homework problems: Problem 15, Problem 17

gh = 9.08 m/s2,

gh

gh

Equation 12–4 can be used to calculate the acceleration due to gravity on other
objects in the solar system besides the Earth. For example, to calculate the accel-
eration due to gravity on the Moon, we simply use the mass and radius of the
Moon in Equation 12–4. Once is known, the weight of an object of mass m on
the Moon is found by using Wm = mgm.

gm

gm,

(Left) The weak lunar gravity permits
astronauts, even encumbered by their mas-
sive space suits, to bound over the Moon’s
surface. The low gravitational pull, only
about one-sixth that of Earth, is a conse-
quence not only of the Moon’s smaller size,
but also of its lower average density.
(Right) The force of gravity on the surface
of Mars is only about 38% of its strength 
on Earth. This was an important factor in
designing NASA’s Phoenix Mars Lander,
shown here lifting a scoop of dirt on 
its 16th Martian day after landing in 
May 2008.

▲

E X E R C I S E  1 2 – 2
a. Find the acceleration due to gravity on the surface of the Moon.

b. The lunar rover had a mass of 225 kg. What was its weight on the Earth and on
the Moon? (Note: The mass of the Moon is and its radius
is )Rm = 1.74 * 106 m.

Mm = 7.35 * 1022 kg
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S O L U T I O N

a. For the Moon, the acceleration due to gravity is

This is about one-sixth the acceleration due to gravity on the Earth.

b. On the Earth, the rover’s weight was

On the Moon, its weight was

As expected, this is roughly one-sixth its Earth weight.

Wm = mgm = 1225 kg211.62 m/s22 = 365 N

W = mg = 1225 kg219.81 m/s22 = 2210 N

gm =
GMm

Rm
2

=
16.67 * 10-11 N # m2/kg2217.35 * 1022 kg2

11.74 * 106 m22 = 1.62 m/s2

FF

ME

Mm

FF

r

r

ME Mm

▲ FIGURE 12–5 Gravitational force
between the Earth and the Moon
The force is the same as if both the Earth
and the Moon were point masses. (The
sizes of the Earth and Moon are in correct
proportion in this figure, but the separa-
tion between the two should be much
greater than that shown here. In reality,
it is about 30 times the diameter of the
Earth, and so would be about 2 ft on 
this scale.)
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�

FIGURE 12–6 The Cavendish experiment
The gravitational attraction between the
masses m and M causes the rod and the
suspending thread to twist. Measure-
ment of the twist angle allows for a direct
measurement of the gravitational force.

▲

The replacement of a sphere with a point mass at its center can be applied to
many physical systems. For example, the force of gravity between two spheres of
finite size is the same as if both were replaced by point masses. Thus, the gravita-
tional force between the Earth, with mass and the Moon, with mass is

The distance r in this expression is the center-to-center distance between the Earth
and the Moon, as shown in Figure 12–5. It follows, then, that in many calculations in-
volving the solar system, moons and planets can be treated as point objects.

Weighing the Earth
The British physicist Henry Cavendish performed an experiment in 1798 that is
often referred to as “weighing the Earth.” What he did, in fact, was measure the
value of the universal gravitation constant, G, that appears in Newton’s law of
gravity. As we have pointed out before, G is a very small number; hence a sensi-
tive experiment is needed for its measurement. It is because of this experimental
difficulty that G was not measured until more than 100 years after Newton pub-
lished the law of gravitation.

In the Cavendish experiment, illustrated in Figure 12–6, two masses m are sus-
pended from a thin thread. Near each suspended mass is a large stationary mass
M, as shown. Each suspended mass is attracted by the force of gravity toward
the large mass near it; hence the rod holding the suspended masses tends to ro-
tate and twist the thread. The angle through which the thread twists can be mea-
sured by bouncing a beam of light from a mirror attached to the thread. If the
force required to twist the thread through a given angle is known (from previ-
ous experiments), a measurement of the twist angle gives the magnitude of the
force of gravity. Finally, knowing the masses m and M, and the distance between
their centers, r, we can use Equation 12–1 to solve for G. Cavendish found

in good agreement with the currently accepted value
given in Equation 12–2.
6.754 * 10-11 N # m2/kg2,

F = G
MEMm

r2

Mm,ME,
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The internal structure of the 
Earth and the Moon

To see why Cavendish is said to have weighed the Earth, recall that the force
of gravity on the surface of the Earth, mg, can be written as follows:

Canceling m and solving for yields

12–5

Before the Cavendish experiment, the quantities g and were known from di-
rect measurement, but G had yet to be determined. When Cavendish measured
G, he didn’t actually “weigh” the Earth, of course. Instead, he calculated its
mass, 

E X E R C I S E  1 2 – 3
Use to calculate the mass of the Earth.

S O L U T I O N

Substituting numerical values, we find

As soon as Cavendish determined the mass of the Earth, geologists were able
to use the result to calculate its average density; that is, its average mass per vol-
ume. Assuming a spherical Earth of radius its total volume is

Dividing this into the total mass yields the average density, 

This is an interesting result because typical rocks found near the surface of the
Earth, such as granite, have a density of only about We conclude,
then, that the interior of the Earth must have a greater density than its surface. In
fact, by analyzing the propagation of seismic waves around the world, we now
know that the Earth has a rather complex interior structure, including a solid
inner core with a density of about (see Section 10–5).

A similar calculation for the Moon yields an average density of about
essentially the same as the density of the lunar rocks brought back

during the Apollo program. Hence, it is likely that the Moon does not have an in-
ternal structure similar to that of the Earth.

Since G is a universal constant—with the same value everywhere in the uni-
verse—it can be used to calculate the mass of other bodies in the solar system as
well. This is illustrated in the following Example.

3.33 g/cm3,

15.0 g/cm3

3.00 g/cm3.

r =
ME

VE
=

5.97 * 1024 kg

1.08 * 1021 m3 = 5530 kg/m3 = 5.53 g/cm3

r:

VE = 4
3pRE 

3 = 4
3p16.37 * 106 m23 = 1.08 * 1021 m3

RE,

ME =
gRE 

2

G
=
19.81 m/s2216.37 * 106 m22

6.67 * 10-11 N # m2/kg2
= 5.97 * 1024 kg

ME = gRE 

2/G

ME.

RE

ME =
gRE 

2

G

ME

mg = G
mME

RE 

2
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E X A M P L E  1 2 – 3 M A R S  A T T R A C T S !

After landing on Mars, an astronaut performs a simple experiment by dropping a rock. A quick calculation using the drop height
and the time of fall yields a value of for the rock’s acceleration. (a) Find the mass of Mars, given that its radius is

.  (b) What is the acceleration of gravity due to Mars at a distance 2RM from the center of the planet?

P I C T U R E  T H E  P R O B L E M

Our sketch shows an astronaut dropping a rock to the ground on the surface of Mars. If the acceleration of the rock is measured,
we find , where the subscript M refers to Mars. In addition, we indicate the radius of Mars in our sketch, where 

.RM = 3.39 * 106 m
gM = 3.73 m / s2

RM = 3.39 * 106 m
3.73 m / s2
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S T R A T E G Y

a. Since the acceleration of gravity is on the surface of
Mars, it follows that the force of gravity on an object of
mass m is . This force is also given by Newton’s 
law of gravity—that is, . Setting these
expressions for the force equal to one another yields the 
mass of Mars, .

b. Set equal to and solve for the
acceleration, a.

S O L U T I O N

Part (a)

F = GmMM/(2RM)2F = ma
MM

F = GmMM/RM 

2
F = mgM

gM

a = gM

r = RM

2. Cancel m and solve for the mass of Mars: 

mgM = G
mMM

RM 

21. Set equal to :GmMM/RM 

2mgM

Part (b)

4. Apply Newton’s law of gravity with Use
the fact that from Step 1 to simplify
the calculation:

gM = GMM/RM 

2
r = 2RM.

3. Substitute numerical values: 

MM =
gMRM 

2

G

MM =
13.73 m/s2213.39 * 106 m22

6.67 * 10-11 N # m2/kg2
= 6.43 * 1023 kg

a = G
MM

(2RM)2
= 1

4aGMM

RM 

2
b = 1

4(gM) = 1
4(3.73 m/s2) = 0.933 m/s2

ma = G
mMM

(2RM)2
 or

I N S I G H T

The important point here is that the universal gravitation constant, G, applies as well on Mars as on Earth, or any other object.
Therefore, knowledge of the size and acceleration of gravity of an astronomical body is sufficient to determine its mass.

P R A C T I C E  P R O B L E M

If the radius of Mars were reduced to , with its mass remaining the same, would the acceleration of gravity on Mars
increase, decrease, or stay the same? Check your answer by calculating the acceleration of gravity for this case. [Answer: The
acceleration of gravity increases to .]

Some related homework problems: Problem 20, Problem 21

4.77 m / s2

3.00 * 106 m

12–3 Kepler’s Laws of Orbital Motion
If you go outside each clear night and observe the position of Mars with respect to
the stars, you will find that its apparent motion across the sky is rather complex. In-
stead of moving on a simple curved path, it occasionally reverses direction (this is
known as retrograde motion). A few months later it reverses direction yet again and
resumes its original direction of motion. Other planets exhibit similar odd behavior.

The Danish astronomer Tycho Brahe (1546–1601) followed the paths of the plan-
ets, and Mars in particular, for many years, even though the telescope had not yet
been invented. He used, instead, an elaborate sighting device to plot the precise po-
sition of the planets. Brahe was joined in his work by Johannes Kepler (1571–1630)
in 1600, and after Brahe’s death, Kepler inherited his astronomical observations.

Kepler made good use of Brahe’s life work, extracting from his carefully col-
lected data the three laws of orbital motion we know today as Kepler’s laws. These
laws make it clear that the Sun and the planets do not orbit the Earth, as Ptolemy—
the ancient Greek astronomer—claimed, but rather that the Earth, along with the
other planets, orbit the Sun, as proposed by Copernicus (1473–1543).
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Why the planets obey Kepler’s laws no one knew—not even Kepler—until
Newton considered the problem decades after Kepler’s death. Newton was able to
show that each of Kepler’s laws follows as a direct consequence of the universal law
of gravitation. In the remainder of this section we consider Kepler’s three laws one
at a time, and point out the connection between them and the law of gravitation.

Kepler’s First Law
Kepler tried long and hard to find a circular orbit around the Sun that would
match Brahe’s observations of Mars. After all, up to that time everyone from
Ptolemy to Copernicus believed that celestial objects moved in circular paths of
one sort or another. Though the orbit of Mars was exasperatingly close to being
circular, the small differences between a circular path and the experimental ob-
servations just could not be ignored. Eventually, after a great deal of hard work
and disappointment over the loss of circular orbits, Kepler discovered that Mars
followed an orbit that was elliptical rather than circular. The same applied to the
other planets. This observation became Kepler’s first law:

Planets follow elliptical orbits, with the Sun at one focus of the ellipse.

This is a fine example of the scientific method in action. Though Kepler ex-
pected and wanted to find circular orbits, he would not allow himself to ignore
the data. If Brahe’s observations had not been so accurate, Kepler probably would
have chalked up the small differences between the data and a circular orbit to
error. As it was, he had to discard a treasured—but incorrect—theory, and move
on to an unexpected, but ultimately correct, view of nature.

Kepler’s first law is illustrated in Figure 12–7, along with a definition of an el-
lipse in terms of its two foci. In the case where the two foci merge, as in Figure 12–8,
the ellipse reduces to a circle. Thus, a circular orbit is allowed by Kepler’s first law,
but only as a special case.

Newton was able to show that, because the force of gravity decreases with dis-
tance as closed orbits must have the form of ellipses or circles, as stated in
Kepler’s first law. He also showed that orbits that are not closed—say the orbit of
a comet that passes by the Sun once and then leaves the solar system—are either
parabolic or hyperbolic.

Kepler’s Second Law
When Kepler plotted the position of a planet on its elliptical orbit, indicating at
each position the time the planet was there, he made an interesting observation.
First, draw a line from the Sun to a planet at a given time. Then a certain time
later—perhaps a month—draw a line again from the Sun to the new position of
the planet. The result is that the planet has “swept out” a wedge-shaped area, as
indicated in Figure 12–9 (a). If this procedure is repeated when the planet is on a dif-
ferent part of its orbit, another wedge-shaped area is generated. Kepler’s obser-
vation was that the areas of these two wedges are equal:

As a planet moves in its orbit, it sweeps out an equal amount of area in an equal
amount of time.

Kepler’s second law follows from the fact that the force of gravity on a planet
is directly toward the Sun. As a result, gravity exerts zero torque about the Sun,

1/r2,

Orbits are elliptical
in shape ...

... with the Sun at
one focus.

Sun

Planet or
comet

f1 f2

▲ FIGURE 12–7 Drawing an ellipse
To draw an ellipse, put two tacks in a
piece of cardboard. The tacks define the
“foci” of the ellipse. Now connect a
length of string to the two tacks, and use
a pencil and the string to sketch out a
smooth closed curve, as shown. This
closed curve is an ellipse. In a planetary
orbit a planet follows an elliptical path,
with the Sun at one focus. Nothing is at
the other focus.

