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our ability to move from place to place,
or to hold our body still, is intimately
related to our ability to exert precisely
controlled torques on our limbs.

We also introduce the notion of
angular momentum in this chapter and
show that it is related to torque in
essentially the same way that linear
momentum is related to force. As a
result, it follows that angular momentum
is conserved when the net external
torque acting on a system is zero. Thus,
conservation of angular momentum joins
conservation of energy and conservation
of linear momentum as one of the
fundamental principles on which all
physics is based.
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Rotational Dynamics and
Static Equilibrium

Equilibrium, and the sense of serenity that comes
with it, involves more than just forces that add to
zero—it also depends on where the forces are
applied. To keep from falling, for example,
the forces exerted on this woman’s
hand and foot must add up to her
total weight. But the total weight
must be shared between her
hand and foot in just the right
way, or else her body will rotate and
the pose will be lost. To ensure equilibrium,
a new physical quantity—the torque—must also
be zero. In this chapter we introduce the torque,
and show that equilibrium occurs only when 
both the net force and the net torque are zero.
We will also consider the consequences of
nonzero torque.

332

In the previous chapter we learned
how to describe uniformly
accelerated rotational motion, but

we did not discuss how a given angular
acceleration is caused by a given force.
The connection between forces and
angular acceleration is the focus of 
this chapter.

We begin by defining a quantity that
is the rotational equivalent of force. This
quantity is called the torque. Although
torque may not be as familiar a term as
force, your muscles are exerting torques
on your body at this very moment. In
fact, every time you raise an arm, extend
a finger, or stretch a leg, you exert
torques to carry out these motions. Thus,



1 1 – 1 T O R Q U E 333

FIGURE 11–1 Applying a torque
(a) When a wrench is used to loosen a
nut, less force is required if it is applied
far from the nut. (b) Similarly, less force
is required to open a revolving door if it
is applied far from the axis of rotation.

▲
r2

r1

r1

r2

F1

F2

F2

(b)(a)

F1

11–1 Torque
Suppose you want to loosen a nut by rotating it counterclockwise with a wrench.
If you have ever used a wrench in this way, you probably know that the nut is
more likely to turn if you apply your force as far from the nut as possible, as indi-
cated in Figure 11–1 (a). Applying a force near the nut would not be very effective—
you could still get the nut to turn, but it would require considerably more effort!
Similarly, it is much easier to open a revolving door if you push far from the axis
of rotation, as indicated in Figure 11–1 (b). Clearly, then, the tendency for a force to
cause a rotation increases with the distance, r, from the axis of rotation to the
force. As a result, it is useful to define a quantity called the torque, that takes
into account both the magnitude of the force, F, and the distance from the axis of
rotation, r:

Definition of Torque, for a Tangential Force

11–1

SI unit: 

Note that the torque increases with both the force and the distance.

N # m

t = rF

T,

t, ▲ The long handle of this wrench enables
the user to produce a large torque without
having to exert a very great force.

P R O B L E M - S O L V I N G  N O T E

The Units of Torque

Note that the units of torque are the
same as the units of work. Though their
units are the same, torque, and work, W,
represent different physical quantities and
should not be confused with one another.

t,

N # m,

Equation 11–1 is valid only when the applied force is tangential to a circle of
radius r centered on the axis of rotation, as indicated in Figure 11–1. The more
general case is considered later in this section. First, we use Equation 11–1 to de-
termine how much force is needed to open a swinging door, depending on where
we apply the force.

E X E R C I S E  1 1 – 1
To open the door in Figure 11–1 (b) a tangential force F is applied at a distance r from
the axis of rotation. If the minimum torque required to open the door is what
force must be applied if r is (a) 0.94 m or (b) 0.35 m?

S O L U T I O N

(a) Setting we find that the required force is

F1 =
t

r1
=

3.1 N # m
0.94 m

= 3.3 N

t = r1F1 = 3.1 N # m,

3.1 N # m,
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F
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F

(a) A radial force produces zero torque

F sin�

F cos�

Torque = r(F sin   )Zero torque �

�

(b) Only the tangential component
of force causes a torque

FIGURE 11–2 Only the tangential
component of a force causes a torque
(a) A radial force causes no rotation. In
this case, the force is opposed by an
equal and opposite force exerted by the
axle of the merry-go-round. The merry-
go-round does not rotate. (b) A force
applied at an angle with respect to the
radial direction. The radial component of
this force, causes no rotation; the
tangential component, can cause
a rotation.

F sin u,
F cos u,

u

F
!

▲

(b) Repeat the calculation, this time with 

As expected, the required force is greater when it is applied closer to the hinges.

To this point we have considered tangential forces only. What happens if you
exert a force in a direction that is not tangential? Suppose, for example, that you
pull on a playground merry-go-round in a direction that is radial—that is, along a
line that extends through the axis of rotation—as in Figure 11–2 (a). In this case, your
force has no tendency to cause a rotation. Instead, the axle of the merry-go-round
simply exerts an equal and opposite force, and the merry-go-round remains at rest.
Similarly, if you were to push or pull in a radial direction on a swinging door it
would not rotate. We conclude that a radial force produces zero torque.

F2 =
t

r2
=

3.1 N # m
0.35 m

= 8.9 N

r2 = 0.35 m:

On the other hand, what if your force is at an angle relative to a radial line,
as shown in Figure 11–2 (b)? To analyze this case, we first resolve the force vector 
into radial and tangential components. Referring to the figure, we see that the ra-
dial component has a magnitude of and the tangential component has a
magnitude of Because it is the tangential component alone that causes ro-
tation, we define the torque to have a magnitude of That is,

General Definition of Torque, 

11–2

SI units: 

(More generally, the torque can be defined as the cross product between the
vectors and that is, The cross product is discussed in detail in
Appendix A.)

As a quick check, note that a radial force corresponds to In this case,
as expected. If the force is tangential, however, it follows that

This gives in agreement with Equation 11–1.
An equivalent way to define the torque is in terms of the moment arm, The

idea here is to extend a line through the force vector, as in Figure 11–3, and then
draw a second line from the axis of rotation perpendicular to the line of the force.
The perpendicular distance from the axis of rotation to the line of the force is de-
fined to be From the figure, we see that

r� = r sin u

r�.

r�.
t = r1F sin p/22 = rF,u = p/2.

t = r1F sin 02 = 0,
u = 0.

T
!

= r
!

* F
!
.F

!
;r

!

N # m

t = r1F sin u2
T

r1F sin u2.
F sin u.

F cos u,

F
!u

▲ FIGURE 11–3 The moment arm
To find the moment arm, for a given
force, first extend a line through the force
vector. This line is sometimes referred to
as the “line of action.” Next, drop a per-
pendicular line from the axis of rotation
to the line of the force. The perpendicular
distance is r� = r sin u.

r�,

r

r1 = r sin 0

F

�

�

�

r1

Line extending through
the force vector

The moment arm



▲ The net torque on the wheel of this ship
is the sum of the torques exerted by the two
helmsmen. At the moment pictured, they
are both exerting negative torques on the
wheel, causing it to rotate in the clockwise
direction. This will turn the boat to its left—
or, in nautical terms, to port.

In addition, we note that a simple rearrangement of the torque expression in
Equation 11–2 yields

Thus, the torque can be written as the moment arm times the force:

11–3

Just as a force applied to an object gives rise to a linear acceleration, a torque
applied to an object gives rise to an angular acceleration. For example, if a torque
acts on an object at rest, the object will begin to rotate; if a torque acts on a rotat-
ing object, the object’s angular velocity will change. In fact, the greater the torque
applied to an object, the greater its angular acceleration, as we shall see in the next
section. For this reason, the sign of the torque is determined by the same conven-
tion used in Section 10–1 for angular acceleration:

Sign Convention for Torque
By convention, if a torque acts alone, then

In a system with more than one torque, the sign of each torque is determined
by the type of angular acceleration it alone would produce. The net torque acting
on the system, then, is the sum of each individual torque, taking into account the
proper sign. This is illustrated in the following Example.

t 6 0 if the torque causes a clockwise angular acceleration
t 7 0 if the torque causes a counterclockwise angular acceleration

t

t = r�F

t = r1F sin u2 = 1r sin u2F

P R O B L E M - S O L V I N G  N O T E

The Sign of Torques

The sign of a torque is determined by the
direction of rotation it would cause if it
were the only torque acting in the system.

E X A M P L E  1 1 – 1 T O R Q U E S  T O  T H E  L E F T  A N D  T O R Q U E S  T O  T H E  R I G H T

Two helmsmen, in disagreement about which way to turn a ship, exert the forces shown below on a ship’s wheel. The wheel has
a radius of 0.74 m, and the two forces have the magnitudes and Find (a) the torque caused by and
(b) the torque caused by (c) In which direction does the wheel turn as a result of these two forces?

P I C T U R E  T H E  P R O B L E M

Our sketch shows that both forces are applied at the distance from
the axis of rotation. However, is at an angle of 50.0° relative to the ra-
dial direction, whereas is tangential, which means that its angle rel-
ative to the radial direction is 90.0°.

S T R A T E G Y

For each force, we find the magnitude of the corresponding torque, using
As for the signs of the torques, we must consider the angular ac-

celeration each force alone would cause. acting alone would cause the wheel
to accelerate counterclockwise, hence its torque is positive. would accelerate
the wheel clockwise if it acted alone, hence its torque is negative. If the sum
of the two torques is positive, the wheel accelerates counterclockwise; if the
sum of the two torques is negative, the wheel accelerates clockwise.

S O L U T I O N

Part (a)

1. Use Equation 11–2 to calculate the torque due to 
Recall that this torque is positive:

Part (b)

2. Similarly, calculate the torque due to Recall that this
torque is negative:

Part (c)

3. Sum the torques from parts (a) and (b) to find the 
net torque:

CONTINUED ON NEXT PAGE

tnet = t1 + t2 = 41 N # m - 43 N # m = -2 N # m

t2 = -rF2 sin 90.0° = -10.74 m2158 N2 = -43 N # mF
!
2.

t1 = rF1 sin 50.0° = 10.74 m2172 N2 sin 50.0° = 41 N # mF
!
1.

F
!
2

F
!
1

t = rF sin u.

F2 = 58 N
F1 = 72 N

r = 0.74 m

F
!
2.

F
!
1F2 = 58 N.F1 = 72 N

r

90.0° 50.0°

F1
F2
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CONTINUED FROM PREVIOUS PAGE

I N S I G H T

Because the net torque is negative, the wheel accelerates clockwise. Thus, even though is the smaller force, it has the greater
effect in determining the wheel’s direction of acceleration. This is because is applied tangentially, whereas is applied in a
direction that is partially radial.

P R A C T I C E  P R O B L E M

What magnitude of would yield zero net torque on the wheel? [Answer: ]

Some related homework problems: Problem 1, Problem 3

F2 = 55 NF
!
2

F
!
1F

!
2

F
!
2

11–2 Torque and Angular Acceleration
In the previous section we indicated that a torque causes a change in the rota-
tional motion of an object. To be more precise, a single torque, acting on an ob-
ject causes the object to have an angular acceleration, In this section we develop
the specific relationship between and 

Consider, for example, a small object of mass m connected to an axis of rotation
by a light rod of length r, as in Figure 11–4. If a tangential force of magnitude F is ap-
plied to the mass, it will move with an acceleration given by Newton’s second law:

From Equation 10–14, we know that the linear and angular accelerations are
related by

Combining these results yields the following expression for the angular acceleration:

Finally, multiplying both numerator and denominator by r gives

Now this last result is rather interesting, since the numerator and denominator
have simple interpretations. First, the numerator is the torque, for the case of
a tangential force (Equation 11–1). Second, the denominator is the moment of iner-
tia of a single mass m rotating at a radius r; that is, Therefore, we find that

or, rewriting slightly,

Thus, once we calculate the torque, as described in the previous section, we can
find the angular acceleration of a system using Notice that the angular ac-
celeration is directly proportional to the torque, and inversely proportional to the
moment of inertia—that is, a large moment of inertia means a small angular ac-
celeration.

Now, the relationship was derived for the special case of a tangential
force and a single mass rotating at a radius r. However, the result is completely
general. For example, in a system with more than one torque, the relation t = Ia

t = Ia

t = Ia.

t = Ia

a =
rF

mr2 =
t

I

I = mr2.

t = rF,

a = a r
r
b F

mr
=

rF

mr2

a =
a
r

=
F

mr

a =
a
r

a =
F
m

a.t

a.
t,

▲ FIGURE 11–4 Torque and angular
acceleration
A tangential force F applied to a mass m
gives it a linear acceleration of magni-
tude The corresponding angu-
lar acceleration is where 
and I = mr2.

t = rFa = t/I,
a = F/m.

a = F/m

r

F

m



is replaced with where is the net torque acting on the system.
This gives us the rotational version of Newton’s second law:

Newton’s Second Law for Rotational Motion

11–4

If only a single torque acts on a system, we will simply write 

E X E R C I S E  1 1 – 2
A light rope wrapped around a disk-shaped pulley is pulled tangentially with a force
of 0.53 N. Find the angular acceleration of the pulley, given that its mass is 1.3 kg and
its radius is 0.11 m.

S O L U T I O N

The torque applied to the disk is

Since the pulley is a disk, its moment of inertia is given by

Thus, the angular acceleration of the pulley is

It is easy to remember the rotational version of Newton’s second law,
by using analogies between rotational and linear quantities. We have al-

ready seen that I is the analogue of m, and that is the analogue of a. Similarly, 
which causes an angular acceleration, is the analogue of F, which causes a linear
acceleration. To summarize:

t,a

©t = Ia,

a =
t

I
=

5.8 * 10-2 N # m

7.9 * 10-3 kg # m2
= 7.3 rad/s2

I = 1
2mr2 = 1

211.3 kg210.11 m22 = 7.9 * 10-3 kg # m2

t = rF = 10.11 m210.53 N2 = 5.8 * 10-2 N # m

t = Ia.

a t = Ia

tnettnet = ©t = Ia,

Linear Quantity Angular Quantity

m I
a
F t

a

E X A M P L E  1 1 – 2 A  F I S H  T A K E S  T H E  L I N E

A fisherman is dozing when a fish takes the line and pulls it with a tension T. The spool of the fishing reel is at rest initially and
rotates without friction (since the fisherman left the drag off) as the fish pulls for a time t. If the radius of the spool is R, and its
moment of inertia is I, find (a) the angular displacement of the spool, (b) the length of line pulled from the spool, and (c) the final
angular speed of the spool.

P I C T U R E  T H E  P R O B L E M

Our sketch shows the fishing line being pulled tangentially from the spool
with a tension T. Because the radius of the spool is R, the torque produced
by the line is Also note that as the spool rotates through an angle

the line moves through a linear distance Finally, the spool
starts at rest, hence 

S T R A T E G Y

This is basically an angular kinematics problem, as in Chapter 10, but in
this case we must first calculate the angular acceleration using 
Once is known, we can find the angular displacement, using

Similarly, we can find the angular speed
of the spool, using 

CONTINUED ON NEXT PAGE

v = v0 + at.v,
u = u0 + v0t + 1

2at2.
¢u,a

a = t/I.

v0 = 0.
¢x = R¢u.¢u,

t = RT.

I

R
x =

T

R
��

�
��
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Thus, just as describes linear motion, describes rotational
motion.

©t = Ia©F = ma
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CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

1. Calculate the torque acting on the spool. Note that 
since the pull is tangential. The radius is and the force
applied to the reel is the tension in the line, T:

2. Using the result just obtained for the torque, find the
angular acceleration of the reel:

Part (a)

3. Calculate the angular displacement 

Part (b)

4. Calculate the length of line pulled from the spool with

Part (c)

5. Use to find the final angular speed:

I N S I G H T

Note that the final angular speed can also be obtained from the kinematic equation relating angular speed and angular distance;

This calculation also applies to other situations in which a “line” is pulled from a “reel.” Examples include telephone line or
sewing thread pulled from a spool.

P R A C T I C E  P R O B L E M

How fast is the line moving at time t? [Answer: ]

Some related homework problems: Problem 10, Problem 19

v = Rv = 1R2T/I2t

v2 = v0 

2 + 2a ¢u = 0 + 21RT/I21RT/2I2t2 = 1RT/I22 t2.

v = v0 + at = aRT
I
b tv = v0 + at

¢x = R ¢u:
¢x = R ¢u = aR2T

2I
bt2

¢u = u - u0 = v0t + 1
2at2 = 1

2at2 = aRT
2I
b t2¢u = u - u0:

a =
t

I
=

RT
I

r = R,
t = rF sin u = RT sin 90° = RTu = 90°,

C O N C E P T U A L  C H E C K P O I N T  1 1 – 1 W H I C H  B L O C K  L A N D S  F I R S T ?

The rotating systems shown below differ only in that the two spherical movable masses
are positioned either far from the axis of rotation (left), or near the axis of rotation (right).
If the hanging blocks are released simultaneously from rest, is it observed that (a) the block
at left lands first, (b) the block at right lands first, or (c) both blocks land at the same time?

R E A S O N I N G  A N D  D I S C U S S I O N

The net external torque, supplied by the hanging blocks, is the same for each of these sys-
tems. However, the moment of inertia of the system at right is less than that of the system
at left because the movable masses are closer to the axis of rotation. Since the angular
acceleration is inversely proportional to the moment of inertia the system
at right has the greater angular acceleration, and it wins the race.

A N S W E R

(b) The block at right lands first.

1a = tnet/I2,



E X A M P L E  1 1 – 3 D R O P  I T

A person holds his outstretched arm at rest in a horizontal position. The mass of the arm is m and its length is 0.740 m. When the
person releases his arm, allowing it to drop freely, it begins to rotate about the shoulder joint. Find (a) the initial angular accel-
eration of the arm, and (b) the initial linear acceleration of the man’s hand. (Hint: In calculating the torque, assume the mass of
the arm is concentrated at its midpoint. In calculating the angular acceleration, use the moment of inertia of a uniform rod of
length L about one end; )

P I C T U R E  T H E  P R O B L E M

The arm is initially horizontal and at rest. When released, it
rotates downward about the shoulder joint. The force of grav-
ity, mg, acts at a distance of from the
shoulder.