Foci that are well separated ...

... result in an
elongated ellipse.

Foci that merge
together ...

... result in a circle.

FIGURE 12–8 The circle as a special case
of the ellipse
As the two foci of an ellipse approach
one another, the ellipse becomes more
circular. In the limit that the foci merge,
the ellipse becomes a circle.

▲
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which means that the angular momentum of a planet in its orbit must be con-
served. As Newton showed, conservation of angular momentum is equivalent to
the equal-area law stated by Kepler.

C O N C E P T U A L  C H E C K P O I N T  1 2 – 1 C O M P A R E  S P E E D S

The Earth’s orbit is slightly elliptical. In fact, the Earth is closer to the Sun during the
northern hemisphere winter than it is during the summer. Is the speed of the Earth dur-
ing winter (a) greater than, (b) less than, or (c) the same as its speed during summer?

R E A S O N I N G  A N D  D I S C U S S I O N

According to Kepler’s second law, the area swept out by the Earth per month is the same
in winter as it is in summer. In winter, however, the radius from the Sun to the Earth is
less than it is in summer. Therefore, if this smaller radius is to sweep out the same area,
the Earth must move more rapidly.

A N S W E R

(a) The speed of the Earth is greater during the winter.

FIGURE 12–9 Kepler’s second law
(a) The second law states that a planet
sweeps out equal areas in equal times.
(b) In a highly elliptical orbit, the long,
thin area is equal to the broad, fan-
shaped area.

▲

Sun

(a) Equal areas in equal times

1 month

1 month

Sun

(b) Equal areas in equal times for highly
elliptical orbit

Though we have stated the first two laws in terms of planets, they apply
equally well to any object orbiting the Sun. For example, a comet might follow a
highly elliptical orbit, as in Figure 12–9 (b). When it is near the Sun, it moves very
quickly, for the reason discussed in Conceptual Checkpoint 12–1, sweeping out a
broad wedge-shaped area in a month’s time. Later in its orbit, the comet is far
from the Sun and moving slowly. In this case, the area it sweeps out in a month is
a long, thin wedge. Still, the two wedges have equal areas.

Kepler’s Third Law
Finally, Kepler studied the relation between the mean distance of a planet from the
Sun, r, and its period—that is, the time, T, it takes for the planet to complete one
orbit. Figure 12–10 shows a plot of period versus distance for the planets of the solar
system. Kepler tried to “fit” these results to a simple dependence between T and r.
If he tried a linear fit—that is, T proportional to r (the bottom curve in Figure
12–10)—he found that the period did not increase rapidly enough with distance. On
the other hand, if he tried T proportional to (the top curve in Figure 12–10), the
period increased too rapidly. Splitting the difference, and trying T proportional to

yields a good fit (the middle curve in Figure 12–10). This is Kepler’s third law:

The period, T, of a planet increases as its mean distance from the Sun, r, raised
to the 3/2 power. That is,

12–6

It is straightforward to derive this result for the special case of a circular orbit.
Consider, then, a planet orbiting the Sun at a distance r, as in Figure 12–11. Since the
planet moves in a circular path, a centripetal force must act on it, as we saw in Section
6–5. In addition, this force must be directed toward the center of the circle; that is, to-
ward the Sun. It is as if you were to swing a ball on the end of a string in a circle above
your head, as in Figure 6–12 (p. 169). In order for the ball to move in a circular path,
you have to exert a force on the ball toward the center of the circular path. This force
is exerted through the string. In the case of a planet orbiting the Sun, the centripetal
force is provided by the force of gravity between the Sun and the planet.

T = 1constant2r3/2

r3/2,

r2

Pe
ri
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,T
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▲ FIGURE 12–10 Kepler’s third law 
and some near misses

These plots represent three possible math-
ematical relationships between period of
revolution, T (in years), and mean
distance from the Sun, r (in kilometers).
The lower curve shows 
the upper curve is 
The middle curve, which fits the data, 
is This is Kepler’s
third law.
T = 1constant2r3/2.

T = 1constant2r2.
T = 1constant2r;

F

v

Ms

r

m

▲ FIGURE 12–11 Centripetal force on a
planet in orbit
As a planet revolves about the Sun in a
circular orbit of radius r, the force of
gravity between it and the Sun,

provides the required
centripetal force.
F = GmMs/r

2,
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If the planet has a mass m, and the Sun has a mass the force of gravity be-
tween them is

Now, this force creates the centripetal acceleration of the planet, which, ac-
cording to Equation 6–15, is

Thus, the centripetal force necessary for the planet to orbit is 

Since the speed of the planet, v, is the circumference of the orbit, divided by
the time to complete an orbit, T, we have

Setting the centripetal force equal to the force of gravity yields

Eliminating m and rearranging, we find

or

12–7

As predicted by Kepler, T is proportional to 
Deriving Kepler’s third law by using Newton’s law of gravitation has allowed

us to calculate the constant that multiplies Note that the constant depends on
the mass of the Sun; that is, T depends on the mass being orbited. It does not depend
on the mass of the planet orbiting the Sun, however, as long as the planet’s mass
is much less than the mass of the Sun. As a result, Equation 12–7 applies equally
to all the planets.

This result can also be applied to the case of a moon or a satellite (an artificial
moon) orbiting a planet. To do so, we simply note that it is the planet that is being
orbited, not the Sun. Hence, to apply Equation 12–7, we just replace the mass of
the Sun, with the mass of the appropriate planet.

As an example, let’s calculate the mass of Jupiter. One of the four moons 
of Jupiter discovered by Galileo is Io, which completes one orbit every 42 h 27 min =

Ms,

r3/2.

r3/2.

T = a 2p2GMs

br3/2 = 1constant2r3/2

T2 =
4p2

GMs
r3

4p2rm

T2
= G
mMs

r2

F = m
v2

r
= m
12pr>T22
r

=
4p2rm

T2

2pr,

F = macp = m
v2

r

macp:

acp =
v2

r

acp,

F = G
mMs

r2

Ms,

Kepler’s laws of orbital motion apply to
planetary satellites as well as planets.
Jupiter, the largest planet in the solar system,
has at least 16 moons, all of which travel in
elliptical orbits that obey Kepler’s laws. (The
moons in the photo at left, passing in front
of Jupiter, are Io and Europa, two of the four
largest Jovian satellites discovered by
Galileo in 1609.) Even some asteroids have
been found to have their own satellites. The
large cratered object in the photo at right is
243 Ida, an asteroid some 56 km long; its
miniature companion at the top of the photo
is Dactyl, about 1.5 km in diameter. Like all
gravitationally bound bodies, Ida and
Dactyl orbit their common center of mass.

▲

P R O B L E M - S O L V I N G  N O T E

The Mass in Kepler’s Third Law

When applying Kepler’s third law, recall
that the mass in Equation 12–7, refers
to the mass of the object being orbited.
Thus, the third law can be applied to satel-
lites of any object, as long as is re-
placed by the orbited mass.

Ms

Ms,
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Given that the average distance from the center of Jupiter to Io is
we can find the mass of Jupiter as follows:

MJ =
4p2r3

GT2
=

4p214.22 * 108 m23
16.67 * 10-11 N # m2/kg2211.53 * 105 s22 = 1.90 * 1027 kg

T = ¢ 2p2GMJ
≤r3/2

4.22 * 108 m,
1.53 * 105 s.

E X A M P L E  1 2 – 4 T H E  S U N  A N D  M E R C U R Y

The Earth revolves around the Sun once a year at an average distance of (a) Use this information to calculate the
mass of the Sun. (b) Find the period of revolution for the planet Mercury, whose average distance from the Sun is 

P I C T U R E  T H E  P R O B L E M

Our sketch shows the orbits of Mercury, Venus, and the Earth in
correct proportion. In addition, each of these orbits is slightly ellip-
tical, though the deviation from circularity is too small for the eye
to see. Finally, we indicate that the orbital radius for Mercury is

and the orbital radius for Earth is 

S T R A T E G Y

a. To find the mass of the Sun, we solve Equation 12–7 for 
Note that the period must be converted to seconds
before we evaluate the formula.

b. The period of Mercury is found by substituting
in Equation 12–7.

S O L U T I O N

Part (a)

r = 5.79 * 1010 m

T = 1 yr
Ms.

1.50 * 1011 m.5.79 * 1010 m

5.79 * 1010 m.
1.50 * 1011 m.

Mercury

Earth

Venus

5.79 x 1010 m

1.50 x 1011 m

Sun

1. Solve Equation 12–7 for the mass of
the Sun: 

Ms =
4p2r3

GT2

T = ¢ 2p2GMs

≤r3/2

2. Calculate the period of the Earth in 
seconds:

T = 1 ya365.24 days

1 y
b a 24 hr

1 day
b a3600 s

1 hr
b = 3.16 * 107 s

3. Substitute numerical values in the 
expression for the mass of the Sun 
obtained in Step 1: 

= 2.00 * 1030 kg

=
4p211.50 * 1011 m23

16.67 * 10-11 N # m2/kg2213.16 * 107 s22

Ms =
4p2r3

GT2

Part (b)

4. Substitute into 
Equation 12–7. In addition, use the mass
of the Sun obtained in part (a): 

r = 5.79 * 1010 m

CONTINUED ON NEXT PAGE

= 7.58 * 106 s = 0.240 y = 87.7 days

= ¢ 2p416.67 * 10-11 N # m2/kg2212.00 * 1030 kg2 ≤ * 15.79 * 1010 m23/2

T = ¢ 2p2GMs

≤r3/2



CONTINUED FROM PREVIOUS PAGE

I N S I G H T

In part (a), notice that the mass of the Sun is almost a million times more than the mass of the Earth, as determined in Exercise
12–3. In fact, the Sun accounts for 99.9% of all the mass in the solar system.

In part (b) we see that Mercury, with its smaller orbital radius, has a shorter year than the Earth.

P R A C T I C E  P R O B L E M

Venus orbits the Sun with a period of What is its average distance from the Sun? [Answer: ]

Some related homework problems: Problem 28, Problem 32

r = 1.08 * 1011 m1.94 * 107 s.
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A geosynchronous satellite is one that orbits above the equator with a period
equal to one day. From the Earth, such a satellite appears to be in the same loca-
tion in the sky at all times, making it particularly useful for applications such as
communications and weather forecasting. From Kepler’s third law, we know that
a satellite has a period of one day only if its orbital radius has a particular value.
We determine this value in the following Active Example.

▲ Many weather and communications satellites are placed in geosynchronous orbits that allow them to remain “stationary” in the sky—
that is, fixed over one point on the Earth’s equator. Because the Earth rotates, the period of such a satellite must exactly match that of the
Earth. The altitude needed for such an orbit is about 36,000 km (see Active Example 12–1). Other satellites, such as those used in the Global
Positioning System (GPS), the Hubble Space Telescope, and the American space shuttles, operate at much lower altitudes—typically just a
few hundred miles. The photo at left shows the communications satellite Intelsat VI just prior to its capture by astronauts of the space shut-
tle Endeavour. A launch failure had left the satellite stranded in low orbit. The astronauts snared the satellite (right) and fitted it with a new
engine that boosted it to its geosynchronous orbit, where it is still in operation today.

A C T I V E  E X A M P L E  1 2 – 1 F I N D  T H E  A LT I T U D E  O F  A  
G E OSY N C H RO N O U S  S AT E L L I T E

Find the altitude above the Earth’s surface where a satellite orbits with a period of
one day 

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Rewrite Equation 12–7, using the mass of the Earth in 
place of the mass of the Sun: 

2. Solve for the radius, r: 

3. Substitute numerical values: 

4. Subtract the radius of the Earth to find the altitude: r - RE = 3.58 * 107 m

r = 4.22 * 107 m

r = 1T/2p22/31GME21/3

T = A2p/2GME Br3/2

1RE = 6.37 * 106 m, ME = 5.97 * 1024 kg, T = 1 day = 8.64 * 104 s2.

R E A L - W O R L D  P H Y S I C S

Geosynchronous satellites
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R E A L - W O R L D  P H Y S I C S

The Global Positioning 
System (GPS)

I N S I G H T

Thus, all geosynchronous satellites orbit above our heads.

Y O U R  T U R N

Find the altitude above the surface of the Moon where a “lunasynchronous” satel-
lite would orbit. [Note: The length of a lunar day is one month (27.332 days), which
is why we see only one side of the Moon.]

(Answers to Your Turn problems are given in the back of the book.)

3.58 * 107 m L 22,300 mi

Not all spacecraft are placed in geosynchronous orbits, however. The U.S.
space shuttle, for example, orbits at an altitude of about 150 mi. At that altitude,
it takes less than an hour and a half to complete one orbit. The International
Space Station, operational although still under construction, orbits at a similar
altitude.