S T R A T E G Y

The angular acceleration, can be found using In this
case, the initial torque is where and 
the moment of inertia is 

Once the initial angular acceleration is found, the correspond-
ing linear acceleration is obtained from 

S O L U T I O N

Part (a)

1. Use to find the angular acceleration, 

2. Write expressions for the initial torque, and the moment
of inertia, I:

3. Substitute and I into the expression for the angular
acceleration. Note that the mass of the arm cancels:

4. Substitute numerical values:

Part (b)

5. Use to calculate the linear acceleration at the man’s
hand, a distance from the shoulder: 

I N S I G H T

Note that the linear acceleration of the hand is 1.50 times greater than
the acceleration of gravity, regardless of the mass of the arm. This can
be demonstrated with the following simple experiment: Hold your
arm straight out with a pen resting on your hand. Now, relax your del-
toid muscles, and let your arm rotate freely downward about your
shoulder joint. Notice that as your arm falls downward, your hand
moves more rapidly than the pen, which appears to “lift off” your
hand. The pen drops with the acceleration of gravity, which is clearly
less than the acceleration of the hand. This effect can be seen in the
adjacent photo.

P R A C T I C E  P R O B L E M

At what distance from the shoulder is the initial linear acceleration of
the arm equal to the acceleration of gravity?
[Answer: Set equal to g. This gives ]

Some related homework problems: Problem 13, Problem 15

r = 2L/3 = 0.493 m.a = ra

r = L
a = La = La 3g

2L
b =

3
2

 g = 14.7 m/s2a = ra

a =
3g

2L
=

319.81 m/s22
210.740 m2 = 19.9 rad/s2

a =
t

I
=

mgL/2

mL2/3
=

3g

2L
t

I =
1
3

mL2

t = mg
L
2

t,

a =
t

I
a:t = Ia

a = ra.

I = 1
3mL2.

L = 0.740 m,t = mg1L/22,
t = Ia.a,

10.740 m2/2 = 0.370 m

I = 1
3mL2.

0.740 m

mg

▲ As a rod of length L rotates freely about one end,
points farther from the axle than 2L/3 have an accel-
eration greater than g (see the Practice Problem for
Example 11–3). Thus, the rod falls out from under the
last two dice.

1 1 – 2 T O R Q U E  A N D  A N G U L A R  A C C E L E R A T I O N 339
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11–3 Zero Torque and Static Equilibrium
The parents of a young boy are supporting him on a long, lightweight plank, as il-
lustrated in Figure 11–5. If the mass of the child is m, the upward forces exerted by
the parents must sum to mg; that is,

This condition ensures that the net force acting on the plank is zero. It does not,
however, guarantee that the plank remains at rest.

F1 + F2 = mg

FIGURE 11–5 Forces required for 
static equilibrium
Two parents support a child on a light-
weight plank of length L. For the calcu-
lation described in the text, we choose
the axis of rotation to be the left end of
the plank.

▲

x

y

F1

Axis of rotation

mg

F2

3L/4 L/4

To see why, imagine for a moment that the parent on the right lets go of the plank
and that the parent on the left increases her force until it is equal to the weight of the
child. In this case, and which clearly satisfies the force equation we
have just written. Since the right end of the plank is no longer supported, however,
it drops toward the ground while the left end rises. In other words, the plank rotates
in a clockwise sense. For the plank to remain completely at rest, with no translation
or rotation, we must impose the following two conditions: First, the net force acting
on the plank must be zero, so that there is no translational acceleration. Second, the
net torque acting on the plank must also be zero, so that there is no rotational accel-
eration. If both of these conditions are met, an extended object, like the plank, will
remain at rest if it starts at rest. To summarize:

Conditions for Static Equilibrium
For an extended object to be in static equilibrium, the following two conditions
must be met:

(i) The net force acting on the object must be zero,

11–5

(ii) The net torque acting on the object must be zero,

11–6

Note that these two conditions are independent of one another; that is, satisfying
one does not guarantee that the other is satisfied.

Let’s apply these conditions to the plank that supports the child. First, we con-
sider the forces acting on the plank, with upward chosen as the positive direction,
as in Figure 11–5. Setting the net force equal to zero yields

Clearly, this agrees with the force equation we wrote down earlier.
Next, we apply the torque condition. To do so, we must first choose an axis of

rotation. For example, we might take the left end of the plank to be the axis, as in
Figure 11–5. With this choice, we see that the force exerts zero torque, since itF1

F1 + F2 - mg = 0

a t = 0

aFx = 0,    aFy = 0

F2 = 0,F1 = mg



acts directly through the axis of rotation. On the other hand, acts at the far end
of the plank, a distance L from the axis. In addition, would cause a counter-
clockwise (positive) rotation if it acted alone, as we can see in Figure 11–5. There-
fore, the torque due to is

Finally, the weight of the child, mg, acts at a distance of 3L/4 from the axis, and
would cause a clockwise (negative) rotation if it acted alone. Hence, its torque is
negative:

Setting the net torque equal to zero, then, yields the following condition:

This torque condition, along with the force condition in 
can be used to determine the two unknowns, and For example, we can begin
by canceling L in the torque equation to find 

Substituting this result into the force condition gives

Therefore, is

These two forces support the plank, and keep it from rotating. As one might ex-
pect, the force nearest the child is greatest.

Our choice of the left end of the plank as the axis of rotation was completely ar-
bitrary. In fact, if an object is in static equilibrium, the net torque acting on it is zero,
regardless of the location of the axis of rotation. Hence, we are free to choose an axis
of rotation that is most convenient for a given problem. In general, it is useful to
pick the axis to be at the location of one of the unknown forces. This eliminates that
force from the torque condition, and simplifies the remaining algebra. We consider
an alternative choice for the axis of rotation in the following Active Example.

F1 = 1
4mg

F1

F1 + 3
4mg - mg = 0

F2 = 3
4mg

F2:
F2.F1

F1 + F2 - mg = 0,

F2L - mg A34L B = 0

tmg = -mg A34L B

t2 = F2L

F2

F2

F2

P R O B L E M - S O L V I N G  N O T E

Axis of Rotation

Any point in a system may be used as the
axis of rotation when calculating torque. It
is generally best, however, to choose an
axis that gives zero torque for at least one
of the unknown forces in the system. Such
a choice simplifies the algebra needed to
solve for the forces.

A C T I V E  E X A M P L E  1 1 – 1 F I N D  T H E  F O R C E S :  A X I S  O N  T H E  R I G H T

A child of mass m is supported on a light plank by his parents, who exert the forces and as indicated. Find the forces
required to keep the plank in static equilibrium. Use the right end of the plank as the axis of rotation.

F2F1

x

y

F1

Axis of
rotationmg

F2

3L/4 L/4
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S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Set the net force acting on the plank equal to zero:

2. Set the net torque acting on the plank equal to zero:

3. Note that the torque condition involves only one of the two
unknowns, Use this condition to solve for 

4. Substitute into the force condition to solve for 

I N S I G H T

As expected, the results are identical to those obtained previously. Note that in this case the torque produced by the child would
cause a counterclockwise rotation, hence it is positive. Thus, the magnitude and sign of the torque produced by a given force de-
pend on the location chosen for the axis of rotation.

Y O U R  T U R N

Suppose the child moves to a new position, with the result that the force exerted by the father is reduced to 0.60mg. Did the child
move to the left or to the right? How far did the child move?

(Answers to Your Turn problems are given in the back of the book.)

F2 = mg - 1
4mg = 3

4mgF2:F1

F1:F1.
F1 = 1

4mg

-F11L2 + mg A14L B = 0

F1 + F2 - mg = 0

A third choice for the axis of rotation is considered in Problem 24. As expected,
all three choices give the same results.

In the next Example, we show that the forces supporting a person or other ob-
ject sometimes act in different directions. To emphasize the direction of the forces,
we solve the Example in terms of the components of the relevant forces.

E X A M P L E  1 1 – 4  T A K I N G  T H E  P L U N G E

A 5.00-m-long diving board of negligible mass is supported by two pillars. One pillar is at the left end of the diving board, as shown
below; the other is 1.50 m away. Find the forces exerted by the pillars when a 90.0-kg diver stands at the far end of the board.

P I C T U R E  T H E  P R O B L E M

We choose upward to be the positive direction for the forces.
When calculating torques, we use the left end of the diving
board as the axis of rotation. Note that would cause a coun-
terclockwise rotation if it acted alone, so its torque is positive.
On the other hand, would cause a clockwise rotation, so its 
torque is negative. Finally, acts at a distance d from the axis
of rotation, and acts at a distance L.

S T R A T E G Y

As usual in static equilibrium problems, we use the conditions
of (i) zero net force and (ii) zero net torque to determine the un-
known forces, and In this system all forces act in the pos-
itive or negative y direction; thus we need only set the net y
component of force equal to zero.

S O L U T I O N

1. Set the net y component of force acting on the diving
board equal to zero:

2. Calculate the torque due to each force, using the left end of
the board as the axis of rotation. Note that each force is at
right angles to the radius and that goes directly through
the axis of rotation:

3. Set the net torque acting on the diving board equal to zero:

4. Solve the torque equation for the force 

 = 190.0 kg219.81 m/s2215.00 m/1.50 m2 = 2940 N

 F2,y = mg1L/d2F2,y:

a t = F1,y102 + F2,y1d2 - mg1L2 = 0

t3 = -mg1L2
F
!
1

t2 = F2,y1d2
t1 = F1,y102 = 0

aFy = F1,y + F2,y - mg = 0

F
!
2.F

!
1

mg
! F

!
2

mg
!

F
!
2

mg

F2F1

d

L

y

x

Axis



5. Use the force equation to determine 

I N S I G H T

The first point to notice about our solution is that F1,y is negative, which means
that is actually directed downward, as shown to the right. To see why, imagine
for a moment that the board is no longer connected to the first pillar. In this case,
the board would rotate clockwise about the second pillar, and the left end of the
board would move upward. Thus, a downward force is required on the left end
of the board to hold it in place.

The second point is that both pillars exert forces with magnitudes that are consid-
erably larger than the diver’s weight, In particular, the first pillar
must pull downward with a force of 2.33mg, while the second pillar pushes up-
ward with a force of This is not unusual. In fact, it is
common for the forces in a structure, such as a bridge, a building, or the human
body, to be much greater than the weight it supports.

P R A C T I C E  P R O B L E M

Find the forces exerted by the pillars when the diver is 1.00 m from the right end.
[Answer: ]

Some related homework problems: Problem 26, Problem 32

F1,y = -1470 N, F2,y = 2350 N

2.33mg + mg = 3.33mg.

mg = 883 N.

F
!
1

 = 190.0 kg219.81 m/s22 - 2940 N = -2060 N

 F1,y = mg - F2,yF1,y:

mg

F2

F1

To this point we have ignored the mass of the plank holding the child and the
diving board holding the swimmer, since they were described as lightweight. If
we want to consider the torque exerted by an extended object of finite mass, how-
ever, we can simply treat it as if all its mass were concentrated at its center of
mass, as was done in similar situations in Section 9–7. We consider such a system
in the next Active Example.

R E A L - W O R L D  P H Y S I C S

Applying the brakes

Mg

v

F2
f2F1

a

CM

f1A C T I V E  E X A M P L E  1 1 – 2 W A L K I N G  T H E  P L A N K :
F I N D  T H E  M A S S

A cat walks along a uniform plank that is 4.00 m long and has a mass of 7.00 kg. The
plank is supported by two sawhorses, one 0.440 m from the left end of the board and
the other 1.50 m from its right end. When the cat reaches the right end, the plank just
begins to tip. What is the mass of the cat?

F1 = 0

F2

Mg

mg

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Since the board is just beginning to tip,
there is no weight on the left sawhorse:

2. Calculate the torque about the right
sawhorse: 

3. Solve the torque equation for the mass 
of the cat, m:

CONTINUED ON NEXT PAGE

m = 0.333M = 2.33 kg

Mg10.500 m2 - mg11.50 m2 = 0

F1 = 0
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▲ As the brakes are applied on this SUV,
rotational equilibrium demands that the
normal forces exerted on the front tires be
greater than the normal forces exerted on
the rear tires—which is why braking cars
are “nose down” during a rapid stop. For
this reason, many cars use disk brakes for
the front wheels and less powerful drum
brakes for the rear wheels. As the disk
brakes wear, they tend to coat the front
wheels with dust from the brake pads,
which give the front wheels a characteris-
tic “dirty” look.
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I N S I G H T

Note that we did not include a torque for the left sawhorse, since is zero. As an ex-
ercise, you might try repeating the calculation with the axis of rotation at the left
sawhorse, or at the center of mass of the plank.

Y O U R  T U R N

Write both the zero force and zero torque conditions for the case where the axis of
rotation is at the left sawhorse.

(Answers to Your Turn problems are given in the back of the book.)

F1

Forces with Both Vertical and Horizontal Components
Note that all of the previous examples have dealt with forces that point either di-
rectly upward or directly downward. We now consider a more general situation,
where forces may have both vertical and horizontal components. For example,
consider the wall-mounted lamp (sconce) shown in Figure 11–6. The sconce consists
of a light curved rod that is bolted to the wall at its lower end. Suspended from the
upper end of the rod, a horizontal distance H from the wall, is the lamp of mass m.
The rod is also connected to the wall by a horizontal wire a vertical distance V
above the bottom of the rod.

FIGURE 11–6 A lamp in static
equilibrium
A wall-mounted lamp of mass m is sus-
pended from a light curved rod. The bot-
tom of the rod is bolted to the wall. The
rod is also connected to the wall by a
horizontal wire a vertical distance V
above the bottom of the rod.

▲

x

y

H 

V

f

T

mg

fy

fx

Now, suppose we are designing this sconce to be placed in the lobby of a
building on campus. To ensure its structural stability, we would like to know the
tension T the wire must exert and the vertical and horizontal components of the
force that must be exerted by the bolt on the rod. This information will be im-
portant in deciding on the type of wire and bolt to be used in the construction.

To find these forces, we apply the same conditions as before: the net force and
the net torque must be zero. In this case, however, forces may have both horizon-
tal and vertical components. Thus, the condition of zero net force is really two
separate conditions: (i) zero net force in the horizontal direction; and (ii) zero net
force in the vertical direction. These two conditions plus (iii) zero net torque,
allow for a full solution of the problem.

We begin with the torque condition. A convenient choice for the axis of rotation
is the bottom end of the rod, since this eliminates one of the unknown forces 
With this choice we can readily calculate the torques acting on the rod by using the
moment arm expression for the torque, (Equation 11–3). We find

This relation can be solved immediately for the tension, giving

Note that the tension is increased if the wire is connected closer to the bottom of
the rod; that is, if V is reduced.

T = mg1H/V2

a t = T1V2 - mg1H2 = 0

t = r�F

1f!2.

f
!



Next, we apply the force conditions. First, we sum the y components of all the
forces and set the sum equal to zero:

Thus, the vertical component of the force exerted by the bolt simply supports the
weight of the lamp:

Finally, we sum the x components of the forces and set that sum equal to zero:

Clearly, the x component of the force exerted by the bolt is of the same magnitude
as the tension, but it points in the opposite direction:

The bolt, then, pushes upward on the rod to support the lamp, and at the same
time it pushes to the right to keep the rod from rotating.

For example, suppose the lamp in Figure 11–6 has a mass of 2.00 kg, and that
and In this case, we find the following forces:

Note that and T are greater than the weight, mg, of the lamp. Just as we found
with the diving board in Example 11–4, the forces required of structural elements
can be greater than the weight of the object to be supported—an important consid-
eration when designing a structure like a bridge, an airplane, or a sconce. The same
effect occurs in the human body. We find in Problem 25, for example, that the force
exerted by the biceps to support a baseball in the hand is several times larger than
the baseball’s weight. Similar conclusions apply to muscles throughout the body.

In Example 11–5 we consider another system in which forces have both verti-
cal and horizontal components.

fx

 fy = mg = 12.00 kg219.81 m/s22 = 19.6 N

 fx = T = 24.5 N

 T = mg1H/V2 = 12.00 kg219.81 m/s22115.0 cm2/112.0 cm2 = 24.5 N

H = 15.0 cm.V = 12.0 cm

fx = T = mg1H/V2

aFx = fx - T = 0

fy = mg

aFy = fy - mg = 0

R E A L - W O R L D  P H Y S I C S

Forces required for
structural stability

▲ The chains that support this sign main-
tain it in a state of translational and rota-
tional equilibrium. The forces in the chains
are most easily analyzed by resolving them
into vertical and horizontal components
and applying the conditions for equilib-
rium. In particular, the net vertical force,
the net horizontal force, and the net torque
must all be zero.

E X A M P L E  1 1 – 5 A R M  I N  A  S L I N G

A hiker who has broken his forearm rigs a temporary sling using a cord stretching from his shoulder to his hand. The cord holds the
forearm level and makes an angle of 40.0° with the horizontal where it attaches to the hand. Considering the forearm and hand to be
uniform, with a total mass of 1.30 kg and a length of 0.300 m, find (a) the tension in the cord and (b) the horizontal and vertical
components of the force, exerted by the humerus (the bone of the upper arm) on the radius and ulna (the bones of the forearm).

P I C T U R E  T H E  P R O B L E M

In our sketch, we use the typical conventions for the positive x and y di-
rections. In addition, since the forearm and hand are assumed to be a
uniform object, we indicate the weight mg as acting at its center. The
length of the forearm and hand is Finally, two other forces
act on the forearm: (i) the tension in the cord, at an angle of 40.0°
above the negative x axis, and (ii) the force exerted at the elbow joint.

S T R A T E G Y

In this system there are three unknowns: T, and These un-
knowns can be determined using the following three conditions: (i)
net torque equals zero; (ii) net x component of force equals zero; and
(iii) net y component of force equals zero.

We start with the torque condition, using the elbow joint as the axis of
rotation. As we shall see, this choice of axis eliminates f, and gives a
direct solution for the tension T. Next, we use T and the two force con-
ditions to determine and 

CONTINUED ON NEXT PAGE

fy.fx

fy.fx,

f
! T

!
,

L = 0.300 m.

f
!
,

L/2 L/2

T
f

fy

fx Tx

Ty

mg

40.0°x

y

1 1 – 3 Z E R O  T O R Q U E  A N D  S T A T I C  E Q U I L I B R I U M 345



346 C H A P T E R  1 1 R O T A T I O N A L  D Y N A M I C S  A N D  S T A T I C  E Q U I L I B R I U M

CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

Part (a)

1. Calculate the torque about the elbow joint. Note that f
causes zero torque, mg causes a negative torque, and the
vertical component of T causes a positive torque.
The horizontal component of T produces no torque,
since it is on a line with the axis:

2. Solve the torque condition for the tension, T:

Part (b)

3. Set the sum of the x components of force equal to zero,
and solve for 

4. Set the sum of the y components of force equal to zero, 
and solve for 

I N S I G H T

It is not necessary to determine and separately, since we know the direction of the cord. In particular, it is clear from our 
sketch that the components of are and 

Did you notice that is at an angle of 40.0° with respect to the positive x axis, the same angle that makes with the negative
x axis? The reason for this symmetry, of course, is that mg acts at the center of the forearm. If mg were to act closer to the elbow,
for example, would make a larger angle with the horizontal, as we see in the following Practice Problem.

P R A C T I C E  P R O B L E M

Suppose the forearm and hand are nonuniform, and that the center of mass is located at a distance of from the elbow joint.
What are T, and in this case? [Answer: In this case, makes an angle of 68.3° with
the horizontal.]

Some related homework problems: Problem 33, Problem 94

f
!

T = 4.96 N, fx = 3.80 N, fy = 9.56 N.fyfx,
L/4

f
!

T
!

f
!

Ty = T sin 40.0° = 6.38 N.Tx = -T cos 40.0° = -7.60 NT
! TyTx

 = 11.30 kg219.81 m/s22 - 19.92 N2 sin 40.0° = 6.38 N

fy = mg - T sin 40.0°fy:
aFy = fy - mg + T sin 40.0° = 0

fx = T cos 40.0° = 19.92 N2 cos 40.0° = 7.60 Nfx:
aFx = fx - T cos 40.0° = 0

T =
mg

2 sin 40.0°
=
11.30 kg219.81 m/s22

2 sin 40.0°
= 9.92  N

a t = 1T sin 40.0°2L - mg1L/22 = 0

A C T I V E  E X A M P L E  1 1 – 3 D O N ’ T  W A L K  U N D E R  T H E  L A D D E R :  F I N D  T H E  F O R C E S

An 85-kg person stands on a lightweight ladder, as shown. The floor is rough; hence,
it exerts both a normal force, and a frictional force, on the ladder. The wall, on
the other hand, is frictionless; it exerts only a normal force, Using the dimensions
given in the figure, find the magnitudes of and 

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Set the net torque acting on the ladder equal to zero.
Use the bottom of the ladder as the axis:

2. Solve for 

3. Sum the x components of force and set equal to zero:

4. Solve for 

5. Sum the y components of force and set equal to zero:

6. Solve for 

I N S I G H T

If the floor is quite smooth, the ladder might slip—it depends on whether the coefficient of static friction is great enough to pro-
vide the needed force In this case, the normal force exerted by the floor is Therefore, if the coeffi-
cient of static friction is greater than 0.18 [since ], the ladder will stay put. Ladders often have rubberized
pads on the bottom in order to increase the static friction, and hence increase the safety of the ladder.

Y O U R  T U R N

Write both the zero force and zero torque conditions for the case where the axis of rotation is at the top of the ladder.

(Answers to Your Turn problems are given in the back of the book.)

0.181830 N2 = 150 N
N = f1 = 830 N.f2 = 150 N.

f1 = mg = 830 Nf1:

f1 - mg = 0

f2 = f3 = 150 Nf2:

f2 - f3 = 0

f3 = mg1b/a2 = 150 Nf3:

f31a2 - mg1b2 = 0

f3.f1, f2,
f3.

f2,f1,

x

y f1

f2

mg

a = 3.8 m

b = 0.70 m

f3



11–4 Center of Mass and Balance
Suppose you decide to construct a mobile. To begin, you tie a thread to a light
rod, as in Figure 11–7. Note that the rod extends a distance to the left of the
thread and a distance to the right. At the left end of the rod you attach an ob-
ject of mass What mass, should be attached to the right end if the rod is
to be balanced?

From the discussions in the previous sections, it is clear that if the rod is to be
in static equilibrium (balanced), the net torque acting on it must be zero. Taking
the point where the thread is tied to the rod as the axis of rotation, this zero-torque
condition can be written as:

Canceling g and rearranging, we find

11–7

This gives the following result for 

For example, if it follows that should be one-half of 
Let’s now consider a slightly different question: Where is the center of mass 

of and Choosing the origin of the x axis to be at the location of the thread,
as indicated in Figure 11–7, we can use the definition of the center of mass, 
Equation 9–13, to find 

Referring to the zero-torque condition in Equation 11–7, we see that 
hence the center of mass is at the origin:

This is precisely where the string is attached. We conclude, then, that the rod bal-
ances when the center of mass is directly below the point from which the rod is
suspended. This is a general result.

Let’s apply this result to the case of the mobile shown in the next Example.

xcm = 0

m1x1 - m2x2 = 0;

xcm =
m11-x12 + m21x22

m1 + m2
= - am1x1 - m2x2

m1 + m2
b

xcm:

m2?m1

m1.m2x2 = 2x1,

m2 = m11x1/x22
m2:

m1x1 = m2x2

m1g1x12 - m2g1x22 = 0

m2,m1.
x2

x1

▲ FIGURE 11–7 Zero torque and balance
One section of a mobile. The rod is bal-
anced when the net torque acting on it is
zero. This is equivalent to having the
center of mass directly under the suspen-
sion point.

0
x

x1

m1

m2

x2

E X A M P L E  1 1 – 6 A  W E L L - B A L A N C E D  M E A L

As a grade-school project, students construct a mobile representing some of the major food groups. Their completed artwork is
shown below. Find the masses and that are required for a perfectly balanced mobile. Assume the strings and the hor-
izontal rods have negligible mass.

P I C T U R E  T H E  P R O B L E M

The dimensions of the horizontal rods, and the values of the
given masses, are indicated in our sketch. Note that each rod is
balanced at its suspension point.

S T R A T E G Y

We can find all three unknown masses by repeatedly applying
the condition for balance, 

First, we apply the balance condition to and with the dis-
tances and This gives a relation be-
tween and 

To get a second relation between and we apply the bal-
ance condition again at the next higher level of the mobile.
That is, the mass at the distance 6.0 cm must bal-
ance the mass 0.30 kg at the distance 24 cm. These two condi-
tions determine and 

CONTINUED ON NEXT PAGE

m2.m1

1m1 + m22
m2,m1

m2.m1

x2 = 18 cm.x1 = 12 cm
m2,m1

m1x1 = m2x2.

m3m1, m2,
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m3

m2

0.30 kg

0.20 kg

18 cm

m1

31 cm

24 cm

12 cm 18 cm

6.0 cm



▲ FIGURE 11–9 The geometric center of the United States
To find the center of mass of an irregularly shaped object, such as a wooden model of the
continental United States, suspend it from two or more points. The center of mass lies on a
vertical line extending downward from the suspension point. The intersection of these verti-
cal lines gives the precise location of the center of mass.

A

A

a

a

b

a′

a′

b′

B

CM

The center of mass also
lies on the line bb′.

The center of mass lies on
the line aa′.
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To find we again apply the balance condition, this time with the mass at the distance 18 cm,
and the mass at the distance 31 cm.

S O L U T I O N

1. Apply the balance condition to and 

2. Apply the balance condition to the next level up in
the mobile. Solve for the sum, 

3. Substitute into to find 

4. Use to find 

5. Apply the balance condition to the top level of the mobile:

6. Solve for 

I N S I G H T

With the values for and found above, the mobile balances at every level. In fact, the center of mass of the entire
mobile is directly below the point where the uppermost string attaches to the ceiling.

P R A C T I C E  P R O B L E M

Find and if the 0.30-kg mass is replaced with a 0.40-kg mass. [Answer: ]

Some related homework problems: Problem 43, Problem 45

m1 = 0.96 kg, m2 = 0.64 kg, m3 = 1.3 kgm3m1, m2,

m3m1, m2,

m3 =
11.70 kg2118 cm2

31 cm
= 0.99 kgm3:

10.72 kg + 0.48 kg + 0.30 kg + 0.20 kg2118 cm2 = m3131 cm2
m1 = 11.52m2 = 11.520.48 kg = 0.72 kgm1:m1 = 11.52m2

m2 = 1.2 kg/2.5 = 0.48 kg

11.52m2 + m2 = 12.52m2 = 1.2 kgm2:m1 + m2 = 1.2 kgm1 = 11.52m2

m1 + m2 =
10.30 kg2124 cm2

6.0 cm
= 1.2 kg

m1 + m2:
1m1 + m2216.0 cm2 = 10.30 kg2124 cm2
m1 = 11.52m2

m1112 cm2 = m2118 cm2m2:m1

m3

1m1 + m2 + 0.30 kg + 0.20 kg2m3

In general, if you allow an arbitrarily shaped object to hang freely, its center of
mass is directly below the suspension point. To see why, note that when the cen-
ter of mass is directly below the suspension point, the torque due to gravity is
zero, since the force of gravity extends right through the axis of rotation. This is
shown in Figure 11–8 (a). If the object is rotated slightly, as in Figure 11–8 (b), the force
of gravity is not in line with the axis of rotation—hence gravity produces a torque.
This torque tends to rotate the object, bringing the center of mass back under the
suspension point.

For example, suppose you cut a piece of wood into the shape of the continental
United States, as shown in Figure 11–9, drill a small hole in it, and hang it from the

▲ FIGURE 11–8 Equilibrium of a
suspended object
(a) If an object’s center of mass is directly
below the suspension point, its weight
creates zero torque and the object is in
equilibrium. (b) When an object is ro-
tated, so that the center of mass is no
longer directly below the suspension
point, the object’s weight creates a
torque. The torque tends to rotate the
object to bring the center of mass under
the suspension point.

mg

mg

(a) Zero torque (b) Nonzero torque



R E A S O N I N G  A N D  D I S C U S S I O N

The mallet balances because the torques due to the two pieces are of equal magnitude.
The piece with the head of the mallet extends a smaller distance from the point of sus-
pension than does the other piece, hence its mass must be greater; that is, a large mass at
a small distance creates the same torque as a small mass at a large distance.

A N S W E R

(b) The piece with the head of the mallet has the greater mass.

C O N C E P T U A L  C H E C K P O I N T  1 1 – 2 C O M P A R E  
T H E  M A S S E S

A croquet mallet balances when suspended from its center of mass, as indicated in the
drawing at left. If you cut the mallet in two at its center of mass, as in the drawing at
right, how do the masses of the two pieces compare? (a) The masses are equal; (b) the
piece with the head of the mallet has the greater mass; or (c) the piece with the head of
the mallet has the smaller mass.

point A. The result is that the center of mass lies somewhere on the line Similarly,
if a second hole is drilled at point B, we find that the center of mass lies somewhere
on the line The only point that is on both the line and the line is the point
CM, near Smith Center, Kansas, which marks the location of the center of mass.

bb¿aa¿bb¿.

aa¿.

▲ In this scene from the movie Mission
Impossible, Tom Cruise is attempting to
download top-secret computer files with-
out setting off the elaborate security system
in the room. To accomplish this nearly im-
possible mission, he is suspended from the
ceiling, since touching the floor would
immediately give away his presence. To
remain in equilibrium above the floor as he
works, he must carefully adjust the posi-
tion of his arms and legs to keep his center
of mass directly below the suspension
point.
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Similar considerations apply to an object that is at rest on a surface, as op-
posed to being suspended from a point. In such a case, the object is in equilibrium
as long as its center of mass is directly above the base on which it is supported. For
example, when you stand upright with normal posture your feet provide a base
of support, and your center of mass is above a point roughly halfway between your
feet. If you lift your right foot from the floor—without changing your posture—you
will begin to lose your balance and tip over. The reason is that your center of mass
is no longer above the base of support, which is now your left foot. To balance on
your left foot, you must lean slightly in that direction so as to position your center
of mass directly above the foot. This principle applies to everything from a per-
former in a high-wire act to one of the “balancing rocks” that are a familiar sight
in the desert Southwest. In Problem 44 we apply this condition for stability to a
stack of books on the edge of a table.

(Left) Although it looks precarious, this
rock in Arches National Park, Utah, has
probably been balancing above the desert
for many thousands of years. It will remain
secure on its perch as long as its center of
mass lies above its base of support. (Right)
Although her knowledge may be based
more on practical experience than on
physics, this woman knows exactly what
she must do to keep from falling. By ex-
tending one leg backward as she leans for-
ward, she keeps her center of mass safely
positioned over the foot that supports her.

▲
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11–5 Dynamic Applications of Torque
In this section we focus on applications of Newton’s second law for rotation. For
example, consider a disk-shaped pulley of radius R and mass M with a string
wrapped around its circumference, as in Figure 11–10 (a). Hanging from the string is
a mass m. When the mass is released, it accelerates downward and the pulley be-
gins to rotate. If the pulley rotates without friction, and the string unwraps with-
out slipping, what are the acceleration of the mass and the tension in the string?

FIGURE 11–10 A mass suspended from 
a pulley
A mass m hangs from a string wrapped
around the circumference of a disk-shaped
pulley of radius R and mass M. When the
mass is released, it accelerates downward.
Positive directions of motion for the sys-
tem are shown in parts (b) and (c). In part
(c), the weight of the pulley acts down-
ward at its center, and the axle exerts an
upward force equal in magnitude to the
weight of the pulley plus the tension in the
string. Of the three forces acting on the
pulley, only the tension in the string pro-
duces a torque about the axle.

▲

M

m

M
T

T
mg

(a) Physical picture (b) Free-body diagram
for mass

+
+

(c) Torque producing force
acting on pulley

R

a

R

At first it may seem that since the pulley rotates freely, the mass will simply
fall with the acceleration of gravity. But remember, the pulley has a nonzero mo-
ment of inertia, which means that it resists any change in its rotational mo-
tion. In order for the pulley to rotate, the string must pull downward on it. This
means that the string also pulls upward on the mass m with a tension T. As a re-
sult, the net downward force on m is less than mg, and thus its acceleration is less
than g.

To solve for the acceleration of the mass, we must apply Newton’s second law
to both the linear motion of the mass and the rotational motion of the pulley. The
first step is to define a consistent choice of positive directions for the two motions.
In Figure 11–10 (a) we note that when the pulley rotates counterclockwise, the
mass moves upward. Thus, we choose counterclockwise to be positive for the pul-
ley and upward to be positive for the mass.

With our positive directions established, we proceed to apply Newton’s sec-
ond law. Referring to the free-body diagram for the mass, shown in Figure 11–10 (b),
we see that

11–8

Similarly, the free-body diagram for the pulley is shown in Figure 11–10 (c). Note
that the tension in the string, T, exerts a tangential force on the pulley at a distance
R from the axis of rotation. This produces a torque of magnitude TR. Since the ten-
sion tends to cause a clockwise rotation, it follows that the torque is negative;
thus, As a result, Newton’s second law for the pulley gives

11–9

Now, these two statements of Newton’s second law are related by the fact that
the string unwraps without slipping. As was discussed in Chapter 10, when a string
unwraps without slipping, the angular and linear accelerations are related by

Using this relation in Equation 11–9 we have

-TR = I
a
R

a =
a
R

-TR = Ia

t = -TR.

T - mg = ma

I 7 0,



or, dividing by R,

Substituting this result into Equation 11–8 yields

Finally, dividing by m and rearranging yields the acceleration, a:

11–10

Let’s briefly check our solution for a. First, note that a is negative. This is to be
expected, since the mass accelerates downward, which is the negative direction.
Second, if the moment of inertia were zero, or if the mass m were infinite,

the mass would fall with the acceleration of gravity, When I is
greater than zero and m is finite, however, the acceleration of the mass has a mag-
nitude less than g. In fact, in the limit of an infinite moment of inertia, the
acceleration vanishes—the mass is simply unable to cause the pulley to rotate in
this case.

The next Example presents another system in which Newton’s laws are used
to relate linear and rotational motions.

I : q ,

a = -g.m : q ,
I = 0,

a = -  
g

a1 +
I

mR2 b

-I
a

R2 - mg = ma

T = -I
a

R2
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E X A M P L E  1 1 – 7 T H E  P U L L E Y  M A T T E R S

A 0.31-kg cart on a horizontal air track is attached to a string. The string passes over a disk-shaped pulley of mass 0.080 kg and
radius 0.012 m and is pulled vertically downward with a constant force of 1.1 N. Find (a) the tension in the string between the
pulley and the cart and (b) the acceleration of the cart.

P I C T U R E  T H E  P R O B L E M

The system is shown below. We label the mass of the cart with M, the mass of the pulley with m, and the radius of the pulley with
r. The applied downward force creates a tension in the vertical portion of the string. The horizontal portion of the
string, from the pulley to the cart, has a tension If the pulley had zero mass, these two tensions would be equal. In this case,
however, will have a different value than 

We also show the relevant forces acting on the pulley and the cart. The positive direction of rotation is counterclockwise, and the
corresponding positive direction of motion for the cart is to the left.