The 24 satellites of the Global Positioning System (GPS) are also in relatively
low orbits. These satellites, which have an average altitude of 12,550 mi and
orbit the Earth every 12 hours, are used to provide a precise determination of an
observer’s position anywhere on Earth. The operating principle of the GPS is il-
lustrated in Figure 12–12. Imagine, for example, that satellite 2 emits a radio sig-
nal at a particular time (all GPS satellites carry atomic clocks on board). This sig-
nal travels away from the satellite with the speed of light (see Chapter 25) and
is detected a short time later by an observer’s GPS receiver. Multiplying the
time delay by the speed of light gives the distance of the receiver from satellite
2. Thus, in our example, the observer must lie somewhere on the red circle in
Figure 12–12. Similar time delay measurements for signals from satellite 11
show that the observer is also somewhere on the green circle; hence the observer
is either at the point shown in Figure 12–12, or at the second intersection of the
red and green circles on the other side of the planet. Measurements from satel-
lite 6 can resolve the ambiguity and place the observer at the point shown in the
figure. Measurements from additional satellites can even determine the ob-
server’s altitude. GPS receivers, which are used by hikers, boaters, and others
who need to know their precise location, typically use signals from as many as
12 satellites. As currently operated, the GPS gives positions with a typical accu-
racy of 2 m to 10 m.

Orbital Maneuvers
We now show how Kepler’s laws can give insight into maneuvering a satellite in
orbit. Suppose, for example, that you are piloting a spacecraft in a circular orbit,
and you would like to move to a lower circular orbit. As you might expect, you
should begin by using your rockets to decrease your speed—that is, fire the rock-
ets that point in the forward direction so that their thrust (Section 9–8) is opposite
to your direction of motion. The result of firing the decelerating rockets at a given
point A in your original orbit is shown in Figure 12–13 (a). Note that your new orbit
is not a circle, as desired, but rather an ellipse. To produce a circular orbit you can
simply fire the decelerating rockets once again at point B, on the opposite side of
the Earth from point A. The net result of these two firings is that you now move in
a circular orbit of smaller radius.

Similarly, to move to a larger orbit, you must fire your accelerating rockets
twice. The first firing puts you into an elliptical orbit that moves farther from the
Earth, as Figure 12–13 (b) shows. After the second firing you are again in a circular
orbit. This simplest type of orbital transfer, requiring just two rocket burns, is re-
ferred to as a Hohmann transfer. The Hohmann transfer is the basic maneuver used
to send spacecraft such as the Mars lander from Earth’s orbit about the Sun to the
orbit of Mars.

R E A L - W O R L D  P H Y S I C S

Maneuvering spacecraft

2

Constant
distance from
satellite 6

Constant
distance from
satellite 2

Constant
distance from
satellite 11

11

6

▲ FIGURE 12–12 The Global 
Positioning System
A system of 24 satellites in orbit about the
Earth makes it possible to determine a per-
son’s location with great accuracy. Measur-
ing the distance of a person from satellite 2
places the person somewhere on the red
circle. Similar measurements using satellite
11 place the person’s position somewhere
on the green circle, and further measure-
ments can pinpoint the person’s location.
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C O N C E P T U A L  C H E C K P O I N T  1 2 – 2 W H I C H  R O C K E T S  T O  U S E ?

As you pilot your spacecraft in a circular orbit about the Earth, you notice the space sta-
tion you want to dock with several miles ahead in the same orbit. To catch up with the
space station, should you (a) fire your accelerating rockets or (b) fire your decelerating
rockets?

R E A S O N I N G  A N D  D I S C U S S I O N

Since you want to catch up with something miles ahead, you must accelerate, right?
Well, not in this case. Accelerating moves you into an elliptical orbit, as in Figure 12–13 (b),
and with a second acceleration you can make your new orbit circular with a greater ra-
dius. Recall from Kepler’s third law, however, that the larger the radius of an orbit the
larger the period, as Equation 12–7 shows. Thus, on your new higher path you take
longer to complete an orbit, so you fall farther behind the space station. The same is true
even if you fire your rockets only once and stay on the elliptical orbit—it also has a
longer period than the original orbit.

On the other hand, two decelerating burns will put you into a circular orbit of smaller ra-
dius, and thus smaller period. As a result, you complete an orbit in less time than before
and catch up with the space station. After catching up, you can perform two accelerating
burns to move you back into the original orbit to dock.

A N S W E R

(b) You should fire your decelerating rockets.

A

B

Final
circular

orbit

Original
circular

orbit

First
accelerating

thrustElliptical
transfer orbit

Spacecraft
is coasting

Second
accelerating

thrust

(b)

A

B

Final
circular

orbit

Original
circular

orbit

First
retro thrust

Elliptical
transfer orbit

Spacecraft
is coasting

Second
retro thrust

(a)

▲ FIGURE 12–13 Orbital maneuvers
(a) The radius of a satellite’s orbit can be decreased by firing the decelerating rockets once at point A and again at point B. Between fir-
ings the satellite follows an elliptical orbit. The satellite speeds up as it falls inward toward the Earth during this maneuver. For this rea-
son its final speed in the new circular orbit is greater than its speed in the original orbit, even though the decelerating rockets have
slowed it down twice. (b) The radius of a satellite’s orbit can be increased by firing the accelerating rockets once at point A and again at
point B. Between firings the satellite follows an elliptical orbit. The satellite slows down as it moves farther from the Earth during this
maneuver. For this reason its final speed in the new circular orbit is less than its speed in the original orbit, even though the accelerating
rockets have sped it up twice.

12–4 Gravitational Potential Energy
In Chapter 8 we saw that the principle of conservation of energy can be used to
solve a number of problems that would be difficult to handle with a straightfor-
ward application of Newton’s laws of mechanics. Before we can apply energy
conservation to astronomical situations, however, we must know the gravita-
tional potential energy for a spherical object such as the Earth. Now you may be
wondering, “Don’t we already know the potential energy of gravity?” Well, in



1 2 – 4 G R A V I T A T I O N A L  P O T E N T I A L  E N E R G Y 395

fact, in Chapter 8 we said that the gravitational potential energy a distance h
above the Earth’s surface is As was mentioned at the time, however,
this result is valid only near the Earth’s surface, where we can say that the accel-
eration of gravity, g, is approximately constant.

As the distance from the Earth increases we know that g decreases, as was
shown in Example 12–2. It follows that mgh cannot be valid for arbitrary h. In-
deed, it can be shown that the gravitational potential energy of a system consist-
ing of a mass m a distance r from the center of the Earth is

12–8

A plot of is presented in Figure 12–14. Note that U approaches zero
as r approaches infinity. This is a common convention in astronomical systems. In
fact, since only differences in potential energy matter, as was mentioned in Chapter 8,
the choice of the reference point is completely arbitrary. When we con-
sidered systems that were near the Earth’s surface, it was natural to let at
ground level. When we consider, instead, distances of astronomical scale, it is
generally more convenient to choose the potential energy to be zero when objects
are separated by an infinite distance.

U = 0
1U = 02

U = -GmME/r

U = -G
mME

r

U = mgh.

E X E R C I S E  1 2 – 4
Use Equation 12–8 to find the gravitational potential energy of a 12.0-kg meteorite
when it is (a) one Earth radius above the surface of the Earth, and (b) on the surface of
the Earth.

S O L U T I O N

a. In this case, the distance from the center of the Earth is thus

b. Now, the distance from the center of the Earth is therefore

Note that the potential energy in part (b) is twice what it was in part (a), since the dis-
tance from the center of the Earth to the meteorite has been halved.

= -16.67 * 10-11 N # m2/kg22112.0 kg215.97 * 1024 kg2
6.37 * 106 m

= -7.50 * 108 J

U = -
GmME

RE

RE,

= -16.67 * 10-11 N # m2/kg22112.0 kg215.97 * 1024 kg2
216.37 * 106 m2 = -3.75 * 108 J

U = -G
mME

2RE

2RE,
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Approximation for U
(g assumed constant)

r
REO 2RE 3RE 4RE

U = – r
GmME

FIGURE 12–14 Gravitational potential
energy as a function of the distance r from
the center of the Earth
The lower curve in this plot shows the
gravitational potential energy,

for r greater than 
Near the Earth’s surface, U is approxi-
mately linear, corresponding to the result

given in Chapter 8.U = mgh

RE.U = -GmME/r,

▲

At first glance, Equation 12–8 doesn’t seem to bear any similarity to mgh,
which we know to be valid near the surface of the Earth. Even so, there is a direct
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connection between these two expressions. Recall that when we say that the po-
tential energy at a height h is mgh, what we mean is that when a mass m is raised
from the ground to a height h, the potential energy of the system increases by the
amount mgh. Let’s calculate the corresponding difference in potential energy
using Equation 12–8.

First, at a height h above the surface of the Earth we have hence
the potential energy there is

On the surface of the Earth, where we have

The corresponding difference in potential energy is

If h is much smaller than the radius of the Earth, it follows that is a small
number. In this case, we can apply the useful approximation 
[see Figure A–5 (b) in Appendix A] to write As a re-
sult, we have

The term in square brackets should look familiar—according to Equation 12–4 it
is simply g. Hence, the increase in potential energy at the height h is

as expected.
The straight line in Figure 12–14 corresponds to the potential energy mgh.

Near the Earth’s surface, it is clear that mgh and are in close agreement.
For larger r, however, the fact that gravity is getting weaker means that the po-
tential energy does not continue rising as rapidly as it would if gravity were of
constant strength.

An important distinction between the potential energy, U, and the gravita-
tional force, is that the force is a vector, whereas the potential energy is a
scalar—that is, U is simply a number. As a result:

The total gravitational potential energy of a system of objects is the
sum of the gravitational potential energies of each pair of objects
separately.

Since U is not a vector, there are no x or y components to consider, as would be
the case with a vector. Finally, the potential energy given in Equation 12–8 applies
to a mass m and the Earth, with mass More generally, if two point masses, 
and are separated by a distance r, their gravitational potential energy is

Gravitational Potential Energy, U

12–9

SI unit: joule, J

In the next Example we use this result, and the fact that U is a scalar, to find the
total gravitational potential energy for a system of three point masses.

U = -G
m1m2

r

m2,
m1ME.

F
!
,

-GmME/r

¢U = mgh

¢U = a -GmME

RE
b11 - h/RE2 - a -GmME

RE
b = m cGME

RE
2 dh

1/11 + h/RE2 L 1 - h/RE.
1/11 + x2 L 1 - x
h/RE

= a -GmME

RE
b a 1

1 + h/RE
b - a -GmME

RE
b

¢U = a -G mME

RE + h
b - a -GmME

RE
b

U = -G
mME

RE

r = RE,

U = -G
mME

RE + h

r = RE + h;
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E X A M P L E  1 2 – 5 S I M P L E  A D D I T I O N

Three masses are positioned as follows: is at the origin; is at and is at
and Find the total gravitational potential energy of this system.

P I C T U R E  T H E  P R O B L E M

The masses and their positions are shown in our sketch. The horizontal and vertical dis-
tances are the diagonal distance is 

S T R A T E G Y

The potential energy associated with each pair of masses is given by Equation 12–9. The
total potential energy of the system is the sum of the potential energy for each of the three
pairs of masses.

S O L U T I O N

22r.r = 1.25 m;

y = 1.25 m.x = 1.25 m
m3 = 0.75 kgx = 0, y = 1.25 m;m2 = 0.75 kgm1 = 2.5 kg

r = 1.25 m

r = 1.25 m

m1

m2 m3

x

y

2 r

1. Use Equation 12–9 to calculate the potential energy for
masses 1 and 2:

 = -1.0 * 10-10 J

 = -16.67 * 10-11 N # m2/kg2212.5 kg210.75 kg2
11.25 m2

 U12 = -G
m1m2

r12

2. Similarly, calculate the potential energy for masses 
2 and 3: 

 = -3.0 * 10-11 J

 = -16.67 * 10-11 N # m2/kg2210.75 kg210.75 kg2
11.25 m2

 U23 = -G
m2m3

r23

I N S I G H T

Note that the total gravitational potential energy of this system, is less than it would be if the separation
of the masses were to approach infinity, in which case The implications of this change in potential energy, in terms of
energy conservation, are considered in the next section.

P R A C T I C E  P R O B L E M

If the distance is reduced by a factor of two to does the potential energy of the system increase, decrease,
or stay the same? Verify your answer by calculating the potential energy in this case. [Answer: The potential energy decreases;
that is, it becomes more negative. We find .]

Some related homework problems: Problem 42, Problem 43

U = 21-2.0 * 10-10 J2
r = 0.625 m,r = 1.25 m

Utotal = 0.
Utotal = -2.0 * 10-10 J,

3. Do the same calculation for masses 1 and 3: 

 = -7.1 * 10-11 J

 = -16.67 * 10-11 N # m2/kg2212.5 kg210.75 kg22211.25 m2

 U13 = -G
m1m3

r13

4. The total potential energy is the sum of the three
contributions calculated above:

 = -2.0 * 10-10 J

 = -1.0 * 10-10 J - 3.0 * 10-11 J - 7.1 * 10-11 J

 Utotal = U12 + U23 + U13

12–5 Energy Conservation
Now that we know the gravitational potential energy, U, at an arbitrary distance
from a spherical object, we can apply energy conservation to astronomical situa-
tions in the same way we applied it to systems near the Earth’s surface in Chap-
ter 8. To be specific, the mechanical energy, E, of an object of mass m a distance r
from the Earth is

12–10E = K + U = 1
2mv

2 - G
mME

r
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Using energy conservation—that is, setting the initial mechanical energy equal to
the final mechanical energy—we can answer questions such as the following:
Suppose that an asteroid has zero speed infinitely far from the Earth. If this aster-
oid were to fall directly toward the Earth, what speed would it have when it
strikes the Earth’s surface?