T1.T2

T2.
T1 = 1.1 N

a

M
r

+

+

Relevant forcesPhysical picture

T1

T2 T2

m

S T R A T E G Y

The two unknowns, and a, can be found by applying Newton’s second law to both the pulley and the cart. This gives two
equations for two unknowns.

In applying Newton’s second law to the pulley, note that since the pulley is a disk, it follows that Also, since the string
is not said to slip as it rotates the pulley, we can assume that the angular and linear accelerations are related by 

CONTINUED ON NEXT PAGE

a = a/r.
I = 1

2mr2.

T2



▲ FIGURE 11–11 The angular momentum
of circular motion
A particle of mass m, moving in a circle
of radius r with a speed v. This particle
has an angular momentum of magnitude
L = rmv.

r

v

m
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11–6 Angular Momentum
When an object of mass m moves with a speed v in a straight line, we say that it
has a linear momentum, When the same object moves with an angular
speed along the circumference of a circle of radius r, as in Figure 11–11, we say that
it has an angular momentum, L. The magnitude of L is given by replacing m and
v in the expression for p with their angular analogues I and (Section 10–5). Thus,
we define the angular momentum as follows:

Definition of the Angular Momentum, L

11–11

SI unit: 

This expression applies to any object undergoing angular motion, whether it is a
point mass moving in a circle, as in Figure 11–11, or a rotating hoop, disk, or other
object.

Returning for a moment to the case of a point mass m moving in a circle of ra-
dius r, recall that the moment of inertia in this case is (Equation 10–18). In
addition, the linear speed of the mass is (Equation 10–12). Combining
these results, we find

Noting that mv is the linear momentum p, we find that the angular momentum of
a point mass can be written in the following form:

11–12

It is important to recall that this expression applies specifically to a point particle
moving along the circumference of a circle.

L = rmv = rp

L = Iv = 1mr221v/r2 = rmv

v = rv
I = mr2

kg # m2/s

L = Iv

v

v

p = mv.

CONTINUED FROM PREVIOUS PAGE

S O L U T I O N

Part (a)

1. Apply Newton’s second law to the cart:

2. Apply Newton’s second law to the pulley. Note that 
causes a positive torque, and causes a negative torque.T2

gt = IaT1

T2 = Ma

In addition, use the relation 

3. Use the cart equation, to eliminate a in the
pulley equation:

4. Cancel r and solve for 

Part (b)

5. Use to find the acceleration:

I N S I G H T

Note that is less than As a result, the net torque acting on the pulley is in the counterclockwise direction, causing a rotation
in that direction, as expected. If the mass of the pulley were zero the two tensions would be equal, and the acceleration
of the cart would be 

P R A C T I C E  P R O B L E M

What applied force is necessary to give the cart an acceleration of [Answer:
]

Some related homework problems: Problem 49, Problem 50

0.77 N
T1 = T211 + m/2M2 = 1Ma211 + m/2M2=2.2 m/s2?

T1/M = 3.5 m/s2.
1m = 02,

T1.T2

a =
T2

M
=

0.97 N
0.31 kg

= 3.1 m/s2T2 = Ma

T2 =
T1

1 + m/2M
=

1.1 N
1 + 0.080 kg/[210.31 kg2] = 0.97 NT2:

rT1 - rT2 = 1
2mra T2

M
b

a =
T2

M
T2 = Ma,

rT1 - rT2 = A12mr2 B a a
r
b = 1

2mraa = a/r:



More generally, a point object may be moving at an angle with respect to a
radial line, as indicated in Figure 11–12 (a). In this case, it is only the tangential com-
ponent of the momentum, that contributes to the angular mo-
mentum, just as the tangential component of the force, is all that con-
tributes to the torque. Thus, the magnitude of the angular momentum for a point
particle is defined as:

Angular Momentum, L, for a Point Particle

11–13

SI unit: 

Note that if the particle moves in a circular path the angle is 90° and the angular
momentum is in agreement with Equation 11–12. On the other hand,
if the object moves radially, so that the angular momentum is zero;

E X E R C I S E  1 1 – 3
Find the angular momentum of (a) a 0.13-kg Frisbee (considered to be a uniform disk
of radius 7.5 cm) spinning with an angular speed of 1.15 rad/s, and (b) a 95-kg person
running with a speed of 5.1 m/s on a circular track of radius 25 m.

S O L U T I O N

a. Recalling that for a uniform disk (Table 10–1), we have

b. Treating the person as a particle of mass m, we find

L = rmv = 125 m2195 kg215.1 m/s2 = 12,000 kg # m2/s

 = A12mR2 Bv = 1
210.13 kg210.075 m2211.15 rad/s2 = 4.2 * 10-4 kg # m2/s

 L = Iv

I = 1
2mR2

L = rmv sin 0 = 0.
u = 0,

L = rmv,
u

kg # m2/s

L = rp sin u = rmv sin u

F sin u,
p sin u = mv sin u,

u

▲ FIGURE 11–12 The angular momentum
of nontangential motion
(a) When a particle moves at an angle 
with respect to the radial direction, only
the tangential component of velocity,

contributes to the angular mo-
mentum. In the case shown here, the par-
ticle’s angular momentum has a magni-
tude given by (b) The
angular momentum of an object can also
be defined in terms of the moment arm,

Since it follows that
Note the similar-

ity between this figure and Figure 11–3.
L = rmv sin u = r�mv.

r� = r sin u,r�.

L = rmv sin u.

v sin u,

u

r

v

r

p

v sin 0�

v cos 0�

�

�

�

(b)

(a)

r1 = r sin 0�r1
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An alternative definition of the angular momentum uses the moment arm, 
as was done for the torque in Equation 11–3. To apply this definition, start by ex-
tending a line through the momentum vector, as in Figure 11–12 (b). Next, draw a
line from the axis of rotation perpendicular to the line through The perpendic-
ular distance from the axis of rotation to the line of is the moment arm. From the
figure we see that Hence, from Equation 11–13, the angular momen-
tum is

If an object moves in a circle of radius r, the moment arm is and the angu-
lar momentum reduces to our earlier result, L = rp.

r� = r

L = r�p = r�mv

r�= r sin u.
p
! p

!
.

p
!
,

r�,

C O N C E P T U A L  C H E C K P O I N T  1 1 – 3 A N G U L A R  M O M E N T U M ?

Does an object moving in a straight line have nonzero angular momentum (a) always,
(b) sometimes, or (c) never?

R E A S O N I N G  A N D  D I S C U S S I O N

The answer is sometimes, because it depends on the choice of the axis of rotation. If the
axis of rotation is not on the line drawn through the momentum vector, as in the left
sketch at right, the moment arm is nonzero, and therefore is also nonzero. If the
axis of rotation is on the line of motion, as in the right sketch, the moment arm is zero;
hence the linear momentum is radial and L vanishes.

A N S W E R

(b) An object moving in a straight line may or may not have angular momentum, de-
pending on the location of the axis of rotation.

L = r�p

r1

p

p



E X A M P L E  1 1 – 8  J U M P  O N

Running with a speed of 4.10 m/s, a 21.2-kg child heads toward the rim
of a merry-go-round. The radius of the merry-go-round is 2.00 m, and
the child moves in the direction indicated. (a) What is the child’s angu-
lar momentum with respect to the center of the merry-go-round? Use

(b) What is the moment arm, , in this case? (c) Find the
angular momentum of the child with 

P I C T U R E  T H E  P R O B L E M

Our sketch shows the child approaching the rim of the merry-go-round
at an angle of 135° relative to the radial direction. Note that the line of
motion of the child does not go through the axis of the merry-go-round.
As a result, the child has a nonzero angular momentum with respect to
that axis of rotation. We also indicate the moment arm, , and the 
45° angle that is opposite to it.

S T R A T E G Y

a. The child’s angular momentum can be found by applying In this case, we see from the sketch that 
and . The values of m and v are given in the problem statement.r = 2.00 m

u = 135°L = rmv sin u.

r�

L = r�mv.
r�L = rmv sin u.

r

v

= 135°
45°

�
r

b. and c. Our sketch shows that is the side of the right triangle opposite to the angle of 45°. It follows that 

S O L U T I O N

Part (a)

1. Evaluate :

Part (b)

2. Calculate the moment arm, :

Part (c)

3. Evaluate 

I N S I G H T

When the child lands on the merry-go-round, she will transfer angular momentum to it, causing the merry-go-round to rotate
about its center. This will be discussed in more detail in the next section.

Notice that we use 45° in because we calculate the length of the opposite side of the right triangle indicated in our 
sketch. We could have used just as well, using the same angle as in The results are the same in
either case, since sin 135° = sin 45°.

L = rmv sin 135°.r� = r sin 135°
r� = r sin 45°

L = r�mv = (1.41 m)(21.2 kg)(4.10 m/s) = 123 kg # m2/sL = r�mv:

r� = r sin 45° = (2.00 m) sin 45° = 1.41 mr�

 = 123 kg # m2/s

 L = rmv sin u = (2.00 m)(21.2 kg)(4.10 m/s) sin 135°L = rmv sin u

r� = r sin 45°.r�
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Note that an object moving with a momentum p in a straight line that does not
go through the axis of rotation has an angular position that changes with time.
This is illustrated in Figure 11–13 (a). It is for this reason that such an object is said to
have an angular momentum.

The sign of L is determined by whether the angle to a given object is increasing
or decreasing with time. For example, the object moving counterclockwise in a cir-
cular path in Figure 11–13 (b) has a positive angular momentum, since is increasing
with time. Similarly, the object in Figure 11–13 (a) also has an angle that increases
with time, hence its angular momentum is positive as well. On the other hand, if
these objects were to have their direction of motion reversed, they would have an-
gles that decrease with time and their angular momenta would be negative.

u

u

FIGURE 11–13 Angular momentum in
linear and circular motion
An object moving in (a) a straight line
and (b) a circular path. In both cases, the
angular position increases with time;
hence, the angular momentum is positive.

▲

The angle to the object
changes as the object

moves.The angle to the object
changes as the object

moves.

v

v

(b) Circular motion(a) Linear motion



Next, we consider the rate of change of angular momentum with time. Since
the moment of inertia is a constant—as long as the mass and shape of the object
remain unchanged—the change in L in a time interval is

Recall, however, that is the angular acceleration, Therefore, we have

Since is the torque, it follows that Newton’s second law for rotational motion
can be written as

Newton’s Second Law for Rotational Motion

11–14

Clearly, this is the rotational analogue of Just as force can
be expressed as the change in linear momentum in a given time interval, the
torque can be expressed as the change in angular momentum in a time interval.

E X E R C I S E  1 1 – 4
In a light wind, a windmill experiences a constant torque of If the windmill
is initially at rest, what is its angular momentum 2.00 s later?

S O L U T I O N

Solve Equation 11–14 for the change in angular momentum due to a single torque 

Since the initial angular momentum of the windmill is zero, its final angular momen-
tum is

11–7 Conservation of Angular Momentum
When an ice skater goes into a spin and pulls her arms inward to speed up, she
probably doesn’t think about angular momentum. Neither does a diver who
springs into the air and folds her body to speed her rotation. Most people, in fact,
are not aware that the actions of these athletes are governed by the same basic
laws of physics that cause a collapsing star to spin faster as it becomes a rapidly
rotating pulsar. Yet in all these cases, as we shall see, conservation of angular mo-
mentum is at work.

To see the origin of angular momentum conservation, consider an object with an
initial angular momentum acted on by a single torque After a period of time, 
the object’s angular momentum changes in accordance with Newton’s second law:

Solving for we find

Thus, the final angular momentum of the object is

Lf = Li + t ¢t

¢L = Lf - Li = t ¢t

¢L,

t =
¢L
¢t

¢t,t.Li

Lf = t ¢t = 1255 N # m212.00 s2 = 510 kg # m2/s

¢L = Lf - Li = Aa t B  ¢t = t ¢t

t:

255 N # m.

©Fx = max = ¢px/¢t.

a t = Ia =
¢L
¢t

Ia

¢L
¢t

= Ia

a.¢v/¢t

¢L
¢t

= I
¢v
¢t

¢t
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P R A C T I C E  P R O B L E M

For what angle relative to the radial line does the child have a maximum angular momentum? What is the angular momentum
in this case? [Answer: , for which ]

Some related homework problems: Problem 56, Problem 57, Problem 58

L = rmv = 174 kg # m2/su = 90°

▲ Once she has launched herself into
space, this diver is essentially a projectile.
However, the principle of conservation of
angular momentum allows her to control
the rotational part of her motion. By curling
her body up into a tight “tuck,” she de-
creases her moment of inertia, thereby
increasing the speed of her spin. To slow
down for an elegant entry into the water,
she will extend her body, increasing her
moment of inertia.



E X A M P L E  1 1 – 9 G O I N G  F O R  A  S P I N

For a classroom demonstration, a student sits on a piano stool holding a sizable mass in each hand. Initially, the student holds his
arms outstretched and spins about the axis of the stool with an angular speed of 3.72 rad/s. The moment of inertia in this case
is . While still spinning, the student pulls his arms in to his chest, reducing the moment of inertia to .
(a) What is the student’s angular speed now? (b) Find the initial and final angular momenta of the student.

P I C T U R E  T H E  P R O B L E M

The initial and final configurations of the student are shown in
our sketch. Clearly, the mass distribution in the final configura-
tion, with the masses held closer to the axis of rotation, results in
a smaller moment of inertia.

S T R A T E G Y

Ignoring friction in the axis of the stool, since none was men-
tioned, we conclude that no external torques act on the system.
As a result, the angular momentum is conserved. Therefore, set-
ting the initial angular momentum, , equal to the final
angular momentum, , yields the final angular speed.

S O L U T I O N

Part (a)

1. Apply angular momentum conservation to this system:

2. Solve for the final angular speed, :

3. Substitute numerical values:

Part (b)

4. Use to calculate the angular momentum. 
Substitute both initial and final values as a check:

I N S I G H T

Initially the student completes one revolution roughly every two seconds. After pulling the weights in, the student’s rotation
rate has increased to almost two revolutions a second—quite a dizzying pace. The same physics applies to a rotating diver or a
spinning ice skater.

P R A C T I C E  P R O B L E M

What moment of inertia would be required to give a final spin rate of 10.0 rad/s? [Answer: ]

Some related homework problems: Problem 65, Problem 67, Problem 74

If = (vi/vf)Ii = 1.99 kg # m2

Lf = Ifvf = (1.60 kg # m2)(12.4 rad/s) = 19.8 kg # m2/s
Li = Iivi = (5.33 kg # m2)(3.72 rad/s) = 19.8 kg # m2/sL = Iv

vf = a5.33 kg # m2

1.60 kg # m2
b(3.72 rad/s) = 12.4 rad/s

vf = a Ii

If
bvivf

Iivi = Ifvf

Li = Lf

Lf = Ifvf

Li = Iivi

1.60 kg # m25.33 kg # m2

Ii

If

i� f�
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If the torque acting on the object is zero, it follows that the initial and final
angular momenta are equal—that is, the angular momentum is conserved:

Angular momentum is also conserved in systems acted on by more than one
torque, provided that the net external torque is zero. The reason that internal torques
can be ignored is that, just as internal forces come in equal and opposite pairs that
cancel, so too do internal torques. As a result, the internal torques in a system sum
to zero, and the net torque acting on it is simply the net external torque. Thus, for
a general system, angular momentum is conserved if is zero:

Conservation of Angular Momentum

11–15

As an illustration of angular momentum conservation, we consider the case of
a student rotating on a piano stool in the next Example. Notice how a change in
moment of inertia results in a change in angular speed.

Lf = Li 1if tnet, ext = 02

tnet, ext

Lf = Li 1if t = 02
t = 0,



An increasing angular speed, as experienced by the student in Example 11–9,
can be observed in nature as well. For example, a hurricane draws circulating air
in at ground level toward its “eye,” where it then rises to an altitude of 10 miles or
more. As air moves inward toward the axis of rotation, its angular speed increases,
just as the masses held by the student speed up when they are pulled inward. For
example, if the wind has a speed of only 3.0 mph at a distance of 300 miles from the
center of the hurricane, it would speed up to 150 mph when it comes to within 6.0
miles of the center. Of course, this analysis ignores friction, which would certainly
decrease the wind speed. Still, the basic principle—that a decreasing distance from
the axis of rotation implies an increasing speed—applies to both the student and
the hurricane. Similar behavior is observed in tornadoes and waterspouts.

Another example of conservation of angular momentum occurs in stellar explo-
sions. On occasion a star will explode, sending a portion of its material out into
space. After the explosion, the star collapses to a fraction of its original size, speeding
up its rotation in the process. If the mass of the star is greater than 1.44 times the
mass of the Sun, the collapse can continue until a neutron star is formed, with a radius
of only about 10 to 20 km. Neutron stars have incredibly high densities; in fact, if
you could bring a teaspoonful of neutron star material to the Earth, it would weigh
about 100 million tons! In addition, neutron stars produce powerful beams of X-rays
and other radiation that sweep across the sky like a gigantic lighthouse beam as the
star rotates. On the Earth we see pulses of radiation from these rotating beams, one
for each revolution of the star. These “pulsating stars,” or pulsars, typically have
periods ranging from about 2 ms to nearly 1 s. The Crab nebula (see Problems 9 and
106 in Chapter 10) is a famous example of such a system. The dependence of angu-
lar speed on radius for a collapsing star is considered in Active Example 11–4.

R E A L - W O R L D  P H Y S I C S

Hurricanes and tornadoes
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▲ This 1992 satellite photo of Hurricane Andrew (left), one of the most powerful hurricanes of recent decades, clearly suggests the rotating
structure of the storm. The violence of the hurricane winds can be attributed in large part to conservation of angular momentum: as air is pushed
inward toward the low pressure near the eye of the storm, its rotational velocity increases. The same principle, operating on a smaller scale, explains
the tremendous destructive power of tornadoes. The tornado shown at right passed through downtown Miami on May 12, 1997.

▲ Among the fastest rotating objects
known in nature are pulsars: stars that
have collapsed to a tiny fraction of their
original size. Since all the angular momen-
tum of a star must be conserved when it
collapses, the dramatic decrease in radius is
accompanied by a correspondingly great
increase in rotational speed. The Crab neb-
ula pulsar, the remains of a star whose ex-
plosion was observed on Earth nearly 1000
years ago, spins at about 30 rev/s. This
X-ray photograph shows rings and jets of
high-energy particles flying outward from
the whirling neutron star at the center.

A C T I V E  E X A M P L E  1 1 – 4 A  S T E L L A R  P E R F O R M A N C E :
F I N D  T H E  A N G U L A R  S P E E D

Astar of radius rotates with an angular speed 
If this star collapses to a radius of 20.0 km, find its final angular speed. (Treat the star
as if it were a uniform sphere, and assume that no mass is lost as the star collapses.)

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Apply conservation of angular momentum:

CONTINUED ON NEXT PAGE

Iivi = Ifvf

v = 2.4 * 10-6 rad/s.R = 2.3 * 108 m



Note that if the student in Example 11–9 were to stretch his arms back out
again, the resulting increase in the moment of inertia would cause a decrease in his
angular speed. The same effect might apply to the Earth one day. For example, a
melting of the polar ice caps would lead to an increase in the Earth’s moment of
inertia (as we saw in Chapter 10) and thus, by angular momentum conservation,
the angular speed of the Earth would decrease. This would mean that more time
would be required for the Earth to complete a revolution about its axis of rotation;
that is, the day would lengthen.

Since angular momentum is conserved in the systems we have studied so far,
it is natural to ask whether the energy is conserved as well. We consider this ques-
tion in the next Conceptual Checkpoint.

C O N C E P T U A L  C H E C K P O I N T  1 1 – 4
C O M P A R E  K I N E T I C  E N E R G I E S

A skater pulls in her arms, decreasing her moment of inertia by a factor of two, and
doubling her angular speed. Is her final kinetic energy (a) equal to, (b) greater than, or
(c) less than her initial kinetic energy?

R E A S O N I N G  A N D  D I S C U S S I O N

Let’s calculate the initial and final kinetic energies, and compare them. The initial kinetic
energy is

After pulling in her arms, the skater has half the moment of inertia and twice the angu-
lar speed. Hence, her final kinetic energy is

Thus, the fact that K depends on the square of leads to an increase in the kinetic energy.
The source of this additional energy is the work done by the muscles in the skater’s arms
as she pulls them in to her body.

A N S W E R

(b) The skater’s kinetic energy increases.

v

Kf = 1
2Ifvf 

2 = 1
21Ii/2212vi22 = 2 A12Iivi 

2 B = 2Ki

Ki = 1
2Iivi 

2

Rotational Collisions
In the not-too-distant past, a person would play music by placing a record on a ro-
tating turntable. Suppose, for example, that a turntable with a moment of inertia

is rotating freely with an initial angular speed A record, with a moment of in-
ertia and initially at rest, is dropped straight down onto the rotating turntable,
as in Figure 11–14. When the record lands, frictional forces between it and the
turntable cause the record to speed up and the turntable to slow down, until they
both have the same angular speed. Since only internal forces are involved during

Ir

v0.It

▲ FIGURE 11–14 A rotational collision
A nonrotating record dropped onto a
rotating turntable is an example of a
“rotational collision.” Since only internal
forces are involved during the collision,
the final angular momentum is equal to
the initial angular momentum.

wf�

w = 0�

w0�
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CONTINUED FROM PREVIOUS PAGE

2. Write expressions for the initial and final and 
moments of inertia:

3. Solve for the final angular speed:

4. Substitute numerical values:

I N S I G H T

The final angular speed corresponds to a period of about 20 ms, a typical period for
pulsars. Since 320 rad/s is roughly 3000 rpm, it follows that a pulsar, which has the
mass of a star, rotates as fast as the engine in a racing car.

Y O U R  T U R N

At what radius will the star’s period of rotation be equal to 15 ms?

(Answers to Your Turn problems are given in the back of the book.)

vf = 320 rad/s

vf = 1Ii/If2vi = 1Ri
 

 

2/Rf 

22vi

If = 2
5MRf 

2Ii = 2
5MRi 

2

R E A L - W O R L D  P H Y S I C S

Angular speed of a pulsar
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A C T I V E  E X A M P L E  1 1 – 5 C O N S E R V E  A N G U L A R  M O M E N T U M :  F I N D  T H E
A N G U L A R  S P E E D

A 34.0-kg child runs with a speed of 2.80 m/s tangential to the rim of a stationary merry-go-round. The merry-go-round has
a moment of inertia of and a radius of 2.31 m. When the child jumps onto the merry-go-round, the entire system
begins to rotate. What is the angular speed of the system?

512 kg # m2

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Write the initial angular momentum of the child:

2. Write the final angular momentum of the system:

3. Set and solve for the angular speed:

4. Substitute numerical values:

I N S I G H T

If the moment of inertia of the merry-go-round had been zero, the angular speed would be This means that the
linear speed of the child, is unchanged. If however, the linear speed of the child is decreased. In this particular
case, the child’s linear speed after the collision is only 

Y O U R  T U R N

What initial speed does the child have if, after landing on the merry-go-round, it takes her 22.5 s to complete one revolution?

(Answers to Your Turn problems are given in the back of the book.)

v = rv = 0.733 m/s.
I 7 0,rv = v,

v = v/r.I = 0,

v = 0.317 rad/s

v = rmv/1I + mr22Lf = Li

Lf = 1I + mr22v
Li = rmv

this process, it follows that the system’s angular momentum is conserved. We can
think of this event, then, as a “rotational collision.”

Before the collision, the angular momentum of the system is

After the collision, when both the record and the turntable are rotating with the
angular speed the system’s angular momentum is

Setting yields the final angular speed:

11–16

Since this collision is completely inelastic, we expect the final kinetic energy to be
less than the initial kinetic energy.

We conclude this section with a somewhat different example of a rotational
collision. The physical principles involved are precisely the same, however.

vf = a It

It + Ir
bv0

Lf = Li

Lf = Itvf + Irvf

vf,

Li = Itv0

�

r

Before

v

I
I

After



The initial and final kinetic energies of the system in Active Example 11–5 are
considered in Problem 66.

11–8 Rotational Work and Power
Just as a force acting through a distance performs work on an object, so too does
a torque acting through an angular displacement. To see this, consider again the
fishing line pulled from a reel. If the line is pulled with a force F for a distance 
as in Figure 11–15, the work done on the reel is

Now, since the line is unwinding without slipping, it follows that the linear
displacement of the line, is related to the angular displacement of the reel, 
by the following relation:

In this equation, R is the radius of the reel, and is measured in radians. Thus,
the work can be written as

Finally, the torque exerted on the reel by the line is and hence the work
done on the reel is simply torque times angular displacement:

Work Done by Torque

11–17

Note again the analogies between angular and linear quantities in and
As usual, is the analogue of F, and is the analogue of x.

As we saw in Chapter 7, the net work done on an object is equal to the change
in its kinetic energy. This is the work–energy theorem:

11–18

The work-energy theorem applies regardless of whether the work is done by a
force acting through a distance or a torque acting through an angle.

Similarly, power is the amount of work done in a given time, regardless
whether the work is done by a force or a torque. In the case of a torque, we have

and hence

Power Produced by a Torque

11–19

Again, the analogy is clear between for the linear case, and for the
rotational case.

E X E R C I S E  1 1 – 5
It takes a good deal of effort to make homemade ice cream. (a) If the torque required to
turn the handle on an ice cream maker is how much work is expended on
each complete revolution of the handle? (b) How much power is required to turn the
handle if each revolution is completed in 1.5 s?

S O L U T I O N

a. Applying Equation 11–17 yields

b. Power is the work per time; that is,

Equivalently, the angular speed of the handle is 
and therefore Equation 11–19 yields P = tv = 15.7 N # m214.2 rad/s2 = 24 W.

v = 12p2/T = 12p2/11.5 s2 = 4.2 rad/s,

P = W/¢t = 136 J2/11.5 s2 = 24 W

W = t¢u = 15.7 N # m212p rad2 = 36 J

5.7 N # m,

P = tvP = Fv

P =
W
¢t

= t
¢u
¢t

= tv

W = t¢u,

W = ¢K = Kf - Ki

utW = t¢u.
W = F¢x

W = t¢u

t = RF,

W = F¢x = FR¢u

¢u
¢x = R¢u

¢u,¢x,

W = F¢x

¢x,

▲ FIGURE 11–15 Rotational work
A force F pulling a length of line from
a fishing reel does the work 
In terms of torque and angular displace-
ment, the work can be expressed as
W = t ¢u.

W = F ¢x.
¢x

R
x =

R

�� �
��

F
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*11–9 The Vector Nature of Rotational Motion
We have mentioned many times that the angular velocity is a vector, and that we
must be careful to use the proper sign for But if the angular velocity is a vector,
what is its direction?

To address this question, consider the rotating wheel shown in Figure 11–16.
Each point on the rim of this wheel has a velocity vector pointing in a different di-
rection in the plane of rotation. Since different parts of the wheel move in differ-
ent directions, how can we assign a single direction to the angular velocity vector,

The answer is that there is only one direction that remains fixed as the wheel
rotates; the direction of the axis of rotation. By definition, then, the angular veloc-
ity vector, is taken to point along the axis of rotation.

Given that points along the axis of rotation, we must still decide whether it
points to the left or to the right in Figure 11–16. The convention we use for as-
signing the direction of is referred to as the right-hand rule:

Right-Hand Rule for the Angular Velocity, 
Curl the fingers of the right hand in the direction of rotation.
The thumb now points in the direction of the angular velocity, 

The right-hand rule for is illustrated in Figure 11–16.
The same convention for direction applies to the angular momentum vector.

First, recall that the angular momentum has a magnitude given by Hence,
we choose the direction of to be the same as the direction of . That is

11–20

The angular momentum vector is also illustrated in Figure 11–16.
Similarly, torque is a vector, and it too is defined to point along the axis of ro-

tation. The right-hand rule for torque is similar to that for angular velocity:

Right-Hand Rule for Torque, 
Curl the fingers of the right hand in the direction of rotation that this torque
would cause if it acted alone.

The thumb now points in the direction of the torque vector, 

Examples of torque vectors are given in Figure 11–17.
As an example of torque and angular momentum vectors, consider the spin-

ning bicycle wheel shown in Figure 11–18. The angular momentum vector for the
wheel points to the left, along the axis of rotation. If a person pushes on the rim of
the wheel in the direction indicated, the resulting torque is also to the left, as
shown in the figure. If this torque lasts for a time the angular momentum
changes by the amount

Adding to the original angular momentum yields the final angular mo-
mentum, shown in Figure 11–18. Since is in the same direction as but with
a greater magnitude, it follows that the wheel is spinning in the same direction as
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Children have always been fascinated
by tops—but not only children. The physi-
cists in the photo at right, Wolfgang Pauli
and Niels Bohr, seem as delighted by a
spinning top as any child. Their contribu-
tions to modern physics, discussed in
Chapter 30, helped to show that subatomic
particles, the ultimate constituents of mat-
ter, have a property (now referred to as
“spin”) that is in some ways analogous to
the rotation of a top or a gyroscope.

▲

▲ FIGURE 11–17 The right-hand rule 
for torque
Examples of torque vectors obtained
using the right-hand rule.
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Curl fingers in
direction of rotation
   would cause ...F

... and thumb points in
direction of torque,     .

▲ FIGURE 11–16 The right-hand rule 
for angular velocity
The angular velocity, of a rotating
wheel points along the axis of rotation.
Its direction is given by the right-hand
rule.
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before, only faster. This is to be expected, considering the direction of the person’s
push on the wheel.

On the other hand, if a person pushes on the wheel in the opposite direction,
the torque vector points to the right. As a result, points to the right as well.
When we add and to obtain the final angular momentum, we find that
it has the same direction as but a smaller magnitude. Hence, we conclude that
the wheel spins more slowly, as one would expect.

Finally, a case of considerable interest is when the torque and angular mo-
mentum vectors are at right angles to one another. The classic example of such a
system is the gyroscope. To begin, consider a gyroscope whose axis of rotation is
horizontal, as in Figure 11–19. If the gyroscope were to be released with no spin it
would simply fall, rotating counterclockwise downward about its point of sup-
port. Curling the fingers of the right hand in the counterclockwise direction, we
see that the thumb, and hence the torque due to gravity, points out of the page.

Next, imagine the gyroscope to be spinning rapidly—as would normally be the
case—with its angular momentum pointing to the left in Figure 11–19. If the gyro-
scope is released now, it doesn’t fall as before, even though the torque is the same.
To see what happens instead, consider the change in angular momentum, 
caused by the torque, acting for a small interval of time. As shown in Figure 11–20,
the small change, is at right angles to hence the final angular momentum,

is essentially the same length as but pointing in a direction slightly out of
the page. With each small interval of time, the angular momentum vector contin-
ues to change in direction so that, viewed from above as in Figure 11–20, the gy-
roscope as a whole rotates in a counterclockwise sense around its support point.
This type of motion, where the axis of rotation changes direction with time, is re-
ferred to as precession.

Because of its spinning motion about its rotational axis, the Earth may be con-
sidered as one rather large gyroscope. Gravitational forces exerted on the Earth by
the Sun and the Moon subject it to external torques that cause its rotational axis to
precess. At the moment, the rotational axis of the Earth points toward Polaris, the
“North Star,” which remains almost fixed in position in time-lapse photographs
while the other stars move in circular paths about it. In a few hundred years, how-
ever, Polaris will also move in a circular path in the sky because the Earth’s axis of
rotation will point in a different direction. After 26,000 years the Earth will com-
plete one full cycle of precession, and Polaris will again be the pole star.
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▲ FIGURE 11–18 Torque and angular
momentum vectors
A tangential push on the spinning wheel
in the direction shown causes a torque to
the left. As a result, the angular momen-
tum increases. Hence, the wheel spins
faster, as expected.
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▲ The 1.5-inch fused quartz sphere
shown here is no ordinary ball. In fact, it
is the most perfect sphere ever manufac-
tured. If the Earth were this smooth, the
change in elevation from the deepest
ocean trench to the highest mountain
peak would be only 16 feet. Such preci-
sion is required because this sphere is
designed to serve as the rotor for an
extremely sensitive gyroscope. The
device, a million times more sensitive
than those used in the best inertial
navigation systems, orbits the Earth as
part of an experiment to test predictions
of Einstein’s theory of general relativity.

▲ FIGURE 11–19 The torque exerted on
a gyroscope
A spinning gyroscope has an initial an-
gular momentum to the left. The torque
due to gravity is out of the page.
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▲ FIGURE 11–20 Precession of 
a gyroscope
The gyroscope as viewed from above.
In a time the angular momentum
changes by the amount This
causes the angular momentum vector,
and hence the gyroscope as a whole, to
rotate in a counterclockwise direction.
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C H A P T E R  S U M M A RY

1 1 – 1 T O R Q U E

A force applied so as to cause an angular acceleration is said to exert a torque, 

Tangential Force
A force is tangential if it is tangent to a circle centered on the axis of rotation.

Torque Due to a Tangential Force
A tangential force F applied at a distance r from the axis of rotation produces a
torque

11–1

Torque for a General Force
A force exerted at an angle with respect to the radial direction, and applied at
a distance r from the axis of rotation, produces the torque

11–2

1 1 – 2 T O R Q U E  A N D  A N G U L A R  A C C E L E R AT I O N

A single torque applied to an object gives it an angular acceleration.

Newton’s Second Law for Rotation
The connection between torque and angular acceleration is

11–4

In this expression, I is the moment of inertia about the axis of rotation and is
the angular acceleration about this axis.

Rotational/Translational Analogies
Torque is analogous to force, the moment of inertia is analogous to mass, and
the angular acceleration is analogous to linear acceleration. Therefore, the
rotational analogue of is t = Ia.F = ma

a

a t = Ia

t = rF sin u

u

t = rF

t.

On a smaller scale, gyroscopes are used in the navigational systems of a vari-
ety of vehicles. In such applications, the rapidly spinning wheel of a gyroscope is
mounted on nearly frictionless bearings so that it is practically free from external
torques. If no torque acts on the gyroscope, its angular momentum vector remains
unchanged both in magnitude and—here is the important point—in direction.
With the axis of its gyroscope always pointing in the same, known direction, it is
possible for a vehicle to maintain a desired direction of motion relative to the
gyroscope’s reference direction. On the Hubble Space Telescope, for example, six
gyroscopes are used for pointing and stability, though it can operate with only
three working gyroscopes if necessary.

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

The concept of force (Chapters 5 and 6) is extended to
torque, its rotational equivalent, in Section 11–1. We also
apply Newton’s laws to rotation in Section 11–6, just as for
linear motion in Chapters 5 and 6.

Angular momentum and the conservation of angular
momentum play important roles in the study of gravity. See,
in particular, the discussion of Kepler’s third law in Section
12–3.

The connection between rotational and linear quantities
(Chapter 10) is used in Section 11–2 to relate torque to
angular acceleration. In addition, we extend linear
momentum (Chapter 9) to angular momentum in Sections
11–6 and 11–7.

Torque arises in the discussion of magnetic fields and the
forces they exert. See Section 22–5 in particular. The torques
due to magnetic fields are also the key element in the
operation of electric motors, as we see in Section 23–6.