As you probably know, this is not an entirely academic question. Asteroids
and comets, both large and small, have struck the Earth innumerable times dur-
ing its history. In fact, a particularly large object appears to have struck the Earth
on the Yucatan Peninsula in Mexico, near the town of Chicxulub, some 65 million
years ago. Evidence suggests that this impact may have led to the mass extinc-
tions of the Cretaceous period, during which the dinosaurs disappeared from the
Earth. Unfortunately, such events are not limited to the distant past. For exam-
ple, as recently as 50,000 years ago, an iron asteroid tens of meters in diameter
and shining 10,000 times brighter than the Sun (from atmospheric heating)
slammed into the ground near Winslow, Arizona, forming the 1.2-km-wide Bar-
ringer Meteor Crater. More recently yet, at sunrise on June 30, 1908, a relatively
small stony asteroid streaked through the atmosphere and exploded at an alti-
tude of several kilometers near the Tunguska River in Siberia. The energy re-
leased by the explosion was comparable to that of an H-bomb, and it flattened the
forest for kilometers in all directions. One can only imagine the consequences if an
event like this were to occur near a populated area. Finally, an uncomfortably
close call occurred in the early evening of December 9, 1994, when an asteroid
the size of a mountain passed the Earth at a distance only one-third the
distance from the Earth to the Moon. Thus, though extremely unlikely, the sce-
narios depicted in movies such as Armageddon and Deep Impact are not com-
pletely unrealistic.

Returning to our original question, we can use energy conservation to deter-
mine the speed such an asteroid or comet might have when it hits the Earth. To
begin, we assume the asteroid starts at rest, and hence its initial kinetic energy is
zero, In addition, the initial potential energy of the system, is also zero,
since approaches zero as r approaches infinity. As a result, the total
initial mechanical energy of the asteroid–Earth system is zero: 
Because gravity is a conservative force (as discussed in Section 8–1), the total me-
chanical energy remains constant as the asteroid falls toward the Earth. Thus, as the

Ei = Ki + Ui = 0.
U = -GmME/r

Ui,Ki = 0.

R E A L - W O R L D  P H Y S I C S

The impact of meteorites

▲ Bodies from space have struck the Earth countless times in the past and continue to do so
on a regular basis. Most such objects are relatively small, ranging in size from grains of dust
to fist-sized rocks, and burn up from friction as they pass through the atmosphere, creating
the bright streaks that we know as meteors. But larger objects, including the occasional
comet or asteroid, also cross our path from time to time, and some of these make it to the
surface—often with very dramatic results. The crater above, in Arizona, must be of relatively
recent origin (thousands rather than millions of years old), since erosion has not yet erased
this scar on the Earth’s surface.

The image at right is a false-color gravity anomaly map of the Chicxulub impact crater in
Mexico. The object that struck here some 65 million years ago may have produced such far-
reaching climatic disruption that the dinosaurs and many other species became extinct as a
result. At the center of the crater the strength of gravity is lower than normal (blue) because of
the presence of low-density rock: debris from the impact and sediments that have accumulated
in the crater.

P R O B L E M - S O L V I N G  N O T E

Energy Conservation in 
Astronomical Systems

To apply conservation of energy to an ob-
ject that moves far from the surface of a
planet, one must use 
where r is the distance from the center of
the planet.

U = -GmM/r,
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asteroid moves closer to the Earth and U becomes increasingly negative, the kinetic
energy K must become increasingly positive so that their sum, is always
zero.

We now set the initial energy equal to the final energy to determine the final
speed, Recalling that the final distance r is the radius of the Earth, we have

Solving for the final speed yields

12–11

Substituting numerical values into this expression gives

12–12

Thus, a typical asteroid hits the Earth moving at about 7.0 mi/s—about 16 times
faster than a rifle bullet! Note that this result is independent of the asteroid’s
mass.

To help visualize energy conservation in this system, we plot the gravitational
potential energy U in Figure 12–15. Also indicated in the plot is the total energy,

Since must always equal zero, the value of K goes up as the value
of U goes down. This is illustrated graphically in the figure with the help of sev-
eral histogram bars.

U + KE = 0.

= 11,200 m/s 125,000 mi/h2
vf = C2GME

RE
= C216.67 * 10-11 N # m2/kg2215.97 * 1024 kg2

6.37 * 106 m

vf = A2GME

RE

 0 = 1
2mvf

2 - G
mME

RE

Ei = Ef

RE,vf.

U + K,

Another way to think about this is to imagine a smooth wooden or plastic sur-
face constructed to have the same shape as the plot of U shown in Figure 12–15.
An object placed on this surface has a gravitational potential energy proportional
to the height of the surface above a given reference level. Thus, if a small block is
allowed to slide without friction on the surface, it will move downhill and speed
up as it drops lower in elevation. That is, its kinetic energy will increase as the po-
tential energy of the system decreases. This is completely analogous to the behav-
ior of an asteroid as it “falls” toward the Earth.

A somewhat more elaborate plot showing the same physics is presented in
Figure 12–16. The two-dimensional surface in this case represents the potential en-
ergy function U as one moves away from the Earth in any direction. In particular,
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FIGURE 12–15 Potential and kinetic
energies of an object falling toward Earth
As an object with zero total energy
moves closer to the Earth, its gravita-
tional potential energy, U, becomes in-
creasingly negative. In order for the total
energy to remain zero, it
is necessary for the kinetic energy to be-
come increasingly positive.

E = U + K = 0,
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▲ FIGURE 12–16 A gravitational 
potential “well”
The illustration is a three-dimensional
plot of the gravitational potential energy
near an object such as the Earth. An
object approaching the Earth speeds 
up as it “falls” into the gravitational
potential well.
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the dependence of U on distance r along any radial line in Figure 12–16 is the
same as the shape of U versus r in Figure 12–15. Because the potential energy
drops downward in such a plot, this type of situation is often referred to as a “po-
tential well.” If a marble is allowed to roll on such a surface, its motion is similar
in many ways to the motion of an object near the Earth. In fact, if the marble is
started with the right initial velocity, it will roll in a circular or elliptical “orbit” for
a long time before falling into the center of the well. (Eventually, of course, the
well does swallow up the marble. Though the retarding force of rolling friction is
quite small, it still causes the marble to descend into a lower and lower orbit—just
as air resistance causes a satellite to descend lower and lower into the Earth’s at-
mosphere until it finally burns up.)

E X A M P L E  1 2 – 6 A R M A G E D D O N  R E N D E Z V O U S

In the movie Armageddon, a crew of hard-boiled oil drillers rendezvous with a menacing asteroid just as it passes the orbit of the
Moon on its way toward Earth. Assuming the asteroid starts at rest infinitely far from the Earth, as in the previous discussion,
find its speed when it passes the Moon’s orbit. Assume the Moon orbits at a distance of from the center of the Earth and
that its gravitational influence may be neglected.

P I C T U R E  T H E  P R O B L E M

Our sketch shows the Earth, the Moon, and the asteroid. The ini-
tial position of the asteroid is at infinity, where its speed is zero.
For the purposes of this problem, its final position is at the
Moon’s orbit, where its speed is At this point, the asteroid is
heading directly for the Earth.

S T R A T E G Y

The basic strategy is the same as that used to obtain the speed of
an asteroid in Equation 12–12; namely, we set the initial energy
equal to the final energy and solve for the final speed In this
case, the final radius is As before, the initial energy is
zero.

S O L U T I O N

1. Set the initial energy of the system equal to its 
final energy: 

2. Solve for the final speed, 

3. Substitute the numerical value given in Equation 12–12
for the quantity in parentheses:

I N S I G H T

Note that the majority of the asteroid’s increase in speed occurs
after it passes the Moon. The reason for this can be seen in the ac-
companying plot of the gravitational potential energy, U.

Note that U drops downward more and more rapidly as the
Earth is approached. Thus, while there is relatively little in-
crease in K from infinite distance to there is a substan-
tially larger increase in K from to 

P R A C T I C E  P R O B L E M

At what distance from the center of the Earth is the asteroid’s speed equal to 3535 m/s? [Answer:
]

Some related homework problems: Problem 50, Problem 52
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A C T I V E  E X A M P L E  1 2 – 2 F I N D  T H E  D I S T A N C E  T O
A  S A T E L L I T E

A satellite in an elliptical orbit has a speed of 9.00 km/s when it is at its closest ap-
proach to the Earth (perigee). The satellite is from the center of the
Earth at this time. When the satellite is at its greatest distance from the center of
the Earth (apogee), its speed is 3.66 km/s. How far is the satellite from the center
of the Earth at apogee? 

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Set the energy at perigee, equal 
to the energy at apogee, 

2. Solve for 

3. Substitute numerical values:
4. Invert to obtain 

I N S I G H T

In this case, apogee is about 2.5 times farther from the center of the Earth than
perigee.

Y O U R  T U R N

What is the speed of the satellite when it is from the center of the Earth?

(Answers to Your Turn problems are given in the back of the book.)

8.75 * 106 m

r2 = 1.72 * 107 mr2:
1/r2 = 5.80 * 10-8 m-1

1/r2 = 1/r1 + Av2 

2 - v1 

2 B/12GME21/r2:

E2:

1
2mv1 

2 - GmME/r1 = 1
2mv2 

2 - GmME/r2E1,

1RE = 6.37 * 106 m, ME = 5.97 * 1024 kg2

7.00 * 106 m

▲ Comet Hale-Bopp, one of the largest
and brightest comets to visit our celestial
neighborhood in recent decades, photo-
graphed in April 1997. While most of the
planets and planetary satellites in the solar
system have roughly circular orbits, the or-
bits of many comets are highly elliptical. In
accordance with Kepler’s second law, these
objects spend most of their time moving
slowly through cold, distant regions of the
solar system (often far beyond the orbit of
Pluto). Their visits to the inner solar system
are infrequent and relatively brief.Escape Speed

Resisting the pull of Earth’s gravity has always held a fascination for the human
species, from Daedalus and Icarus with their wings of feathers and wax, to
Leonardo da Vinci and his flying machine, to the Montgolfier brothers and their
hot-air balloons. In his 1865 novel, From the Earth to the Moon, Jules Verne imag-
ined launching a spacecraft to the Moon by firing it straight upward from a can-
non. Not a bad idea—if you could survive the initial blast. Today, rockets are fired
into space using the same basic idea, though they smooth out the initial blast by
burning their engines over a period of several minutes.

Suppose, then, that you would like to launch a rocket of mass m with an ini-
tial speed sufficient not only to reach the Moon, but to allow it to escape the Earth
altogether. If we refer to this speed as the escape speed for the Earth, the initial
energy of the rocket is

If the rocket just barely escapes the Earth, its speed will decrease to zero as its dis-
tance from the Earth approaches infinity. Therefore, the rocket’s final kinetic
energy is zero, as is the potential energy of the system, since goes
to zero as It follows that

Equating these energies yields

Therefore, the escape speed from the Earth is

12–13

Note that the escape speed is precisely the same as the speed of the asteroid cal-
culated in Equation 12–12. This is not surprising when you consider that an object
launched from the Earth to infinity is just the reverse of an object falling from
infinity to the Earth.

ve = A2GME

RE
= 11,200 m/s L 25,000 mi/h

1
2mve 

2 - G
mME

RE
= 0

Ef = Kf + Uf = 0 - 0 = 0

r: q .
U = -GmME/r

Ei = Ki + Ui = 1
2mve 

2 - G
mME

RE

ve,
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The result given in Equation 12–13 can be applied to other astronomical ob-
jects as well by simply replacing and with the appropriate mass and radius
for that object.

E X E R C I S E  1 2 – 5
Calculate the escape speed for an object launched from the Moon.

S O L U T I O N

For the Moon we use and With these values,
the escape speed is

The relatively low escape speed of the Moon means that it is much easier to
launch a rocket into space from the Moon than from the Earth. For example, the
tiny lunar module that blasted off from the Moon to return the astronauts to Earth
could not have come close to escaping from the Earth.

Similarly, the Moon’s low escape speed is the reason it has no atmosphere.
Even if you could magically supply the Moon with an atmosphere, it would
soon evaporate into space because the individual molecules in the air move
with speeds great enough to escape. On the Earth, however, where the escape
speed is much higher, gravity can prevent the rapidly moving molecules from
moving off into space. Even so, light molecules, like hydrogen and helium,
move faster for a given temperature than the heavier molecules like nitrogen
and oxygen, as we shall see in Chapter 17. For this reason, the Earth’s atmos-
phere contains virtually no hydrogen or helium. (In fact, helium was first dis-
covered on the Sun, as we point out in Chapter 31; hence its name, which de-
rives from the Greek word for the Sun, “helios.”) Since a stable atmosphere is
a likely requirement for the development of life, it follows that the escape
speed is an important quantity when considering the possibility of life on
other planets.