Work and kinetic energy (Chapter 7) are applied to
rotational systems in Section 11–8.

Angular momentum is quantized (given discrete values) in
the Bohr model of the hydrogen atom in Section 31–4.

R E A L - W O R L D  P H Y S I C S

Gyroscopes in navigation and space
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1 1 – 3 Z E R O  T O R Q U E  A N D  STAT I C  E Q U I L I B R I U M

The conditions for an object to be in static equilibrium are that the total force
and the total torque acting on the object must be zero:

1 1 – 4 C E N T E R  O F  M A S S  A N D  B A L A N C E

An object balances when it is supported at its center of mass.

1 1 – 5 DY N A M I C  A P P L I C AT I O N S  O F  T O R Q U E

Newton’s second law can be applied to rotational systems in a way that is
completely analogous to its application to linear systems.

Systems Involving Both Rotational and Linear Elements
In a system with both rotational and linear motions—such as a string passing
over a pulley and attached to a mass—Newton’s second law must be applied
separately to the rotational and linear motions of the system. Connections
between the two motions, such as can be used to solve for all the
accelerations in the system.

1 1 – 6 A N G U L A R  M O M E N T U M

A moving object has angular momentum as long as its direction of motion does
not extend through the axis of rotation.

Angular Momentum and Angular Speed
Angular momentum can be expressed in terms of angular speed and the
moment of inertia as follows:

11–11

This is the rotational analogue of 

Tangential Motion
An object of mass m moving tangentially with a speed v at a distance r from the
axis of rotation has an angular momentum, L, given by

11–12

General Motion
If an object of mass m is a distance r from the axis of rotation and moves with a
speed v at an angle with respect to the radial direction, its angular momentum is

11–13

Newton’s Second Law
Newton’s second law can be expressed in terms of the rate of change of the
angular momentum:

11–14

This is the rotational analogue of 

1 1 – 7 C O N S E R VAT I O N  O F  A N G U L A R  M O M E N T U M

If the net external torque acting on a system is zero, its angular momentum is
conserved:

Rotational Collisions
Systems in which two rotational objects come into contact can be thought of in
terms of a “rotational collision.” In such a case, the total angular momentum of
the system is conserved.

Lf = Li

©F = ¢p/¢t.

a t = Ia =
¢L
¢t

L = rmv sin u

u

L = rmv

p = mv.

L = Iv

a = a/r,

aFx = 0, aFy = 0, a t = 0

CM

r

v
m
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1 1 – 8 R O TAT I O N A L  W O R K  A N D  P O W E R

A torque acting through an angle does work, just as does a force acting through
a distance.

Work Done by a Torque
A torque acting through an angle does a work W given by

11–17

Work–Energy Theorem
The work–energy theorem is

11–18

This theorem applies whether the work is done by a force or by a torque. In the
linear case the kinetic energy is in the rotational case, the kinetic energy is

(Equation 10–17).

* 1 1 – 9 T H E  V E C T O R  N AT U R E  O F  R O TAT I O N A L  M O T I O N

Rotational quantities have directions that point along the axis of rotation. The
precise direction is given by the right-hand rule.

Right-Hand Rule
If the fingers of the right hand are curled in the direction of rotation, the thumb
points in the direction of the rotational quantity in question. This rule applies to
the angular velocity vector, the angular acceleration vector, the angular
momentum vector, and the torque vector, 

P R O B L E M - S O L V I N G  S U M M A RY

Type of Problem Relevant Physical Concepts Related Examples

Find the torque exerted on a system. The torque exerted by a tangential force a distance r Example 11–1
from the axis of rotation is If the force is at an
angle to the radial direction, the torque is 

Determine the angular First, calculate the torque exerted on the system. Next, Examples 11–2, 11–3
acceleration of a system. find the angular acceleration using Newton’s second law

as applied to rotation, namely, 

Find the forces required for Static equilibrium requires that both the net force and the Examples 11–4, 11–5, 11–6
static equilibrium. net torque acting on a system be zero. Active Examples 11–1,

11–2, 11–3

Find the final angular momentum A torque changes the angular momentum L of a system Examples 11–8, 11–9
of a system. with time as follows: If no net torque acts on Active Examples 11–4,

a system, its angular momentum is conserved. 11–5
t = ¢L/¢t.

t = Ia.

t = rF sin u.u

t = rF.
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K = 1
2Iv2

1
2mv2;

W = ¢K = Kf - Ki

W = t¢u

¢ut

1. Two forces produce the same torque. Does it follow that they
have the same magnitude? Explain.

2. A car pitches down in front when the brakes are applied
sharply. Explain this observation in terms of torques.

3. A tightrope walker uses a long pole to aid in balancing. Why?
4. When a motorcycle accelerates rapidly from a stop it sometimes

“pops a wheelie”; that is, its front wheel may lift off the ground.
Explain this behavior in terms of torques.

5. Give an example of a system in which the net torque is zero but
the net force is nonzero.

6. Give an example of a system in which the net force is zero but
the net torque is nonzero.

7. Is the normal force exerted by the ground the same for all four
tires on your car? Explain.

8. Give two everyday examples of objects that are not in static
equilibrium.

9. Give two everyday examples of objects that are in static equi-
librium.

10. Can an object have zero translational acceleration and, at the same
time, have nonzero angular acceleration? If your answer is no, ex-
plain why not. If your answer is yes, give a specific example.

11. Stars form when a large rotating cloud of gas collapses. What
happens to the angular speed of the gas cloud as it collapses?

12. What purpose does the tail rotor on a helicopter serve?

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

For instructor-assigned homework, go to www.masteringphysics.com
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P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both con-
ceptual and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask
for two responses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••)
are used to indicate the level of difficulty.

S E C T I O N  1 1 – 1    T O R Q U E

1. • To tighten a spark plug, it is recommended that a torque of
be applied. If a mechanic tightens the spark plug with

a wrench that is 25 cm long, what is the minimum force neces-
sary to create the desired torque?

2. • Pulling a Weed The gardening tool shown in Figure 11–21 is
used to pull weeds. If a torque is required to pull a
given weed, what force did the weed exert on the tool?

1.23-N # m

15 N # m

F

22 cm

4.0 cm

▲ FIGURE 11–21 Problem 2

0.70 m

▲ FIGURE 11–22
Problem 4

6. •• At the local playground, a 16-kg child sits on the end of a hor-
izontal teeter-totter, 1.5 m from the pivot point. On the other side
of the pivot an adult pushes straight down on the teeter-totter
with a force of 95 N. In which direction does the teeter-totter
rotate if the adult applies the force at a distance of (a) 3.0 m,
(b) 2.5 m, or (c) 2.0 m from the pivot?

S E C T I O N  1 1 – 2    T O R Q U E  A N D  A N G U L A R
A C C E L E R AT I O N

7. • CE Predict/Explain Consider the pulley–block systems
shown in Conceptual Checkpoint 11–1. (a) Is the tension in the
string on the left-hand rotating system greater than, less than,
or equal to the weight of the mass attached to that string? (b)
Choose the best explanation from among the following:

3. • A 1.61-kg bowling trophy is held at arm’s length, a distance of
0.605 m from the shoulder joint. What torque does the trophy
exert about the shoulder if the arm is (a) horizontal, or (b) at an
angle of 22.5° below the horizontal?

4. • A person slowly lowers a 3.6-kg crab trap over the side of a
dock, as shown in Figure 11–22. What torque does the trap exert
about the person’s shoulder?

13. Is it possible to change the angular momentum of an object
without changing its linear momentum? If your answer is no,
explain why not. If your answer is yes, give a specific example.

14. Suppose a diver springs into the air with no initial angular ve-
locity. Can the diver begin to rotate by folding into a tucked po-
sition? Explain.

2.75 cm

17.0 cm 17.0 cm

Mg

Biceps

Radius

Humerus

Ulna

12.6 N

mg

▲ FIGURE 11–23 Problems 5 and 19

5. •• IP BIO Force to Hold a Baseball A person holds a 1.42-N
baseball in his hand, a distance of 34.0 cm from the elbow joint,
as shown in Figure 11–23. The biceps, attached at a distance of
2.75 cm from the elbow, exerts an upward force of 12.6 N on the

I. The mass is in free fall once it is released.
II. The string rotates the pulley in addition to supporting the

mass.
III. The mass accelerates downward.

8. • CE Predict/Explain Consider the pulley–block systems
shown in Conceptual Checkpoint 11–1. (a) Is the tension in the
string on the left-hand rotating system greater than, less than, or
equal to the tension in the string on the right-hand rotating sys-
tem? (b) Choose the best explanation from among the following:

I. The mass in the right-hand system has the greater down-
ward acceleration.

II. The masses are equal.

forearm. Consider the forearm and hand to be a uniform rod
with a mass of 1.20 kg. (a) Calculate the net torque acting on the
forearm and hand. Use the elbow joint as the axis of rotation.
(b) If the net torque obtained in part (a) is nonzero, in which di-
rection will the forearm and hand rotate? (c) Would the torque
exerted on the forearm by the biceps increase or decrease if the
biceps were attached farther from the elbow joint?
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III. The mass in the left-hand system has the greater down-
ward acceleration.

9. • CE Suppose a torque rotates your body about one of three dif-
ferent axes of rotation: case A, an axis through your spine; case
B, an axis through your hips; and case C, an axis through your
ankles. Rank these three axes of rotation in increasing order of
the angular acceleration produced by the torque. Indicate ties
where appropriate.

10. • A torque of is applied to a bicycle wheel of radius
35 cm and mass 0.75 kg. Treating the wheel as a hoop, find its
angular acceleration.

11. • When a ceiling fan rotating with an angular speed of 2.75 rad/s
is turned off, a frictional torque of slows it to a stop
in 22.5 s. What is the moment of inertia of the fan?

12. • When the play button is pressed, a CD accelerates uniformly
from rest to 450 rev/min in 3.0 revolutions. If the CD has a
radius of 6.0 cm and a mass of 17 g, what is the torque exerted
on it?

13. •• A person holds a ladder horizontally at its center. Treating
the ladder as a uniform rod of length 3.15 m and mass 8.42 kg,
find the torque the person must exert on the ladder to give it an
angular acceleration of .

14. •• IP A wheel on a game show is given an initial angular speed
of 1.22 rad/s. It comes to rest after rotating through 0.75 of a
turn. (a) Find the average torque exerted on the wheel given
that it is a disk of radius 0.71 m and mass 6.4 kg. (b) If the mass
of the wheel is doubled and its radius is halved, will the angle
through which it rotates before coming to rest increase, de-
crease, or stay the same? Explain. (Assume that the average
torque exerted on the wheel is unchanged.)

15. •• The L-shaped object in Figure 11–24 consists of three masses
connected by light rods. What torque must be applied to this
object to give it an angular acceleration of if it is ro-
tated about (a) the x axis, (b) the y axis, or (c) the z axis (which
is through the origin and perpendicular to the page)?

1.20 rad/s2

0.302 rad/s2

0.120 N # m

0.97 N # m

16. •• CE The L-shaped object described in Problem 15 can be ro-
tated in one of the following three ways: case A, about the x axis;
case B, about the y axis; and case C, about the z axis (which
passes through the origin perpendicular to the plane of the fig-
ure). If the same torque is applied in each of these cases, rank
them in increasing order of the resulting angular acceleration.
Indicate ties where appropriate.

17. •• CE A motorcycle accelerates from rest, and both the front and
rear tires roll without slipping. (a) Is the force exerted by the
ground on the rear tire in the forward or in the backward direc-
tion? Explain. (b) Is the force exerted by the ground on the front
tire in the forward or in the backward direction? Explain. (c) If the
moment of inertia of the front tire is increased, will the motor-
cycle’s acceleration increase, decrease, or stay the same? Explain.

t

18. •• IP A torque of is applied to the rectangular object
shown in Figure 11–25. The torque can act about the x axis, the y
axis, or the z axis, which passes through the origin and points
out of the page. (a) In which case does the object experience the
greatest angular acceleration? The least angular acceleration?
Explain. Find the angular acceleration when the torque acts
about (b) the x axis, (c) the y axis, and (d) the z axis.

13 N # m

▲ FIGURE 11–24 Problems 15,
16, and 82

x

y

1.2 kg

1.0 m

9.0 kg

2.0 m 2.5 kg

19. •• A fish takes the bait and pulls on the line with a force of 2.2 N.
The fishing reel, which rotates without friction, is a cylinder of
radius 0.055 m and mass 0.99 kg. (a) What is the angular accel-
eration of the fishing reel? (b) How much line does the fish pull
from the reel in 0.25 s?

20. •• Repeat the previous problem, only now assume the reel has
a friction clutch that exerts a restraining torque of .

S E C T I O N  1 1 – 3    Z E R O  T O R Q U E  A N D  STAT I C
E Q U I L I B R I U M

21. • CE Predict/Explain Suppose the person in Active Example
11–3 climbs higher on the ladder. (a) As a result, is the ladder
more likely, less likely, or equally likely to slip? (b) Choose the
best explanation from among the following:

I. The forces are the same regardless of the person’s position.
II. The magnitude of f2 must increase as the person moves

upward.
III. When the person is higher, the ladder presses down harder

on the floor.

22. • A string that passes over a pulley has a 0.321-kg mass at-
tached to one end and a 0.635-kg mass attached to the other
end. The pulley, which is a disk of radius 9.40 cm, has friction in
its axle. What is the magnitude of the frictional torque that must
be exerted by the axle if the system is to be in static equilib-
rium?

23. • To loosen the lid on a jar of jam 8.9 cm in diameter, a torque of
must be applied to the circumference of the lid. If a jar

wrench whose handle extends 15 cm from the center of the jar
is attached to the lid, what is the minimum force required to
open the jar?

24. • Consider the system in Active Example 11–1, this time with
the axis of rotation at the location of the child. Write out both
the condition for zero net force and the condition for zero net
torque. Solve for the two forces.

25. •• IP BIO Referring to the person holding a baseball in Prob-
lem 5, suppose the biceps exert just enough upward force to
keep the system in static equilibrium. (a) Is the force exerted by
the biceps more than, less than, or equal to the combined
weight of the forearm, hand, and baseball? Explain. (b) Deter-
mine the force exerted by the biceps.

26. •• IP BIO A Person’s Center of Mass To determine the
location of her center of mass, a physics student lies on a
lightweight plank supported by two scales 2.50 m apart, as

8.5 N # m

0.047 N # m

▲ FIGURE 11–25 Problems
18 and 83

x

y

2.5 kg

4.0 kg

0.50 m

3.0 kg

0.70 m 1.2 kg
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27. •• Triceratops A set of fossilized triceratops footprints discov-
ered in Texas show that the front and rear feet were 3.2 m apart,
as shown in Figure 11–27. The rear footprints were observed to be
twice as deep as the front footprints. Assuming that the rear feet
pressed down on the ground with twice the force exerted by the
front feet, find the horizontal distance from the rear feet to the
triceratops’s center of mass.

x
2.50 m

0

Axis of rotation

▲ FIGURE 11–26 Problem 26

28. •• IP A schoolyard teeter-totter with a total length of 5.2 m and
a mass of 38 kg is pivoted at its center. A 19-kg child sits on one
end of the teeter-totter. (a) Where should a parent push verti-
cally downward with a force of 210 N in order to hold the
teeter-totter level? (b) Where should the parent push with a
force of 310 N? (c) How would your answers to parts (a) and (b)
change if the mass of the teeter-totter were doubled? Explain.

29. •• A 0.122-kg remote control 23.0 cm long rests on a table, as
shown in Figure 11–28, with a length L overhanging its edge. To op-
erate the power button on this remote requires a force of 0.365 N.
How far can the remote control extend beyond the edge of the
table and still not tip over when you press the power button? As-
sume the mass of the remote is distributed uniformly, and that the
power button is 1.41 cm from the overhanging end of the remote.

3.2 m

▲ FIGURE 11–27 Problem 27

30. •• IP A 0.16-kg meterstick is held perpendicular to a vertical
wall by a 2.5-m string going from the wall to the far end of the
stick. (a) Find the tension in the string. (b) If a shorter string is
used, will its tension be greater than, less than, or the same as
that found in part (a)? (c) Find the tension in a 2.0-m string.

L

F

▲ FIGURE 11–28 Problem 29

31. •• Repeat Example 11–4, this time with a uniform diving board
that weighs 225 N.

32. •• Babe Ruth steps to the plate and casually points to left cen-
ter field to indicate the location of his next home run. The
mighty Babe holds his bat across his shoulder, with one hand
holding the small end of the bat. The bat is horizontal, and the
distance from the small end of the bat to the shoulder is 22.5 cm.
If the bat has a mass of 1.10 kg and has a center of mass that is
67.0 cm from the small end of the bat, find the magnitude 
and direction of the force exerted by (a) the hand and (b) the
shoulder.

33. •• A uniform metal rod, with a mass of 3.7 kg and a length of
1.2 m, is attached to a wall by a hinge at its base. A horizontal
wire bolted to the wall 0.51 m above the base of the rod holds
the rod at an angle of 25° above the horizontal. The wire is at-
tached to the top of the rod. (a) Find the tension in the wire.
Find (b) the horizontal and (c) the vertical components of the
force exerted on the rod by the hinge.

34. •• IP In the previous problem, suppose the wire is shortened,
so that the rod now makes an angle of 35° with the horizontal.
The wire is horizontal, as before. (a) Do you expect the tension
in the wire to increase, decrease, or stay the same as a result of
its new length? Explain. (b) Calculate the tension in the wire.

35. •• Repeat Active Example 11–3, this time with a uniform 7.2-kg
ladder that is 4.0 m long.

36. •• A rigid, vertical rod of negligible mass is connected to the
floor by a bolt through its lower end, as shown in Figure 11–29.
The rod also has a wire connected between its top end and the
floor. If a horizontal force F is applied at the midpoint of the rod,
find (a) the tension in the wire, and (b) the horizontal and (c) the
vertical components of force exerted by the bolt on the rod.

F

45°

▲ FIGURE 11–29 Problems 36, 111, and 112

▲ FIGURE 11–30 Problem 37

x0 4.25 cm 9.66 cm

FJ

FH
59.2°

N = 223 N

37. ••• BIO Forces in the Foot Figure 11–30 shows the forces act-
ing on a sprinter’s foot just before she takes off at the start of the
race. Find the magnitude of the force exerted on the heel by the
Achilles tendon, , and the magnitude of the force exerted on
the foot at the ankle joint, .FJ

FH

indicated in Figure 11–26. If the left scale reads 290 N, and the
right scale reads 122 N, find (a) the student’s mass and (b) the
distance from the student’s head to her center of mass.
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38. ••• A stick with a mass of 0.214 kg and a length of 0.436 m rests
in contact with a bowling ball and a rough floor, as shown in
Figure 11–31. The bowling ball has a diameter of 21.6 cm, and the
angle the stick makes with the horizontal is 30.0°. You may as-
sume there is no friction between the stick and the bowling ball,
though friction with the floor must be taken into account. (a) Find
the magnitude of the force exerted on the stick by the bowling
ball. (b) Find the horizontal component of the force exerted on the
stick by the floor. (c) Repeat part (b) for the vertical component of
the force.

39. ••• IP A uniform crate with a mass of 16.2 kg rests on a floor
with a coefficient of static friction equal to 0.571. The crate is a
uniform cube with sides 1.21 m in length. (a) What horizontal
force applied to the top of the crate will initiate tipping? (b) If
the horizontal force is applied halfway to the top of the crate, it
will begin to slip before it tips. Explain.

40. ••• In the previous problem, (a) what is the minimum height
where the force F can be applied so that the crate begins to tip be-
fore sliding? (b) What is the magnitude of the force in this case?

S E C T I O N  1 1 – 4    C E N T E R  O F  M A S S  A N D  B A L A N C E

41. • A hand-held shopping basket 62.0 cm long has a 1.81-kg car-
ton of milk at one end, and a 0.722-kg box of cereal at the other
end. Where should a 1.80-kg container of orange juice be placed
so that the basket balances at its center?

42. • If the cat in Active Example 11–2 has a mass of 2.8 kg, how
close to the right end of the two-by-four can it walk before the
board begins to tip?

43. •• IP A 0.34-kg meterstick balances at its center. If a necklace is
suspended from one end of the stick, the balance point moves
9.5 cm toward that end. (a) Is the mass of the necklace more
than, less than, or the same as that of the meterstick? Explain.
(b) Find the mass of the necklace.

44. •• Maximum Overhang Three identical, uniform books of
length L are stacked one on top the other. Find the maximum
overhang distance d in Figure 11–32 such that the books do not
fall over.

30.0°

▲ FIGURE 11–31 Problem 38

S E C T I O N  1 1 – 5    DY N A M I C  A P P L I C AT I O N S
O F  T O R Q U E

46. •• A 2.85-kg bucket is attached to a disk-shaped pulley of radius
0.121 m and mass 0.742 kg. If the bucket is allowed to fall, (a) what
is its linear acceleration? (b) What is the angular acceleration of
the pulley? (c) How far does the bucket drop in 1.50 s?

47. •• IP In the previous problem, (a) is the tension in the rope
greater than, less than, or equal to the weight of the bucket?
Explain. (b) Calculate the tension in the rope.

48. •• A child exerts a tangential 42.2-N force on the rim of a disk-
shaped merry-go-round with a radius of 2.40 m. If the merry-
go-round starts at rest and acquires an angular speed of 
0.0860 rev/s in 3.50 s, what is its mass?

49. •• IP You pull downward with a force of 28 N on a rope that
passes over a disk-shaped pulley of mass 1.2 kg and radius
0.075 m. The other end of the rope is attached to a 0.67-kg mass.
(a) Is the tension in the rope the same on both sides of the pul-
ley? If not, which side has the largest tension? (b) Find the ten-
sion in the rope on both sides of the pulley.

50. •• Referring to the previous problem, find the linear accelera-
tion of the 0.67-kg mass.

51. ••• A uniform meterstick of mass M has an empty paint can of
mass m hanging from one end. The meterstick and the can bal-
ance at a point 20.0 cm from the end of the stick where the can
is attached. When the balanced stick–can system is suspended
from a scale, the reading on the scale is 2.54 N. Find the mass of
(a) the meterstick and (b) the paint can.

52. ••• Atwood’s Machine An Atwood’s machine consists of two
masses, and , connected by a string that passes over a pul-
ley. If the pulley is a disk of radius R and mass M, find the ac-
celeration of the masses.

S E C T I O N  1 1 – 6    A N G U L A R  M O M E N T U M

53. • Calculate the angular momentum of the Earth about its own
axis, due to its daily rotation. Assume that the Earth is a uni-
form sphere.

54. • A 0.015-kg record with a radius of 15 cm rotates with an angular

speed of Find the angular momentum of the record.

55. • In the previous problem, a 1.1-g fly lands on the rim of the
record. What is the fly’s angular momentum?

56. • Jogger 1 in Figure 11–33 has a mass of 65.3 kg and runs in a
straight line with a speed of 3.35 m/s. (a) What is the magnitude

331
3 rpm.

m2m1

L

d

▲ FIGURE 11–32 Problems 44 and 107

45. •• A baseball bat balances 71.1 cm from one end. If a 0.560-kg
glove is attached to that end, the balance point moves 24.7 cm
toward the glove. Find the mass of the bat.

x

5.85 m/s

3

1

2

3.35 m/s

y

–7.00 m

8.00 m

A

B

–6.00 m O

2.68 m/s

5.00 m

▲ FIGURE 11–33 Problems 56, 57, and 58
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of the jogger’s linear momentum? (b) What is the magnitude of
the jogger’s angular momentum with respect to the origin, O?

57. • Repeat the previous problem for the case of jogger 2, whose
speed is 2.68 m/s and whose mass is 58.2 kg.

58. •• IP Suppose jogger 3 in Figure 11–33 has a mass of 62.2 kg and
a speed of 5.85 m/s. (a) Is the magnitude of the jogger’s angular
momentum greater with respect to point A or point B? Explain.
(b) Is the magnitude of the jogger’s angular momentum with
respect to point B greater than, less than, or the same as it is with
respect to the origin, O? Explain. (c) Calculate the magnitude of the
jogger’s angular momentum with respect to points A, B, and O.

59. •• A torque of is applied to an egg beater. (a) If the
egg beater starts at rest, what is its angular momentum after
0.65 s? (b) If the moment of inertia of the egg beater is

, what is its angular speed after 0.65 s?

60. •• A windmill has an initial angular momentum of
. The wind picks up, and 5.86 s later the windmill’s

angular momentum is . What was the torque act-
ing on the windmill, assuming it was constant during this time?

61. •• Two gerbils run in place with a linear speed of 0.55 m/s on an
exercise wheel that is shaped like a hoop. Find the angular mo-
mentum of the system if each gerbil has a mass of 0.22 kg and the
exercise wheel has a radius of 9.5 cm and a mass of 5.0 g.

S E C T I O N  1 1 – 7    C O N S E R VAT I O N  O F  A N G U L A R
M O M E N T U M

62. • CE Predict/Explain A student rotates on a frictionless piano
stool with his arms outstretched, a heavy weight in each hand.
Suddenly he lets go of the weights, and they fall to the floor. As
a result, does the student’s angular speed increase, decrease, or
stay the same? (b) Choose the best explanation from among the
following:

I. The loss of angular momentum when the weights are
dropped causes the student to rotate more slowly.

II. The student’s moment of inertia is decreased by dropping
the weights.

III. Dropping the weights exerts no torque on the student, but
the floor exerts a torque on the weights when they land.

63. • CE A puck on a horizontal, frictionless surface is attached to a
string that passes through a hole in the surface, as shown in
Figure 11–34. As the puck rotates about the hole, the string is
pulled downward, bringing the puck closer to the hole. During
this process, do the puck’s (a) linear speed, (b) angular speed,
and (c) angular momentum increase, decrease, or stay the same?

9700 kg # m2/s
8500 kg # m2/s

2.5 * 10-3 kg # m2

0.12 N # m

65. • As an ice skater begins a spin, his angular speed is 3.17 rad/s.
After pulling in his arms, his angular speed increases to 
5.46 rad/s. Find the ratio of the skater’s final moment of inertia
to his initial moment of inertia.

66. • Calculate both the initial and the final kinetic energies of the
system described in Active Example 11–5.

67. • A diver tucks her body in midflight, decreasing her moment
of inertia by a factor of two. By what factor does her angular
speed change?

68. •• IP In the previous problem, (a) does the diver’s kinetic energy
increase, decrease, or stay the same? (b) Calculate the ratio of the
final kinetic energy to the initial kinetic energy for the diver.

69. •• A disk-shaped merry-go-round of radius 2.63 m and mass
155 kg rotates freely with an angular speed of 0.641 rev/s. A
59.4-kg person running tangential to the rim of the merry-go-
round at 3.41 m/s jumps onto its rim and holds on. Before
jumping on the merry-go-round, the person was moving in the
same direction as the merry-go-round’s rim. What is the final
angular speed of the merry-go-round?

70. •• IP In the previous problem, (a) does the kinetic energy of
the system increase, decrease, or stay the same when the person
jumps on the merry-go-round? (b) Calculate the initial and final
kinetic energies for this system.

71. •• A student sits at rest on a piano stool that can rotate without
friction. The moment of inertia of the student–stool system is

. A second student tosses a 1.5-kg mass with a speed
of 2.7 m/s to the student on the stool, who catches it at a dis-
tance of 0.40 m from the axis of rotation. What is the resulting
angular speed of the student and the stool?

72. •• IP Referring to the previous problem, (a) does the kinetic
energy of the mass–student–stool system increase, decrease, or
stay the same as the mass is caught? (b) Calculate the initial and
final kinetic energies of the system.

73. •• IP A turntable with a moment of inertia of 
rotates freely with an angular speed of Riding on the rim
of the turntable, 15 cm from the center, is a cute, 32-g mouse. (a) If
the mouse walks to the center of the turntable, will the turntable
rotate faster, slower, or at the same rate? Explain. (b) Calculate the
angular speed of the turntable when the mouse reaches the center.

74. •• A student on a piano stool rotates freely with an angular
speed of 2.95 rev/s. The student holds a 1.25-kg mass in each out-
stretched arm, 0.759 m from the axis of rotation. The combined
moment of inertia of the student and the stool, ignoring the two
masses, is , a value that remains constant. (a) As the
student pulls his arms inward, his angular speed increases to
3.54 rev/s. How far are the masses from the axis of rotation at
this time, considering the masses to be points? (b) Calculate the
initial and final kinetic energies of the system.

5.43 kg # m2

331
3 rpm.

5.4 * 10-3 kg # m2

4.1 kg # m2

▲ FIGURE 11–34 Problems 63 and 93

▲ FIGURE 11–35 Problem 64

64. • CE A puck on a horizontal, frictionless surface is attached to a
string that wraps around a pole of finite radius, as shown in
Figure 11–35. (a) As the puck moves along the spiral path, does its

speed increase, decrease, or stay the same? Explain. (b) Does its
angular momentum increase, decrease, or stay the same? Explain.
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75. ••• Walking on a Merry-Go-Round A child of mass m
stands at rest near the rim of a stationary merry-go-round of ra-
dius R and moment of inertia I. The child now begins to walk
around the circumference of the merry-go-round with a tan-
gential speed v with respect to the merry-go-round’s surface.
(a) What is the child’s speed with respect to the ground? Check
your result in the limits (b) and (c)

S E C T I O N  1 1 – 8    R O TAT I O N A L  W O R K  A N D  P O W E R

76. • CE Predict/Explain Two spheres of equal mass and radius
are rolling across the floor with the same speed. Sphere 1 is a
uniform solid; sphere 2 is hollow. Is the work required to stop
sphere 1 greater than, less than, or equal to the work required to
stop sphere 2? (b) Choose the best explanation from among the
following:

I. Sphere 2 has the greater moment of inertia and hence the
greater rotational kinetic energy.

II. The spheres have equal mass and speed; therefore, they
have the same kinetic energy.

III. The hollow sphere has less kinetic energy.

77. • How much work must be done to accelerate a baton from rest
to an angular speed of 7.4 rad/s about its center? Consider the
baton to be a uniform rod of length 0.53 m and mass 0.44 kg.

78. • Turning a doorknob through 0.25 of a revolution requires 0.14 J
of work. What is the torque required to turn the doorknob?

79. • A person exerts a tangential force of 36.1 N on the rim of a
disk-shaped merry-go-round of radius 2.74 m and mass 167 kg.
If the merry-go-round starts at rest, what is its angular speed
after the person has rotated it through an angle of 32.5°?

80. • To prepare homemade ice cream, a crank must be turned with
a torque of . How much work is required for each
complete turn of the crank?

81. • Power of a Dental Drill A popular make of dental drill can
operate at a speed of 42,500 rpm while producing a torque of

. What is the power output of this drill? Give your
answer in watts.

82. •• The L-shaped object in Figure 11–24 consists of three masses
connected by light rods. Find the work that must be done on
this object to accelerate it from rest to an angular speed of 
2.35 rad/s about (a) the x axis, (b) the y axis, and (c) the z axis
(which is through the origin and perpendicular to the page).

83. •• The rectangular object in Figure 11–25 consists of four
masses connected by light rods. What power must be applied to
this object to accelerate it from rest to an angular speed of 
2.5 rad/s in 6.4 s about (a) the x axis, (b) the y axis, and (c) the
z axis (which is through the origin and perpendicular to the
page)?

84. •• IP A circular saw blade accelerates from rest to an angular
speed of 3620 rpm in 6.30 revolutions. (a) Find the torque exerted
on the saw blade, assuming it is a disk of radius 15.2 cm and mass
0.755 kg. (b) Is the angular speed of the saw blade after 3.15 revo-
lutions greater than, less than, or equal to 1810 rpm? Explain.
(c) Find the angular speed of the blade after 3.15 revolutions.

G E N E R A L  P R O B L E M S

85. • CE A uniform disk stands upright on its edge, and rests on a
sheet of paper placed on a tabletop. If the paper is pulled hori-
zontally to the right, as in Figure 11–36, (a) does the disk rotate
clockwise or counterclockwise about its center? Explain. (b) Does
the center of the disk move to the right, move to the left, or stay
in the same location? Explain.

3.68 oz # in

3.95 N # m

I : q.I : 0

86. • CE Consider the two rotating systems shown in Figure 11–37,
each consisting of a mass m attached to a rod of negligible mass
pivoted at one end. On the left, the mass is attached at the mid-
point of the rod; to the right, it is attached to the free end of the
rod. The rods are released from rest in the horizontal position at
the same time. When the rod to the left reaches the vertical po-
sition, is the rod to the right not yet vertical (location A), verti-
cal (location B), or past vertical (location C)? Explain.

▲ FIGURE 11–36 Problem 85

A
B

C

▲ FIGURE 11–37 Problem 86

87. • CE Predict/Explain A disk and a hoop (bicycle wheel) of
equal radius and mass each have a string wrapped around their
circumferences. Hanging from the strings, halfway between the
disk and the hoop, is a block of mass m, as shown in Figure 11–38.
The disk and the hoop are free to rotate about their centers.
When the block is allowed to fall, does it stay on the center line,
move toward the right, or move toward the left? (b) Choose the
best explanation from among the following:

I. The disk is harder to rotate, and hence its angular accelera-
tion is less than that of the wheel.

II. The wheel has the greater moment of inertia and unwinds
more slowly than the disk.

III. The system is symmetric, with equal mass and radius on
either side.

R

m

Center
line

M M

R

▲ FIGURE 11–38 Problem 87

88. • CE A beetle sits at the rim of a turntable that is at rest but is
free to rotate about a vertical axis. Suppose the beetle now be-
gins to walk around the perimeter of the turntable. Does the
beetle move forward, backward, or does it remain in the same
location relative to the ground? Answer for two different
cases, (a) the turntable is much more massive than the beetle
and (b) the turntable is massless.

89. • CE A beetle sits near the rim of a turntable that is rotating
without friction about a vertical axis. The beetle now begins to
walk toward the center of the turntable. As a result, does the an-
gular speed of the turntable increase, decrease, or stay the
same? Explain.
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96. •• Horsepower of a Car Auto mechanics use the following
formula to calculate the horsepower (HP) of a car engine:

In this expression, Torque is the torque produced by the en-
gine in , RPM is the angular speed of the engine in revo-
lutions per minute, and C is a dimensionless constant. (a)
Find the numerical value of C. (b) The Shelby Series 1 engine
is advertised to generate 320 hp at 6500 rpm. What is the cor-
responding torque produced by this engine? Give your an-
swer in 

97. •• Balancing a T. rex Paleontologists believe that Tyran-
nosaurus rex stood and walked with its spine almost horizon-
tal, as indicated in Figure 11–41, and that its tail was held off the
ground to balance its upper torso about the hip joint. Given that
the total mass of T. rex was 5400 kg, and that the placement of the
center of mass of the tail and the upper torso was as shown in
Figure 11–41, find the mass of the tail required for balance.

ft # lb.

ft # lb

HP = Torque # RPM/C

90. • CE Suppose the Earth were to magically expand, doubling its
radius while keeping its mass the same. Would the length of the
day increase, decrease, or stay the same? Explain.

91. • After getting a drink of water, a hamster jumps onto an exer-
cise wheel for a run. A few seconds later the hamster is running
in place with a speed of 1.3 m/s. Find the work done by the
hamster to get the exercise wheel moving, assuming it is a hoop
of radius 0.13 m and mass 6.5 g.