 = 2370 m/s 15320 mi/h2
 ve = C2GMm

Rm
= C216.67 * 10-11 N # m2/kg2217.35 * 1022 kg2

1.74 * 106 m

Rm = 1.74 * 106 m.Mm = 7.35 * 1022 kg

REME

C O N C E P T U A L  C H E C K P O I N T  1 2 – 3 C O M P A R E  E S C A P E  S P E E D S

Is the escape speed for a 10-N rocket (a) equal to, (b) less than, or (c) greater than the
escape speed for a 10,000-N rocket?

R E A S O N I N G  A N D  D I S C U S S I O N

The derivation of the escape speed in Equation 12–13 shows that the mass of the rocket,
m, cancels. Hence, the escape speed is the same for all objects, regardless of their mass.
On the other hand, the kinetic energy required to give the 10,000-N rocket the escape
speed is 1000 times greater than the kinetic energy required for the 10-N rocket.

A N S W E R

(a) Equal. The escape speed is independent of the mass that is escaping.

E X A M P L E  1 2 – 7 H A L F  E S C A P E

Suppose Jules Verne’s cannon launches a rocket straight upward with an initial speed equal to one-half the escape speed. How
far from the center of the Earth does this rocket travel before momentarily coming to rest? (Ignore air resistance in the Earth’s
atmosphere.)

P I C T U R E  T H E  P R O B L E M

Our sketch shows the rocket launched vertically from the Earth’s surface with an initial speed equal to half the escape speed,
The rocket moves radially away from the Earth until it comes to rest, at a distance r from the center of the

Earth.
v = 0,v0 = 1

2ve.

R E A L - W O R L D  P H Y S I C S

Planetary atmospheres
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S T R A T E G Y

Since we ignore air resistance, the final energy of the rocket,
must be equal to its initial energy, Setting these

energies equal determines the point where the rocket
comes to rest.

S O L U T I O N

1. The initial speed, is one-half the escape speed. Use 
Equation 12–13 to write an expression for 

2. Write out the initial energy of the rocket, 

3. Write out the final energy of the rocket. Note that 
the rocket is a distance r from the center of the 
Earth when it comes to rest:

4. Equate the initial and final energies: 

5. Solve the relation for r: 

I N S I G H T

An initial speed of allows the rocket to go to infinity before stopping. If the rocket is launched with half that initial speed, how-
ever, it can only rise to a height of above the Earth’s surface. Quite a dramatic difference.

P R A C T I C E  P R O B L E M

Find the rocket’s maximum distance from the center of the Earth, r, if its launch speed is [Answer: ]

Some related homework problems: Problem 49, Problem 56
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FIGURE 12–17 Speed of a rocket as a
function of distance from the center of the
Earth, r, for various vertical launch speeds
The lower two curves show launch
speeds that are less than the escape
speed, . In these cases the rocket comes
to rest momentarily at a finite height
above the Earth. The next higher curve
shows the speed of a rocket launched
with the escape speed, . In this case, the
rocket slows to zero speed as the distance
approaches infinity. The top curve corre-
sponds to a launch speed greater than
the escape speed—this rocket has a finite
speed even at infinite distance.
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▲

A plot of the speed of a rocket as a function of its distance from the center of
the Earth is presented in Figure 12–17 for a variety of initial speeds. Note that when
the initial speed is less than the escape speed, the rocket comes to rest momentarily
at a finite distance, r. In particular, if the launch speed is as in the Practice
Problem of Example 12–7, the rocket’s maximum distance from the center of the
Earth is 2.29RE.
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Image seen
from Earth

Galaxy
cluster

Image seen
from Earth

Distant
object

▲ FIGURE 12–18 Gravitational lensing
Astronomers often find that very distant
objects seem to produce multiple images
in their photographs. The cause is the
gravitational attraction of intervening
galaxies or clusters of galaxies, which are
so massive that they can significantly
bend the light from remote objects as it
passes by them on its way to Earth.

Black Holes
As we can see from Equation 12–13, the escape speed of an object increases with in-
creasing mass and decreasing radius. Thus, for example, if a massive star were to
collapse to a relatively small size, its escape speed would become very large. Ac-
cording to Einstein’s theory of general relativity, the escape speed of a compressed,
massive star could even exceed the speed of light. In this case nothing—not even
light—could escape from the star. For this reason, such objects are referred to as
black holes. Anything entering a black hole would be making a one-way trip to an
unknown destiny.

Since black holes cannot be seen directly, our evidence for their existence is in-
direct. However, we can predict that as matter is drawn toward a black hole it
should become heated to the point where it would emit strong beams of X-rays
before disappearing from view. X-ray beams matching these predictions have in
fact been observed. These observations, coupled with a variety of others, give as-
tronomers confidence that massive black holes reside at the core of many galax-
ies—including our own!

Finally, just as a black hole can bend a beam of light back on itself and prevent
it from escaping, any massive object can bend light—at least a little. For example,
light from distant stars is deflected as it passes by the Sun by 1.75 seconds of an
arc (the size of a quarter at a distance of 1.8 miles). Light passing by an entire
galaxy of stars or cluster of galaxies can be bent by significant amounts, however,
as Figure 12–18 indicates. This effect is referred to as gravitational lensing, since the
galaxies act much like the lenses we will study in Chapter 26. Because of gravita-
tional lensing, the images of very distant galaxies or quasars in deep-space astro-
nomical photographs sometimes appear in duplicate, in quadruplicate, or even
spread out into circular arcs.

*12–6 Tides
The reason for the ocean tides that rise and fall twice a day was a perplexing and
enduring mystery until Newton introduced his law of universal gravitation. Even
Galileo, who made so many advances in physics and astronomy, could not ex-
plain the tides. However, with the understanding that a force is required to cause
an object to move in a circular path, and that the force of gravity becomes weaker
with distance, it is possible to describe the tides in detail. In this section we show
how it can be done. In addition, we extend the basic idea of tides to several related
phenomena.

To begin, consider the idealized situation shown in Figure 12–19 (a). Here we see
an object of finite size (a moon or a planet, for example) orbiting a point mass. If
all the mass of the object were concentrated at its center, the gravitational force ex-
erted on it by the central mass would be precisely the amount needed to cause it
to move in its circular path. Since the object is of finite size, however, the force ex-
erted on various parts of it has different magnitudes. For example, points closer to
the central mass experience a greater force than points farther away.

To see the effect of this variation in force, we use a dark red vector in Figure
12–19 (a) to indicate the force exerted by the central mass at three different points
on the object. In addition, we use a light red vector to show the force that is re-
quired at each of these three points to cause a mass at that distance to orbit the
central mass. Comparing these vectors, we see that the forces are identical at the
center of the object—as expected. On the near side of the object, however, the force
exerted by the central mass is larger than the force needed to hold the object in
orbit, and on the far side the force due to the central mass is less than the force
needed to hold the object in orbit. The result is that the near side of the object is
pulled closer to the central mass and the far side tends to move farther from the
central mass. This causes an egg-shaped deformation of the object, as indicated in
Figure 12–19 (a).

R E A L - W O R L D  P H Y S I C S

Black holes and 
gravitational lensing
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Any two objects orbiting one another cause deformations of this type. For ex-
ample, the Earth causes a deformation in the Moon, and the Moon causes a simi-
lar deformation in the Earth. In Figure 12–19 (b) we show the Earth and the waters of
its ocean deformed into an egg shape. Since the waters in the oceans can flow, they
deform much more than the underlying rocky surface of the Earth. As a result, the
water level relative to the surface of the Earth is greater at the tidal bulges shown in
the figure. As the Earth rotates about its axis, a person at a given location will ob-
serve two high tides and two low tides each day. This is the basic mechanism of
the tides on Earth, but the actual situation is complicated by the shape of the coast-
line at different locations and by the additional tidal effects due to the Sun.

The Moon has no oceans, of course, but the tidal bulges produced in it by the
Earth are the reason we see only one side of the Moon. Specifically, the Earth ex-
erts gravitational forces on the tidal bulges of the Moon, causing them to point di-
rectly toward the Earth. If the Moon were to rotate slightly away from this align-
ment, the forces exerted by the Earth would cause a torque that would return the
Moon to the original alignment. The net result is that the Moon’s period of rota-
tion about its axis is equal to its period of revolution about the Earth. This effect,
known as tidal locking, is common among the various moons in the solar system.

A particularly interesting example of tidal locking is provided by Jupiter’s
moon Io, a site of intense volcanism (see the photo on p. 107). Io follows an ellip-
tical orbit around Jupiter, and its tidal deformation is larger when it is closer to
Jupiter than when it is farther away. As a result, each time Io orbits Jupiter it is
squeezed into a greater deformation and then released. This continual flexing of

Low tide

Low tide

High
tide

(a) The mechanism responsible for tides (b) Tidal deformations on Earth

High
tide

▲ FIGURE 12–19 The reason for two tides a day
(a) Tides are caused by a disparity between the gravitational force exerted at various points
on a finite-sized object (dark red arrows) and the centripetal force needed for circular motion
(light red arrows). Note that the gravitational force decreases with distance, as expected. On
the other hand, the centripetal force required to keep an object moving in a circular path
increases with distance. On the near side, therefore, the gravitational force is stronger than
required, and the object is stretched inward. On the far side, the gravitational force is weaker
than required, and the object stretches outward. (b) On the Earth, the water in the oceans
responds more to the deforming effects of tides than do the solid rocks of the land. The
result is two high tides and two low tides daily on opposite sides of the Earth.

Tides on Earth are caused chiefly by the
Moon’s gravitational pull, though at full
and new moon, when the Moon and Sun
are aligned, the Sun’s gravity can enhance
the effect. In some places on Earth, such as
the Bay of Fundy between Maine and Nova
Scotia, local topographic conditions pro-
duce abnormally large tides.

▲

R E A L - W O R L D  P H Y S I C S
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Io causes its internal temperature to rise, just as a rubber ball gets warmer if you
squeeze and release it in your hand over and over. It is this mechanism that is
largely responsible for Io’s ongoing volcanic activity.

In extreme cases, tidal deformation can become so large that an object is liter-
ally torn apart. Since tidal deformation increases as a moon moves closer to the
planet it orbits, there is a limiting orbital radius—known as the Roche limit—inside
of which this breakup occurs. A most spectacular example of this effect can be
seen in the rings of Saturn, all of which exist well within the Roche limit. The
small chunks of ice and other materials that make up the rings may be the remains
of a moon that moved too close to Saturn and was destroyed by tidal forces. On
the other hand, they may represent material that tidal forces prevented from ag-
gregating to form a moon in the first place. In either case, this dramatic debris
field will now never coalesce to form a moon—tidal effects will not allow such a
process to occur. Similar remarks apply to the smaller, much fainter rings that
spacecraft have observed around Jupiter, Uranus, and Neptune.

C H A P T E R  S U M M A RY

1 2 – 1 N E W T O N ’ S  L AW  O F  U N I V E R S A L  G R AV I TAT I O N

The force of gravity between two point masses, and separated by a dis-
tance r is attractive and of magnitude

12–1

G is the universal gravitation constant:

12–2

Gravity exerts an action-reaction pair of forces on and that is, the force 
exerted by gravity on is equal in magnitude but opposite in direction to
the force exerted on 

Inverse Square Dependence
The force of gravity decreases with distance, r, as This is referred to as an
inverse square dependence.

Superposition
If more than one mass exerts a gravitational force on a given object, the net force
is simply the vector sum of each force individually.

1/r2.
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T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The general force of gravity, as presented in Equation 12–1,
is a vector quantity. Therefore, vector calculations (Chapter
3) are important here. See, in particular, Example 12–1. We
also use the connection between force and acceleration,

(Chapter 5), in Section 12–2.F = ma

In Chapter 19 we shall see that the force between two
electric charges, denoted q1 and q2, has exactly the same
form as the general force of gravity between two masses,
Equation 12–1. The electric force is referred to as Coulomb’s
law, and is presented in Equation 19–5.

The conservation of angular momentum (Chapter 11) plays
a key role in gravity, leading to Kepler’s second law in
Section 12–3.

The force between electric charges is conservative, and
hence it leads to an electric potential energy that has the
same form as the gravitational potential energy in Section
12–4. See Sections 20–1 and 20–2.

Just as the force of gravity is generalized in this chapter, so
too is the gravitational potential energy. Thus, the expression

(Chapter 8) is generalized to in
Section 12–4. We then use this new form of the potential
energy in situations involving energy conservation in
Section 12–5.

U = -Gm1m2/rU = mgh
The analysis used to derive Kepler’s third law in Section
12–3 is used again when we explore the Bohr model of the
hydrogen atom in Chapter 31. The calculation is the same,
but in hydrogen the Coulomb force between electric
charges (Equation 19–5) is responsible for the orbital
motion.

R E A L - W O R L D  P H Y S I C S
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1 2 – 2 G R AV I TAT I O N A L  AT T R A C T I O N  O F  S P H E R I C A L  B O D I E S

In calculating gravitational forces, spherical objects can be replaced by point masses.

Uniform Sphere
If a mass m is outside a uniform sphere of mass M, the gravitational force
between m and the sphere is equivalent to the force exerted by a point mass M
located at the center of the sphere.

Acceleration of Gravity
Replacing the Earth with a point mass at its center, we find that the acceleration
of gravity on the surface of the Earth is

12–4

Weighing the Earth
Cavendish was the first to determine the value of the universal gravitation
constant G by direct experiment. Knowing G allows one to calculate the mass of
the Earth:

12–5

1 2 – 3 K E P L E R ’ S  L AW S  O F  O R B I TA L  M O T I O N

Kepler determined three laws that describe the motion of the planets in our
solar system. Newton showed that Kepler’s laws are a direct consequence of his
law of universal gravitation.

Kepler’s First Law
The orbits of the planets are ellipses, with the Sun at one focus.

Kepler’s Second Law
Planets sweep out equal area in equal time.

Kepler’s Third Law
The period of a planet’s orbit, T, is proportional to the power of its average
distance from the Sun, r:

12–7

1 2 – 4 G R AV I TAT I O N A L  P O T E N T I A L  E N E R GY

The gravitational potential energy, U, between two point masses and 
separated by a distance r is

12–9

Zero Level
The zero level of the gravitational potential energy between two point masses is
chosen to be at infinite separation of the two masses.

U Is a Scalar
The gravitational potential energy, U, is a scalar. Therefore, the total potential
energy for a group of objects is simply the numerical sum of the potential
energy associated with each pair of masses.

1 2 – 5 E N E R GY  C O N S E R VAT I O N

With the gravitational potential energy given in Section 12–4, energy conserva-
tion can be applied to astronomical situations.

Total Mechanical Energy
An object with mass m, speed v, and at a distance r from the center of the Earth
has a total energy given by

12–10E = K + U = 1
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Escape Speed
An object launched from the surface of the Earth with the escape speed can
move infinitely far from the Earth. In the limit of infinite separation, the object
slows to zero speed.

The escape speed for the Earth is given by

12–13

Its numerical value is A similar expression can be
applied to other astronomical bodies.

* 1 2 – 6 T I D E S

Tides result from the variation of the gravitational force from one side of an
astronomical object to the other side.

Tidal Locking
Tidal locking occurs when one astronomical object always points its tidal bulge
at the object it orbits.

Roche Limit
Tidal deformation increases as an astronomical object moves closer to the body
it orbits. At the Roche limit, the tidal deformation is so great that it breaks the
object into small pieces.

P R O B L E M - S O L V I N G  S U M M A RY

Type of Problem Relevant Physical Concepts Related Examples

Find the force due to gravity. The magnitude of the force is given by Newton’s law Examples 12–1, 12–2, 12–3
of universal gravitation, The direction

of the force is attractive and along the line connecting
and If more than one force is involved, the 

net force is the vector sum of the individual forces.

Relate the period of a planet to Use Kepler’s third law, Example 12–4 
the radius of its orbit and the Active Example 12–1
mass of the body it orbits.

Determine the speed of an object Use energy conservation, with the gravitational Examples 12–6, 12–7 
at a particular location, given its potential energy given by Active Example 12–2
initial speed and location.

U = -Gm1m2/r.

T = A2p/2GM Br3/2.

m2.m1

F = Gm1m2/r2.

11,200 m/s = 25,000 mi/h.

ve = A2GME

RE

ve

Low tide

Low tide

High
tide

(a) (b)

High
tide

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

1. It is often said that astronauts in orbit experience weightless-
ness because they are beyond the pull of Earth’s gravity. Is this
statement correct? Explain.

2. When a person passes you on the street, you do not feel a grav-
itational tug. Explain.

3. Two objects experience a gravitational attraction. Give a reason
why the gravitational force between them does not depend on
the sum of their masses.

4. Imagine bringing the tips of your index fingers together. Each fin-
ger contains a certain finite mass, and the distance between them
goes to zero as they come into contact. From the force law

one might conclude that the attractive force be-
tween the fingers is infinite, and, therefore, that your fingers must
remain forever stuck together. What is wrong with this argument?

5. Does the radius vector of Mars sweep out the same amount of
area per time as that of the Earth? Why or why not?

6. When a communications satellite is placed in a geosynchronous
orbit above the equator, it remains fixed over a given point on

F = Gm1m2/r2

the ground. Is it possible to put a satellite into an orbit so that it
remains fixed above the North Pole? Explain.

7. The Mass of Pluto On June 22, 1978, James Christy made the
first observation of a moon orbiting Pluto. Until that time the
mass of Pluto was not known, but with the discovery of its moon,
Charon, its mass could be calculated with some accuracy. Explain.

8. Rockets are launched into space from Cape Canaveral in an
easterly direction. Is there an advantage to launching to the east
versus launching to the west? Explain.

9. One day in the future you may take a pleasure cruise to the
Moon. While there you might climb a lunar mountain and
throw a rock horizontally from its summit. If, in principle, you
could throw the rock fast enough, it might end up hitting you in
the back. Explain.

10. Apollo astronauts orbiting the Moon at low altitude noticed oc-
casional changes in their orbit that they attributed to localized
concentrations of mass below the lunar surface. Just what effect
would such “mascons” have on their orbit?

For instructor-assigned homework, go to www.masteringphysics.com
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Path of Earth-Moon
center of mass

Path of Earth-Moon
center of mass

This is not the
path of the Moon

Path of the Moon

▲ FIGURE 12–20 Conceptual Question 13

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••)
are used to indicate the level of difficulty.

S E C T I O N  1 2 – 1    N E W T O N ’ S  L AW  O F  U N I V E R S A L
G R AV I TAT I O N

1. • CE System A has masses m and m separated by a distance r;
system B has masses m and 2m separated by a distance 2r; sys-
tem C has masses 2m and 3m separated by a distance 2r; and
system D has masses 4m and 5m separated by a distance 3r.
Rank these systems in order of increasing gravitational force.
Indicate ties where appropriate.

2. • In each hand you hold a 0.16-kg apple. What is the gravita-
tional force exerted by each apple on the other when their sep-
aration is (a) 0.25 m and (b) 0.50 m?

3. • A 6.1-kg bowling ball and a 7.2-kg bowling ball rest on a rack
0.75 m apart. (a) What is the force of gravity exerted on each of
the balls by the other ball? (b) At what separation is the force of
gravity between the balls equal to ?

4. • A communications satellite with a mass of 480 kg is in a cir-
cular orbit about the Earth. The radius of the orbit is 35,000 km
as measured from the center of the Earth. Calculate (a) the
weight of the satellite on the surface of the Earth and (b) the
gravitational force exerted on the satellite by the Earth when it
is in orbit.

5. • The Attraction of Ceres Ceres, the largest asteroid known,
has a mass of roughly . If Ceres passes within
14,000 km of the spaceship in which you are traveling, what
force does it exert on you? (Use an approximate value for your
mass, and treat yourself and the asteroid as point objects.)

6. • In one hand you hold a 0.11-kg apple, in the other hand a 0.24-
kg orange. The apple and orange are separated by 0.85 m. What
is the magnitude of the force of gravity that (a) the orange exerts
on the apple and (b) the apple exerts on the orange?

7. •• IP A spaceship of mass m travels from the Earth to the
Moon along a line that passes through the center of the Earth
and the center of the Moon. (a) At what distance from the cen-
ter of the Earth is the force due to the Earth twice the magni-
tude of the force due to the Moon? (b) How does your answer
to part (a) depend on the mass of the spaceship? Explain.

8. •• At new moon, the Earth, Moon, and Sun are in a line, as in-
dicated in Figure 12–21. Find the direction and magnitude of the
net gravitational force exerted on (a) the Earth, (b) the Moon,
and (c) the Sun.

8.7 * 1020 kg

2.0 * 10-9 N

9. •• When the Earth, Moon, and Sun form a right triangle, with
the Moon located at the right angle, as shown in Figure 12–22, the
Moon is in its third-quarter phase. (The Earth is viewed here
from above its North Pole.) Find the magnitude and direction
of the net force exerted on the Moon. Give the direction relative
to the line connecting the Moon and the Sun.

EarthMoonSun

▲ FIGURE 12–21 Problem 8

11. If you light a candle on the space shuttle—which would not
be a good idea—would it burn the same as on the Earth?
Explain.

12. The force exerted by the Sun on the Moon is more than twice
the force exerted by the Earth on the Moon. Should the Moon be
thought of as orbiting the Earth or the Sun? Explain.

13. The Path of the Moon The Earth and Moon exert gravitational
forces on one another as they orbit the Sun. As a result, the path
they follow is not the simple circular orbit you would expect if ei-
ther one orbited the Sun alone. Occasionally you will see a sug-
gestion that the Moon follows a path like a sine wave centered on
a circular path, as in the upper part of Figure 12–20. This is incorrect.
The Moon’s path is qualitatively like that shown in the lower part
of Figure 12–20. Explain. (Refer to Conceptual Question 12.)

10. •• Repeat the previous problem, this time finding the magni-
tude and direction of the net force acting on the Sun. Give the
direction relative to the line connecting the Sun and the Moon.

11. •• IP Three 6.75-kg masses are at the corners of an equilateral
triangle and located in space far from any other masses. (a) If
the sides of the triangle are 1.25 m long, find the magnitude of
the net force exerted on each of the three masses. (b) How does
your answer to part (a) change if the sides of the triangle are
doubled in length?

12. •• IP Four masses are positioned at the corners of a rectangle,
as indicated in Figure 12–23. (a) Find the magnitude and direc-
tion of the net force acting on the 2.0-kg mass. (b) How do your
answers to part (a) change (if at all) if all sides of the rectangle
are doubled in length?

Earth

MoonSun

▲ FIGURE 12–22 Problems 9, 10, and 73

1.0 kg 2.0 kg

3.0 kg4.0 kg

0.10 m

0.20 m

▲ FIGURE 12–23 Problems 12 and 42
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S E C T I O N  1 2 – 3    K E P L E R ’ S  L AW S  O F  O R B I TA L
M O T I O N

24. • CE Predict/Explain The Speed of the Earth The orbital
speed of the Earth is greatest around January 4 and least
around July 4. (a) Is the distance from the Earth to the Sun on
January 4 greater than, less than, or equal to its distance from
the Sun on July 4? (b) Choose the best explanation from among
the following:

I. The Earth’s orbit is circular, with equal distance from the
Sun at all times.

II. The Earth sweeps out equal area in equal time, thus it must
be closer to the Sun when it is moving faster.

III. The greater the speed of the Earth, the greater its distance
from the Sun.

25. • CE A satellite orbits the Earth in a circular orbit of radius r. At
some point its rocket engine is fired in such a way that its
speed increases rapidly by a small amount. As a result, do the
(a) apogee distance and (b) perigee distance increase, decrease,
or stay the same?

26. • CE Repeat the previous problem, only this time with the
rocket engine of the satellite fired in such a way as to slow the
satellite.

27. • CE Predict/Explain The Earth–Moon Distance Is Increas-
ing Laser reflectors left on the surface of the Moon by the
Apollo astronauts show that the average distance from the
Earth to the Moon is increasing at the rate of 3.8 cm per year.
(a) As a result, will the length of the month increase, decrease,
or remain the same? (b) Choose the best explanation from
among the following:

I. The greater the radius of an orbit, the greater the period,
which implies a longer month.

II. The length of the month will remain the same due to con-
servation of angular momentum.

III. The speed of the Moon is greater with increasing radius;
therefore, the length of the month will be less.

28. • Apollo Missions On Apollo missions to the Moon, the com-
mand module orbited at an altitude of 110 km above the lunar
surface. How long did it take for the command module to com-
plete one orbit?

29. • Find the orbital speed of a satellite in a geosynchronous cir-
cular orbit above the surface of the Earth.

30. • An Extrasolar Planet In July of 1999 a planet was reported
to be orbiting the Sun-like star Iota Horologii with a period of
320 days. Find the radius of the planet’s orbit, assuming that
Iota Horologii has the same mass as the Sun. (This planet is pre-
sumably similar to Jupiter, but it may have large, rocky moons
that enjoy a relatively pleasant climate.)

31. • Phobos, one of the moons of Mars, orbits at a distance of 
9378 km from the center of the red planet. What is the orbital
period of Phobos?

32. • The largest moon in the solar system is Ganymede, a moon of
Jupiter. Ganymede orbits at a distance of from the
center of Jupiter with an orbital period of about .
Using this information, find the mass of Jupiter.