92. •• A 47.0-kg uniform rod 4.25 m long is attached to a wall with
a hinge at one end. The rod is held in a horizontal position by a
wire attached to its other end. The wire makes an angle of 30.0°
with the horizontal, and is bolted to the wall directly above the
hinge. If the wire can withstand a maximum tension of 1450 N
before breaking, how far from the wall can a 68.0-kg person sit
without breaking the wire?

93. •• IP A puck attached to a string moves in a circular path on a
frictionless surface, as shown in Figure 11–34. Initially, the speed
of the puck is v and the radius of the circle is r. If the string passes
through a hole in the surface, and is pulled downward until the
radius of the circular path is r/2, (a) does the speed of the puck in-
crease, decrease, or stay the same? (b) Calculate the final speed of
the puck.

94. •• BIO The Masseter Muscle The masseter muscle, the prin-
cipal muscle for chewing, is one of the strongest muscles for
its size in the human body. It originates on the lower edge of
the zygomatic arch (cheekbone) and inserts in the angle of the
mandible. Referring to the lower diagram in Figure 11–39, where

and , (a) find the torque produced
about the axis of rotation by the masseter muscle. The force ex-
erted by the masseter muscle is . (b) Find the biting
force, , exerted on the mandible by the upper teeth. Find (c)
the horizontal and (d) the vertical component of the force ex-
erted on the mandible at the joint where it attaches to the skull.
Assume that the mandible is in static equilibrium, and that up-
ward is the positive vertical direction.

FJ

FB

FM = 455 N

D = 10.85 cmd = 7.60 cm

95.•• Exercising the Biceps You are designing exercise equip-
ment to operate as shown in Figure 11–40, where a person pulls
upward on an elastic cord. The cord behaves like an ideal
spring and has an unstretched length of 31 cm. If you would
like the torque about the elbow joint to be in the posi-
tion shown, what force constant, k, is required for the cord?

81 N # m

26.0°

x

Mandible

Mandible
Axis of
rotation

Masseter muscle

d D0

FM

FJ

FB

▲ FIGURE 11–39 Problem 94

44 cm

38 cm
F

39°

61°

▲ FIGURE 11–40 Problem 95

2.4 m 1.4 m

▲ FIGURE 11–41 Problem 97

98. •• IP You hold a uniform, 28-g pen horizontal with your thumb
pushing down on one end and your index finger pushing up-
ward 3.5 cm from your thumb. The pen is 14 cm long. (a) Which
of these two forces is greater in magnitude? (b) Find the two
forces.

99. •• In Active Example 11–3, suppose the ladder is uniform, 
4.0 m long, and weighs 60.0 N. Find the forces exerted on the
ladder when the person is (a) halfway up the ladder and 
(b) three-fourths of the way up the ladder.

100. •• When you arrive at Duke’s Dude Ranch, you are greeted
by the large wooden sign shown in Figure 11–42. The left end
of the sign is held in place by a bolt, the right end is tied to a
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101. •• A 67.0-kg person stands on a lightweight diving board
supported by two pillars, one at the end of the board, the other
1.10 m away. The pillar at the end of the board exerts a down-
ward force of 828 N. (a) How far from that pillar is the person
standing? (b) Find the force exerted by the second pillar.

102. •• In Example 11–4, find and as a function of the distance,
x, of the swimmer from the left end of the diving board.
Assume that the diving board is uniform and has a mass of 
85.0 kg.

103. •• Flats Versus Heels A woman might wear a pair of flat
shoes to work during the day, as in Figure 11–43 (a), but a pair of
high heels, Figure 11–43 (b), when going out for the evening.
Assume that each foot supports half her weight,

, and that the forces exerted by the floor on
her feet occur at the points A and B in both figures. Find the
forces (point A) and (point B) for (a) flat shoes and (b)
high heels. (c) How have the high heels changed the weight dis-
tribution between the woman’s heels and toes?

FBFA

w = W/2 = 279 N

F
!
2F

!
1

105. •• BIO Deltoid Muscle A crossing guard holds a STOP sign
at arm’s length, as shown in Figure 11–45. Her arm is horizontal,
and we assume that the deltoid muscle is the only muscle sup-
porting her arm. The weight of her upper arm is ,
the weight of her lower arm is , the weight of her
hand is , and the weight of the sign is .
The location where each of these forces acts on the arm is indi-
cated in the figure. A force of magnitude is exerted on the
humerus by the deltoid, and the shoulder joint exerts a force
on the humerus with horizontal and vertical components
given by and respectively. (a) Is the magnitude of 
greater than, less than, or equal to the magnitude of Ex-
plain. Find (b) (c) and (d) (The weights in Figure 11–45
are drawn to scale; the unknown forces are to be determined.
If a force is found to be negative, its direction is opposite to
that shown.)

fy.fx,fd,
fx?

fdfy,fx,

fd

Ws = 8.9 NWh = 4.0 N
Wl = 11 N

Wu = 18 N

106. •• BIO Triceps To determine the force a person’s triceps
muscle can exert, a doctor uses the procedure shown in Figure
11–46, where the patient pushes down with the palm of his
hand on a force meter. Given that the weight of the lower arm

104. •• BIO A young girl sits at the edge of a dock by the bay,
dipping her feet in the water. At the instant shown in Figure
11–44, she holds her lower leg stationary with her quadri-
ceps muscle at an angle of 39° with respect to the horizontal.
Use the information given in the figure, plus the fact that
her lower leg has a mass of 3.4 kg, to determine the
magnitude of the force, exerted on the lower leg by the
quadriceps.

FQ,

x

y

L = 1.60 m L = 1.60 m

20.0°

mg

F T

▲ FIGURE 11–42 Problem 100

ww

x
0

A B B

13.5 cm

10.3 cm

4.02 cm

3.53 cm

(a) (b)

x
0

A

▲ FIGURE 11–43 Problem 103

▲ FIGURE 11–44 Problem 104

23 cm

12 cm

39°

Lower leg

Knee joint
29°

mg

FQ

Ulna

Radius

Humerus

Deltoid
muscle

Free-Body Diagram of the Arm

Wu

fd

Wl

x

Ws

fy

fx
Wh

18°Axis

0

65 cm

14 cm
18 cm

42 cm

▲ FIGURE 11–45 Problem 105

rope that makes an angle of 20.0° with the horizontal. If the sign
is uniform, 3.20 m long, and has a mass of 16.0 kg, what are (a)
the tension in the rope, and (b) the horizontal and vertical com-
ponents of the force, , exerted by the bolt?F

!
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107. •• IP Suppose a fourth book, the same as the other three, is
added to the stack of books shown in Figure 11–32. (a) What is
the maximum overhang distance, d, in this case? (b) If the mass
of each book is increased by the same amount, does your an-
swer to part (a) increase, decrease, or stay the same? Explain.

108. •• IP Suppose partial melting of the polar ice caps increases
the moment of inertia of the Earth from to

(a) Would the length of a day (the time required
for the Earth to complete one revolution about its axis) in-
crease or decrease? Explain. (b) Calculate the change in the
length of a day. Give your answer in seconds.

109. ••• A bicycle wheel of radius R and mass M is at rest against
a step of height 3R/4, as illustrated in Figure 11–47. Find the
minimum horizontal force F that must be applied to the axle to
make the wheel start to rise up over the step.

0.332 MERE 

2.
0.331 MERE 

2

111. ••• In Problem 36, assume that the rod has a mass of M and
that its bottom end simply rests on the floor, held in place by
static friction. If the coefficient of static friction is , find the
maximum force F that can be applied to the rod at its midpoint
before it slips.

112. ••• In the previous problem, suppose the rod has a mass of 
2.3 kg and the coefficient of static friction is 1/7. (a) Find the
greatest force F that can be applied at the midpoint of the rod
without causing it to slip. (b) Show that if F is applied 1/8 of the
way down from the top of the rod, it will never slip at all, no
matter how large the force F.

113. ••• A cylinder of mass m and radius r has a string wrapped
around its circumference. The upper end of the string is held
fixed, and the cylinder is allowed to fall. Show that its linear
acceleration is (2/3)g.

114. ••• Repeat the previous problem, replacing the cylinder with
a solid sphere. Show that its linear acceleration is (5/7)g.

115. ••• A mass M is attached to a rope that passes over a disk-
shaped pulley of mass m and radius r. The mass hangs to the
left side of the pulley. On the right side of the pulley, the rope
is pulled downward with a force F. Find (a) the acceleration
of the mass, (b) the tension in the rope on the left side of the
pulley, and (c) the tension in the rope on the right side of the
pulley. (d) Check your results in the limits and

116. ••• Bricks in Equilibrium Consider a system of four uni-
form bricks of length L stacked as shown in Figure 11–49. What
is the maximum distance, x, that the middle bricks can be dis-
placed outward before they begin to tip?

m : q .
m : 0

ms
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BIO Correcting Torsiversion
Torsiversion is a medical condition in which a tooth is rotated
away from its normal position about the long axis of the root.
Studies show that about 2 percent of the population suffer from
this condition to some degree. For those who do, the improper
alignment of the tooth can lead to tooth-to-tooth collisions dur-
ing eating, as well as other problems. Typical patients display a
rotation ranging from 20° to 60°, with an average around 30°.

An example is shown in Figure 11–50 (a), where the first pre-
molar is not only displaced slightly from its proper location in
the negative y direction, but also rotated clockwise from its nor-
mal orientation. To correct this condition, an orthodontist
might use an archwire and a bracket to apply both a force and a
torque to the tooth. In the simplest case, two forces are applied
to the tooth in different locations, as indicated by and in
Figure 11–50 (a). These two forces, if chosen properly, can repo-
sition the tooth by exerting a net force in the positive y direc-
tion, and also reorient it by applying a torque in the counter-
clockwise direction.

F2F1

110. ••• A 0.101-kg yo-yo has an outer radius R that is 5.60 times
greater than the radius r of its axle. The yo-yo is in equilib-
rium if a mass m is suspended from its outer edge, as shown
in Figure 11–48. Find the tension in the two strings, and ,
and the mass m.

T2T1

2.78 cm
18.6 cm

Mg

Triceps

Radius

Humerus

Ulna

Axis

Force
meter

17.0 cm

FT

F

▲ FIGURE 11–46 Problem 106

R

M

3R/4

F

▲ FIGURE 11–47 Problem 109

T1

R

T2

m

r

▲ FIGURE 11–48 Problem 110

xx

L

▲ FIGURE 11–49 Problem 116

is and that the force meter reads 
what is the force exerted vertically upward by the triceps?FT

F = 89.0 N,Mg = 15.6 N,
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In a typical case, it may be desired to have a net force in the
positive y direction of 1.8 N. In addition, the distances in Figure
11–50 (a) can be taken to be d � 3.2 mm and D � 4.5 mm. Given
these conditions, a range of torques is possible for various val-
ues of the y components of the forces, and . For example,
Figure 11–50 (b) shows the values of and necessary to pro-
duce a given torque, where the torque is measured about the
center of the tooth (which is also the origin of the coordinate
system). Notice that the two forces always add to 1.8 N in the
positive y direction, though one of the forces changes sign as
the torque is increased.

F2yF1y

F2yF1y

118. • What is the value of the torque that corresponds to one of the
forces being equal to zero?

A. B.

C. D.

119. •• Find the values of and required to give zero net
torque.

A. B.

C. D.

120. •• Find the values of and required to give a net torque 
of This is a torque that would be effective at ro-
tating the tooth.

A. B.

C. D.

I N T E R A C T I V E  P R O B L E M S

121. •• Referring to Example 11–7 Suppose the mass of the pul-
ley is doubled, to 0.160 kg, and that everything else in the sys-
tem remains the same. (a) Do you expect the value of to in-
crease, decrease, or stay the same? Explain. (b) Calculate the
value of for this case.

122. •• Referring to Example 11–7 Suppose the mass of the cart is
doubled, to 0.62 kg, and that everything else in the system re-
mains the same. (a) Do you expect the value of to increase, de-
crease, or stay the same? Explain. (b) Calculate the value of
for this case.

123. •• Referring to Active Example 11–5 Suppose the child
runs with a different initial speed, but that everything else in
the system remains the same. What initial speed does the child
have if the angular speed of the system after the collision is

124. •• Referring to Active Example 11–5 Suppose everything in
the system is as described in Active Example 11–5 except that
the child approaches the merry-go-round in a direction that is
not tangential. Find the angle between the direction of motion
and the outward radial direction (as in Example 11–8) that is re-
quired if the final angular speed of the system is to be
0.272 rad/s.

u

0.425 rad/s?

T2

T2

T2

T2

F1y = 4.0 N, F2y = -2.2 NF1y = -0.23 N, F2y = 2.0 N

F1y = -3.8 N, F2y = 5.6 NF1y = -1.7 N, F2y = 3.5 N

0.0099 N # m.
F2yF1y

F1y = 0.52 N, F2y = 1.3 NF1y = -0.73 N, F2y = 2.5 N

F1y = 1.1 N, F2y = 0.75 NF1y = -1.2 N, F2y = 3.0 N

F2yF1y

0.017 N # m0.0081 N # m

0.0058 N # m0.0023 N # m

117. • The two, solid straight lines in Figure 11–50 (b) represent the
two forces applied to the tooth. Which line corresponds to
which force?

A. B. I = F2y, II = F1yI = F1y, II = F2y

First
premolar

Second
premolar

Canine

x

y

D

d

F1

F2

(a)

▲ FIGURE 11–50 Problems 117, 118, 119, and 120
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Momentum:
A Conserved
Quantity

When objects 
interact, momen-
tum may be 
conserved while 
mechanical energy
is dissipated.  
Why?  These 
pages explore 
momentum 
conservation 
and point out 
key differences 
between 
momentum 
and mechanical 
energy.

1 How do linear and angular momentum relate?
The equations of linear and angular momentum are analogous, and all the principles presented on
these pages apply to angular as well as linear momentum.

2 Why is momentum conserved?  

Momentum conservation follows from Newton’s laws.
Recall that the general form of Newton’s second law relates force to momentum:

t

Vectors

Momentum
histograms

Graph of
momentum
versus time
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Internal forces: F1 = –(F2):
always equal and opposite.

External forces: N and W:
sum to zero in this case.
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Definition Newton’s 2nd law
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Linear Angular
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For an individual object, momentum is conserved (does not change) when the net force acting on
the object is zero (that is, when ).

For a system of objects, momentum conservation follows from Newton’s third law:
• The momentum of a system of objects is the vector sum of the momenta of the individual 

objects.
• The forces between objects in the system (internal forces) cannot change the system’s 

momentum because, by Newton’s third law, the objects exert equal but opposite forces on each
other, which cause equal and opposite momentum changes.

• Thus, only external forces can change the momentum of a system.

In the following interaction, the two skaters undergo equal and opposite momentum changes,
whereas the system’s momentum is conserved.p

!
sys

©F
!

= 0¢p
!

= 0

An object’s change in momentum …                    … equals the net force acting on the object …
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4 How does momentum conservation help us solve problems?

• You can use momentum conservation to analyze any interaction between objects 
for which the net external force acting on the system during the collision is zero 
(or is negligible compared to the internal forces).

• If the net external force is not negligible, you cannot use momentum conservation!
This applies to the players at right, who push on the ground while colliding.

• For elastic collisions, you must use conservation of mechanical energy as well as 
conservation of momentum. (Section 9.6 solves these simultaneous equations for 
special cases.)

Collisions in which momentum is conserved can be categorized as follows, according 
to how kinetic energy changes or is conserved.

3 How can momentum be conserved when mechanical energy is not?
Force times time versus force times distance: Momentum
change is due to a force acting over a time , whereas changes in
mechanical energy result from a force acting over a distance D
(i.e., from work):

How do these relationships apply to the inelastic collision
shown below?

Arrow shot into styrofoam block attached to air-track cart

¢E = W = F(D)¢p
!

= F
!
(¢t)

¢t
Momentum: The collision lasts the same time for the arrow
and block, so their mometum changes are equal and opposite:

Mechanical energy: The objects exert the same force magni-
tude F on each other, but the arrow travels farther during the
collision because it penetrates the block: Thus, the
arrow loses more mechanical energy than the block gains:

Conclusion: The collision dissipates mechanical energy while
conserving momentum, as the following graphs show:

¢Eb = Fb(Db) = +10 J¢Ea = Fa(Da) = -40 J

Da 7 Db .

¢p
!
a = F

!
a¢t = -(F

!
b)¢t = - ¢p

!
b

¢t
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START: Collision begins
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Fa
Fb

vb = 0

DaDb

During this 
collision, arrow 
travels 4× farther 
than block 
(Da = 4Db).

Arrow and block exert 
equal and opposite 
forces on each other: 

Fa = Fb = F

Fa = –(Fb)

END: Arrow at rest in block
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System’s momentum is 
constant.

System dissipates 
mechanical energy to other 
forms of energy.

Block and arrow gain and 
lose equal amounts of 
momentum.

In this collision, arrow 
loses 4× more mechanical 
energy than block gains.

Eb

Ea

Completely inelastic collision:
System dissipates maximum K

Partly inelastic collision:
System dissipates some K

“Explosion”*:
System gains K in interaction

Elastic collision:
K of system conserved

Kinetic energy K not conserved K conserved

Ksys,i Ksys,f>psys,i psys,f=

Ksys,f = 0 if 
psys = 0

Ksys,i Ksys,f>psys,i psys,f=

va,i vb,i

vab,f vb,fva,f

vb,iva,i vb,iva,i

vb,fva,f

vb,iva,i

vb,fva,f

Ksys,i Ksys,f<psys,i psys,f= Ksys,i Ksys,f=psys,i psys,f=

*Physicists use the term ”explosion” to mean any interaction that adds kinetic energy to the system. Thus, the 
collision in Step 2 on the facing page is an explosion.

The external reaction forces of the earth on
these players’ feet cannot be ignored.