33. •• IP An Asteroid with Its Own Moon The asteroid 243 Ida
has its own small moon, Dactyl. (See the photo on p. 390) (a) Out-
line a strategy to find the mass of 243 Ida, given that the orbital
radius of Dactyl is 89 km and its period is 19 hr. (b) Use your
strategy to calculate the mass of 243 Ida.

6.18 * 105 s
1.07 * 109 m

3.58 * 107 m

13. ••• Suppose that three astronomical objects (1, 2, and 3) are
observed to lie on a line, and that the distance from object 1 to
object 3 is D. Given that object 1 has four times the mass of ob-
ject 3 and seven times the mass of object 2, find the distance
between objects 1 and 2 for which the net force on object 2 is
zero.

S E C T I O N  1 2 – 2    G R AV I TAT I O N A L  AT T R A C T I O N
O F  S P H E R I C A L  B O D I E S

14. • Find the acceleration due to gravity on the surface of (a) Mer-
cury and (b) Venus.

15. • At what altitude above the Earth’s surface is the acceleration
due to gravity equal to g/2?

16. • Two 6.7-kg bowling balls, each with a radius of 0.11 m, are in
contact with one another. What is the gravitational attraction
between the bowling balls?

17. • What is the acceleration due to Earth’s gravity at a distance from
the center of the Earth equal to the orbital radius of the Moon?

18. • Gravity on Titan Titan is the largest moon of Saturn and the
only moon in the solar system known to have a substantial
atmosphere. Find the acceleration due to gravity on Titan’s
surface, given that its mass is and its radius is
2570 km.

19. •• IP At a certain distance from the center of the Earth, a 4.6-kg
object has a weight of 2.2 N. (a) Find this distance. (b) If the ob-
ject is released at this location and allowed to fall toward the
Earth, what is its initial acceleration? (c) If the object is now
moved twice as far from the Earth, by what factor does its
weight change? Explain. (d) By what factor does its initial ac-
celeration change? Explain.

20. •• The acceleration due to gravity on the Moon’s surface is
known to be about one-sixth the acceleration due to gravity on
the Earth. Given that the radius of the Moon is roughly one-
quarter that of the Earth, find the mass of the Moon in terms of
the mass of the Earth.

21. •• IP An Extraterrestrial Volcano Several volcanoes have
been observed erupting on the surface of Jupiter’s closest
Galilean moon, Io. Suppose that material ejected from one of
these volcanoes reaches a height of 5.00 km after being pro-
jected straight upward with an initial speed of 134 m/s. Given
that the radius of Io is 1820 km, (a) outline a strategy that allows
you to calculate the mass of Io. (b) Use your strategy to calcu-
late Io’s mass.

22. •• IP Verne’s Trip to the Moon In his novel From the Earth to
the Moon, Jules Verne imagined that astronauts inside a space-
ship would walk on the floor of the cabin when the force ex-
erted on the ship by the Earth was greater than the force exerted
by the Moon. When the force exerted by the Moon was greater,
he thought the astronauts would walk on the ceiling of the
cabin. (a) At what distance from the center of the Earth would
the forces exerted on the spaceship by the Earth and the Moon
be equal? (b) Explain why Verne’s description of gravitational
effects is incorrect.

23. ••• Consider an asteroid with a radius of 19 km and a mass of
. Assume the asteroid is roughly spherical. (a)

What is the acceleration due to gravity on the surface of the as-
teroid? (b) Suppose the asteroid spins about an axis through its
center, like the Earth, with a rotational period . What is the
smallest value can have before loose rocks on the asteroid’s
equator begin to fly off the surface?

T
T

3.35 * 1015 kg

1.35 * 1023 kg
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45. •• Find the minimum kinetic energy needed for a 39,000-kg
rocket to escape (a) the Moon or (b) the Earth.

S E C T I O N  1 2 – 5    E N E R GY  C O N S E R VAT I O N

46. • CE Predict/Explain Suppose the Earth were to suddenly
shrink to half its current diameter, with its mass remaining con-
stant. (a) Would the escape speed of the Earth increase, de-
crease, or stay the same? (b) Choose the best explanation from
among the following:

I. Since the radius of the Earth would be smaller, the escape
speed would also be smaller.

II. The Earth would have the same amount of mass, and hence
its escape speed would be unchanged.

III. The force of gravity would be much stronger on the surface
of the compressed Earth, leading to a greater escape speed.

47. • CE Is the energy required to launch a rocket vertically to a
height h greater than, less than, or equal to the energy required
to put the same rocket into orbit at the height h? Explain.

48. • Suppose one of the Global Positioning System satellites has a
speed of 4.46 km/s at perigee and a speed of 3.64 km/s at apogee.
If the distance from the center of the Earth to the satellite at perigee
is , what is the corresponding distance at apogee?

49. • Meteorites from Mars Several meteorites found in Antarc-
tica are believed to have come from Mars, including the famous
ALH84001 meteorite that some believe contains fossils of an-
cient life on Mars. Meteorites from Mars are thought to get to
Earth by being blasted off the Martian surface when a large ob-
ject (such as an asteroid or a comet) crashes into the planet.
What speed must a rock have to escape Mars?

2.00 * 104 km

34. •• GPS Satellites GPS (Global Positioning System) satellites
orbit at an altitude of . Find (a) the orbital period,
and (b) the orbital speed of such a satellite.

35. •• IP Two satellites orbit the Earth, with satellite 1 at a greater
altitude than satellite 2. (a) Which satellite has the greater
orbital speed? Explain. (b) Calculate the orbital speed of a satel-
lite that orbits at an altitude of one Earth radius above the sur-
face of the Earth. (c) Calculate the orbital speed of a satellite that
orbits at an altitude of two Earth radii above the surface of the
Earth.

36. •• IP Calculate the orbital periods of satellites that orbit (a) one
Earth radius above the surface of the Earth and (b) two Earth
radii above the surface of the Earth. (c) How do your answers to
parts (a) and (b) depend on the mass of the satellites? Explain.
(d) How do your answers to parts (a) and (b) depend on the
mass of the Earth? Explain.

37. •• IP The Martian moon Deimos has an orbital period that is
greater than the other Martian moon, Phobos. Both moons have
approximately circular orbits. (a) Is Deimos closer to or farther
from Mars than Phobos? Explain. (b) Calculate the distance
from the center of Mars to Deimos given that its orbital period
is .

38. ••• Binary Stars Centauri A and Centauri B are binary stars
with a separation of and an orbital period of

. Assuming the two stars are equally massive
(which is approximately the case), determine their mass.

39. ••• Find the speed of Centauri A and Centauri B, using the in-
formation given in the previous problem.

S E C T I O N  1 2 – 4    G R AV I TAT I O N A L  P O T E N T I A L
E N E R GY

40. • Sputnik The first artificial satellite to orbit the Earth was
Sputnik I, launched October 4, 1957. The mass of Sputnik I was
83.5 kg, and its distances from the center of the Earth at apogee
and perigee were 7330 km and 6610 km, respectively. Find the
difference in gravitational potential energy for Sputnik I as it
moved from apogee to perigee.

41. •• CE Predict/Explain (a) Is the amount of energy required to
get a spacecraft from the Earth to the Moon greater than, less
than, or equal to the energy required to get the same spacecraft
from the Moon to the Earth? (b) Choose the best explanation
from among the following:

I. The escape speed of the Moon is less than that of the Earth;
therefore, less energy is required to leave the Moon.

II. The situation is symmetric, and hence the same amount of
energy is required to travel in either direction.

III. It takes more energy to go from the Moon to the Earth be-
cause the Moon is orbiting the Earth.

42. •• IP Consider the four masses shown in Figure 12–23. (a) Find
the total gravitational potential energy of this system. (b) How
does your answer to part (a) change if all the masses in the sys-
tem are doubled? (c) How does your answer to part (a) change
if, instead, all the sides of the rectangle are halved in length?

43. •• Calculate the gravitational potential energy of a 8.8-kg mass
(a) on the surface of the Earth and (b) at an altitude of 350 km.
(c) Take the difference between the results for parts (b) and (a),
and compare with mgh, where .

44. •• Two 0.59-kg basketballs, each with a radius of 12 cm, are just
touching. How much energy is required to change the separation
between the centers of the basketballs to (a) 1.0 m and (b) 10.0 m?
(Ignore any other gravitational interactions.)

h = 350 km

2.52 * 109 s
3.45 * 1012 m

1.10 * 105 s

2.0 * 107 m

The meteorite ALH84001 (left), dislodged from the Martian surface 
by a tremendous impact, drifted through space for millions of years

before falling to Earth in Antarctica about 13,000 years ago. The
electron micrograph at right shows tubular structures within the

meteorite; some scientists think they are traces of primitive, 
bacteria-like organisms that may have lived on Mars billions 

of years ago. (Problem 49)

50. • Referring to Example 12–1, if the Millennium Eagle is at rest at
point A, what is its speed at point B?

51. • What is the launch speed of a projectile that rises vertically
above the Earth to an altitude equal to one Earth radius before
coming to rest momentarily?

52. • A projectile launched vertically from the surface of the Moon
rises to an altitude of 365 km. What was the projectile’s initial
speed?

53. • Find the escape velocity for (a) Mercury and (b) Venus.

54. •• IP Halley’s Comet Halley’s comet, which passes around
the Sun every 76 years, has an elliptical orbit. When closest to
the Sun (perihelion) it is at a distance of and
moves with a speed of 54.6 km/s. The greatest distance between
Halley’s comet and the Sun (aphelion) is (a) Is
the speed of Halley’s comet greater than or less than 54.6 km/s

6.152 * 1012 m.

8.823 * 1010 m
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when it is at aphelion? Explain. (b) Calculate its speed at
aphelion.

55. •• The End of the Lunar Module On Apollo Moon missions,
the lunar module would blast off from the Moon’s surface and
dock with the command module in lunar orbit. After docking,
the lunar module would be jettisoned and allowed to crash
back onto the lunar surface. Seismometers placed on the
Moon’s surface by the astronauts would then pick up the re-
sulting seismic waves. Find the impact speed of the lunar mod-
ule, given that it is jettisoned from an orbit 110 km above the
lunar surface moving with a speed of 1630 m/s.

56. •• If a projectile is launched vertically from the Earth with a
speed equal to the escape speed, how high above the Earth’s
surface is it when its speed is half the escape speed?

57. •• Suppose a planet is discovered orbiting a distant star. If the
mass of the planet is 10 times the mass of the Earth, and its ra-
dius is one-tenth the Earth’s radius, how does the escape speed
of this planet compare with that of the Earth?

58. •• A projectile is launched vertically from the surface of the
Moon with an initial speed of 1050 m/s. At what altitude is the
projectile’s speed one-half its initial value?

59. •• To what radius would the Sun have to be contracted for its
escape speed to equal the speed of light? (Black holes have es-
cape speeds greater than the speed of light; hence we see no
light from them.)

60. •• IP Two baseballs, each with a mass of 0.148 kg, are separated
by a distance of 395 m in outer space, far from any other objects.
(a) If the balls are released from rest, what speed do they have
when their separation has decreased to 145 m? (b) Suppose the
mass of the balls is doubled. Would the speed found in part (a)
increase, decrease, or stay the same? Explain.

61. ••• On Earth, a person can jump vertically and rise to a height
h. What is the radius of the largest spherical asteroid from which
this person could escape by jumping straight upward? Assume
that each cubic meter of the asteroid has a mass of 3500 kg.

* S E C T I O N  1 2 – 6    T I D E S

62. •• As will be shown in Problem 63, the magnitude of the tidal
force exerted on an object of mass m and length a is approxi-
mately . In this expression, M is the mass of the
body causing the tidal force and r is the distance from the cen-
ter of m to the center of M. Suppose you are 1 million miles
away from a black hole whose mass is a million times that of
the Sun. (a) Estimate the tidal force exerted on your body by
the black hole. (b) At what distance will the tidal force be ap-
proximately 10 times greater than your weight?

63. ••• A dumbbell has a mass m on either end of a rod of length
2a. The center of the dumbbell is a distance r from the center of
the Earth, and the dumbbell is aligned radially. If , show
that the difference in the gravitational force exerted on the two
masses by the Earth is approximately . (Note: The
difference in force causes a tension in the rod connecting the
masses. We refer to this as a tidal force.) [Hint: Use the fact that

– ~ for .]

64. ••• Referring to the previous problem, suppose the rod con-
necting the two masses m is removed. In this case, the only force
between the two masses is their mutual gravitational attraction.
In addition, suppose the masses are spheres of radius a and mass

that touch each other. (The Greek letter stands for
the density of the masses.) (a) Write an expression for the grav-
itational force between the masses m. (b) Find the distance from
the center of the Earth, r, for which the gravitational force
found in part (a) is equal to the tidal force found in Problem 63.

rm = 4
3pa

3r

r W a4a/r31/(r + a)21/(r - a)2

4GmMEa/r
3

r W a

4GmMa/r3

This distance is known as the Roche limit. (c) Calculate the
Roche limit for Saturn, assuming (The famous
rings of Saturn are within the Roche limit for that planet. Thus,
the innumerable small objects, composed mostly of ice, that
make up the rings will never coalesce to form a moon.)

G E N E R A L  P R O B L E M S

65. • CE You weigh yourself on a scale inside an airplane flying
due east above the equator. If the airplane now turns around
and heads due west with the same speed, will the reading on
the scale increase, decrease, or stay the same? Explain.

66. • CE Rank objects A, B, and C in Figure 12–24 in order of in-
creasing net gravitational force experienced by the object. Indi-
cate ties where appropriate.

r = 3330 kg/m3.

67. • CE Referring to Figure 12–24, rank objects A, B, and C in order
of increasing initial acceleration each would experience if it
alone were allowed to move. Indicate ties where appropriate.

68. • CE When the Moon is in its new-moon position (directly be-
tween the Earth and the Sun), does the net force exerted on it by
the Sun and the Earth point toward the Sun, or point toward the
Earth? Explain. (Refer to Conceptual Questions 12 and 13 as
well as Figure 12–20.)

69. • CE A satellite goes through one complete orbit of the Earth.
(a) Is the net work done on it by the Earth’s gravitational force
positive, negative, or zero? Explain. (b) Does your answer to
part (a) depend on whether the orbit is circular or elliptical?

70. • CE The Crash of Skylab Skylab, the largest spacecraft ever to
fall back to the Earth, met its fiery end on July 11, 1979, after fly-
ing directly over Everett, WA, on its last orbit. On the CBS Evening
News the night before the crash, anchorman Walter Cronkite, in
his rich baritone voice, made the following statement: “NASA
says there is a little chance that Skylab will land in a populated
area.” After the commercial, he immediately corrected himself by
saying,“I meant to say ‘there is little chance’ Skylab will hit a pop-
ulated area.” In fact, it landed primarily in the Indian Ocean off
the west coast of Australia, though several pieces were recovered
near the town of Esperance, Australia, which later sent the U.S.
State Department a $400 bill for littering. The cause of Skylab’s
crash was the friction it experienced in the upper reaches of the
Earth’s atmosphere. As the radius of Skylab’s orbit decreased,
did its speed increase, decrease, or stay the same? Explain.

71. • Consider a system consisting of three masses on the x axis.
Mass is at ; mass is at

; and mass is at . What is
the total gravitational potential energy of this system?

72. •• An astronaut exploring a distant solar system lands on an
unnamed planet with a radius of 3860 km. When the astronaut
jumps upward with an initial speed of 3.10 m/s, she rises to a
height of 0.580 m. What is the mass of the planet?

73. •• IP When the Moon is in its third-quarter phase, the Earth,
Moon, and Sun form a right triangle, as shown in Figure 12–22.
Calculate the magnitude of the force exerted on the Moon by 
(a) the Earth and (b) the Sun. (c) Does it make more sense to think
of the Moon as orbiting the Sun, with a small effect due to the
Earth, or as orbiting the Earth, with a small effect due to the Sun?

x = 3.00 mm3 = 3.00 kgx = 2.00 m
m2 = 2.00 kgx = 1.00 mm1 = 1.00 kg

3M2MM

x = 2L
object C

x = L
object B

x = 0
object A

▲ FIGURE 12–24
Problems 66 and 67
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74. •• An equilateral triangle 10.0 m on a side has a 1.00-kg mass at
one corner, a 2.00-kg mass at another corner, and a 3.00-kg mass
at the third corner (Figure 12–25). Find the magnitude and direc-
tion of the net force acting on the 1.00-kg mass.

1.00 kg

2.00 kg3.00 kg

10.0 m10.0 m

10.0 m

▲ FIGURE 12–25
Problems 74 and 75

75. •• Suppose that each of the three masses in Figure 12–25 is re-
placed by a mass of 5.95 kg and radius 0.0714 m. If the balls are
released from rest, what speed will they have when they collide
at the center of the triangle? Ignore gravitational effects from
any other objects.

76. •• A Near Miss! In the early morning hours of June 14, 2002,
the Earth had a remarkably close encounter with an asteroid the
size of a small city. The previously unknown asteroid, now des-
ignated 2002 MN, remained undetected until three days after it
had passed the Earth. At its closest approach, the asteroid was
73,600 miles from the center of the Earth—about a third of the
distance to the Moon. (a) Find the speed of the asteroid at closest
approach, assuming its speed at infinite distance to be zero and
considering only its interaction with the Earth. (b) Observations
indicate the asteroid to have a diameter of about 2.0 km. Estimate
the kinetic energy of the asteroid at closest approach, assuming 
it has an average density of . (For comparison, a 
1-megaton nuclear weapon releases about of energy.)

77. •• IP Suppose a planet is discovered that has the same amount of
mass in a given volume as the Earth, but has half its radius. (a) Is
the acceleration due to gravity on this planet more than, less than,
or the same as the acceleration due to gravity on the Earth? Ex-
plain. (b) Calculate the acceleration due to gravity on this planet.

78. •• IP Suppose a planet is discovered that has the same total
mass as the Earth, but half its radius. (a) Is the acceleration due
to gravity on this planet more than, less than, or the same as the
acceleration due to gravity on the Earth? Explain. (b) Calculate
the acceleration due to gravity on this planet.

79. •• Show that the speed of a satellite in a circular orbit a height
h above the surface of the Earth is

80. •• In a binary star system, two stars orbit about their common
center of mass, as shown in Figure 12–26. If , what is the
ratio of the masses m2/m1 of the two stars?

81. •• Find the orbital period of the binary star system described in
the previous problem.

r2 = 2r1

v = A GME

RE + h

5.6 * 1015 J
3.33 g/cm3

82. •• Using the results from Problem 54, find the angular momen-
tum of Halley’s comet (a) at perihelion and (b) at aphelion.
(Take the mass of Halley’s comet to be .)

83. •• Exploring Mars In the not-too-distant future astronauts will
travel to Mars to carry out scientific explorations. As part of their
mission, it is likely that a “geosynchronous” satellite will be
placed above a given point on the Martian equator to facilitate
communications. At what altitude above the surface of Mars
should such a satellite orbit? (Note: The Martian “day” is 24.6229
hours. Other relevant information can be found in Appendix C.)

84. •• IP A satellite is placed in Earth orbit 1000 miles higher
than the altitude of a geosynchronous satellite. Referring to
Active Example 12–1, we see that the altitude of the satellite is
23,300 mi. (a) Is the period of this satellite greater than or less
than 24 hours? (b) As viewed from the surface of the Earth,
does the satellite move eastward or westward? Explain. (c) Find
the orbital period of this satellite.

85. •• Find the speed of the Millennium Eagle at point A in Example
12–1 if its speed at point B is 0.905 m/s.

86. •• Show that the force of gravity between the Moon and the
Sun is always greater than the force of gravity between the
Moon and the Earth.

87. •• The astronomical unit AU is defined as the mean distance
from the Sun to the Earth . Apply 
Kepler’s third law (Equation 12–7) to the solar system, and
show that it can be written as

In this expression, the period T is measured in years, the dis-
tance r is measured in astronomical units, and the constant C
has a magnitude that you must determine.

88. •• (a) Find the kinetic energy of a 1720-kg satellite in a circular
orbit about the Earth, given that the radius of the orbit is 12,600
miles. (b) How much energy is required to move this satellite to
a circular orbit with a radius of 25,200 miles?

89. •• IP Space Shuttle Orbit On a typical mission, the space
shuttle orbits at an altitude of 250 km
above the Earth’s surface. (a) Does the orbital speed of the shut-
tle depend on its mass? Explain. (b) Find the speed of the shut-
tle in its orbit. (c) How long does it take for the shuttle to com-
plete one orbit of the Earth?

90. ••• IP Consider an object of mass m orbiting the Earth at a ra-
dius r. (a) Find the speed of the object. (b) Show that the total
mechanical energy of this object is equal to times its kinetic
energy. (c) Does the result of part (b) apply to an object orbiting
the Sun? Explain.

91. ••• In a binary star system two stars orbit about their common
center of mass. Find the orbital period of such a system, given that
the stars are separated by a distance d and have masses m and 2m.

92. ••• Three identical stars, at the vertices of an equilateral trian-
gle, orbit about their common center of mass (Figure 12–27). Find

(-1)

(m = 2.00 * 106 kg)

T = Cr3/2

(1 AU =  1.50 * 1011 m)

9.8 * 1014 kg

r1

CM

r2

m2 m1

v1

v2

▲ FIGURE 12–26
Problems 80 and 81

M

M M

R
CM

v

v

v

▲ FIGURE 12–27
Problem 92
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the period of this orbital motion in terms of the orbital radius,
R, and the mass of each star, M.

93. ••• Find an expression for the kinetic energy of a satellite of
mass m in an orbit of radius r about a planet of mass M.

94. ••• Referring to Example 12–1, find the x component of the net
force acting on the Millennium Eagle as a function of x. Plot your
result, showing both negative and positive values of x.

95. ••• A satellite orbits the Earth in an elliptical orbit. At perigee
its distance from the center of the Earth is 22,500 km and its
speed is 4280 m/s. At apogee its distance from the center of the
Earth is 24,100 km and its speed is 3990 m/s. Using this infor-
mation, calculate the mass of the Earth.

PA S S A G E  P R O B L E M S

Exploring Comets with the Stardust Spacecraft
On February 7, 1999, NASA launched a spacecraft with the am-
bitious mission of making a close encounter with a comet, col-
lecting samples from its tail, and returning the samples to Earth
for analysis. This spacecraft, appropriately named Stardust,
took almost five years to rendezvous with its objective—comet
Wild 2 (pronounced “Vilt 2”)—and another two years to return
its samples. The reason for the long round trip is that the space-
craft had to make three orbits around the Sun, and also an Earth
Gravity Assist (EGA) flyby, to increase its speed enough to put
it in an orbit appropriate for the encounter.

When Stardust finally reached comet Wild 2 on January 2,
2004, it flew within 147 miles of the comet’s nucleus, snapping
pictures and collecting tiny specks of dust in the glistening
coma. The approach speed between the spacecraft and the
comet at the encounter was a relatively “slow” 6200 m/s, so
that dust particles could be collected safely without destroying
the vehicle. Note that “slow” is put in quotation marks; after all,
6200 m/s is still about six times the speed of a rifle bullet!

96. • Which of the two curves in Figure 12–28 corresponds to
comet Wild 2?

A. Curve I B. Curve II

97. • What is the mass of comet Wild 2?

A. B.

C. D.

98. • Find the speed needed to escape from the surface of comet
Wild 2. (Note: It is easy for a person to jump upward with a
speed of 3 m/s.)

A. 1.6 m/s B. 2.3 m/s

C. 72 m/s D. 230 m/s

99. •• Suppose comet Wild 2 had a small satellite in orbit around
it, just as Dactyl orbits asteroid 243 Ida (see page 390). If this
satellite were to orbit at twice the radius of the comet, what
would be its period of revolution?

A. 0.93 h B. 2.9 h

C. 5.8 h D. 8.2 h

I N T E R A C T I V E  P R O B L E M S

100. •• Find the orbital radius that corresponds to a “year” of 150
days.

101. •• IP Suppose the mass of the Sun is suddenly doubled, but
the Earth’s orbital radius remains the same. (a) Would the
length of an Earth year increase, decrease, or stay the same?
(b) Find the length of a year for the case of a Sun with twice the
mass. (c) Suppose the Sun retains its present mass, but the
mass of the Earth is doubled instead. Would the length of the
year increase, decrease, or stay the same?

102. •• IP Referring to Example 12–7 (a) If the mass of the Earth
were doubled, would the escape speed of a rocket increase, de-
crease, or stay the same? (b) Calculate the escape speed of a
rocket for the case of an Earth with twice its present mass. 
(c) If the mass of the Earth retains its present value, but the
mass of the rocket is doubled, does the escape speed increase,
decrease, or stay the same?

103. •• IP Referring to Example 12–7 Suppose the Earth is sud-
denly shrunk to half its present radius without losing any of
its mass. (a) Would the escape speed of a rocket increase, de-
crease, or stay the same? (b) Find the escape speed for an Earth
with half its present radius.

1.1 * 1018 kg1.1 * 1014 kg

1.1 * 1012 kg1.1 * 108 kg

Comet Wild 2 and some of its surface features,
including the Walker basin, the site of unusual jets

of outward-flowing dust and rocks.
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▲ FIGURE 12–28 Problems 96, 97, 98, and 99

The roughly spherical comet Wild 2 has a radius of 2.7 km,
and the acceleration due to gravity on its surface is 0.00010g.
The two curves in Figure 12–28 show the surface acceleration as
a function of radius for a spherical comet with two different
masses, one of which corresponds to comet Wild 2. Also indi-
cated are radii at which these two hypothetical comets have
densities equal to that of ice and granite.

The Stardust spacecraft is still in space; only its small return
capsule came back to Earth. It has now been given a new
assignment—to visit and photograph comet Tempel 1, the object
of the Deep Impact collision on July 4, 2005. This mission, called
New Exploration of Tempel 1 (NExT), is scheduled to make its
close encounter with comet Tempel 1 on February 14, 2011.




