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It is certainly no exaggeration to say
that rotation is a part of everyday
life. After all, we live on a planet that

rotates about its axis once a day and that
revolves about the Sun once a year. The
apparent motion of the Sun across the
sky, for example, is actually the result of
the Earth’s rotational motion. In addition,
engines that power cars and trucks have
moving parts that rotate quite rapidly, as
do CDs, CD-ROMs, and DVDs, not to
mention the tumbling, rotating molecules

in the air we breathe. Thus, a study of
rotation yields results that apply to a
great variety of natural phenomena.

In this chapter, then, we study
various aspects of rotational motion. 
As we do, we shall make extensive use 
of the close analogies that exist between
rotational and linear motion. In fact,
many of the results derived in earlier
chapters can be applied to rotation by
simply replacing linear quantities with
their rotational counterparts.
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Rotational Kinematics
and Energy

Can you imagine life without rotating objects: vehicles without
wheels, machinery without gears, carnivals without merry-
go-rounds? The people on this roller coaster certainly
know that rotational motion is very different from
motion on a straight, linear stretch of track. In this
chapter we show that the motion of rotating
objects, such as a roller coaster executing a
loop-the-loop, can be analyzed using many of
the same methods that we applied earlier to
linear motion.
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10–1 Angular Position, Velocity, and Acceleration
To describe the motion of an object moving in a straight line, it is useful to establish
a coordinate system with a definite origin and positive direction. In terms of this
coordinate system we can measure the object’s position, velocity, and acceleration.

Similarly, to describe rotational motion, we define “angular” quantities that
are analogous to the linear position, velocity, and acceleration. These angular
quantities form the basis of our study of rotation. We begin by defining the most
basic angular quantity—the angular position.

Angular Position, 
Consider a bicycle wheel that is free to rotate about its axle, as shown in Figure 10–1.
We say that the axle is the axis of rotation for the wheel. As the wheel rotates, each
and every point on it moves in a circular path centered on the axis of rotation.

Now, suppose there is a small spot of red paint on the tire, and we want to
describe the rotational motion of the spot. The angular position of the spot is
defined to be the angle, that a line from the axle to the spot makes with a refer-
ence line, as indicated in Figure 10–1.

Definition of Angular Position, 

10–1

SI unit: radian (rad), which is dimensionless

The reference line simply defines it is analogous to the origin in a linear
coordinate system. The reference line begins at the axis of rotation, and may be cho-
sen to point in any direction—just as an origin may be placed anywhere along a co-
ordinate axis. Once chosen, however, the reference line must be used consistently.

Note that the spot of paint in Figure 10–1 is rotated counterclockwise from the
reference line by the angle By convention, we say that this angle is positive.
Similarly, clockwise rotations correspond to negative angles.

Sign Convention for Angular Position
By convention:

u 6 0 clockwise rotation from reference line
u 7 0 counterclockwise rotation from reference line

u.

u = 0;

u = angle measured from reference line

U

u,

U
The red spot of paint ...

�

... is at the
angular

position   .�

Axle

Reference line

▲ FIGURE 10–1 Angular position
The angular position, of a spot of paint
on a bicycle wheel. The reference line,
where is drawn horizontal here
but can be chosen in any direction.

u = 0,

u,

▲ Rotational motion is everywhere in our universe, on every scale of length and time. A galaxy like the one at left may take
millions of years to complete a single rotation about its center, while the skater in the middle photo spins several times in a
second. The bacterium at right moves in a corkscrew path by rapidly twirling its flagella (the fine projections at either end of 
the cell) like whips.
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Radians

Remember to measure angles in radians
when using the relation s = ru.
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The arc length
to the red spot ...

�

�

... is s = r  ,
with

measured
in radians.

�
�

Reference line

s = rr

▲ FIGURE 10–2 Arc length
The arc length, s, from the reference line
to the spot of paint is given by if
the angular position is measured in
radians.

u

s = ru

Now that we have established a reference line (for ), and a positive direc-
tion of rotation (counterclockwise), we must choose units in which to measure
angles. Common units are degrees (°) and revolutions (rev), where one revolution—
that is, going completely around a circle—corresponds to 360°:

The most convenient units for scientific calculations, however, are radians.
A radian (rad) is defined as follows:

A radian is the angle for which the arc length on a circle of radius r
is equal to the radius of the circle.

This definition is useful because it establishes a particularly simple relationship
between an angle measured in radians and the corresponding arc length, as illus-
trated in Figure 10–2. For example, it follows from our definition that for an angle
of one radian, the arc length s is equal to the radius: Similarly, an angle of
two radians corresponds to an arc length of two radii, and so on. Thus, the
arc length s for an arbitrary angle measured in radians is given by the following
relation:

10–2

This simple and straightforward relation does not hold for degrees or revolutions—
additional conversion factors would be needed.

In one complete revolution, the arc length is the circumference of a circle,
Comparing with we see that a complete revolution corresponds

to radians:

Equivalently,

One final note on the units for angles: Radians, as well as degrees and revo-
lutions, are dimensionless. In the relation for example, the arc length and
the radius both have SI units of meters. For the equation to be dimensionally con-
sistent, it is necessary that have no dimensions. Still, if an angle is, let’s say,
three radians, we will write it as rad to remind us of the angular units
being used.

Angular Velocity, 
As the bicycle wheel in Figure 10–1 rotates, the angular position of the spot of red
paint changes. This is illustrated in Figure 10–3. The angular displacement of the
spot, is

If we divide the angular displacement by the time, during which the displace-
ment occurs, the result is the average angular velocity,

Definition of Average Angular Velocity, 

10–3

SI unit: radian per second 

This is analogous to the definition of the average linear velocity 
Note that the units of linear velocity are m/s, whereas the units of angular veloc-
ity are rad/s.

vav = ¢x/¢t.

1rad/s2 = s-1

vav =
¢u
¢t

Vav

vav.
¢t,

¢u = uf - ui

¢u,

V

u = 3
uu

s = ru,

1 rad =
360°
2p

= 57.3°

1 rev = 360° = 2p rad

2p
s = ru,C = 2pr.

s = ru

u

s = 2r,
s = r.

1 rev = 360°

u = 0

i

�

�

f��

Reference line

Angular displacement

▲ FIGURE 10–3 Angular displacement
As the wheel rotates, the spot of paint
undergoes an angular displacement,
¢u = uf - ui.
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> 0�

< 0�

▲ FIGURE 10–4 Angular speed 
and velocity
Counterclockwise rotation is defined to
correspond to a positive angular velocity,

Similarly, clockwise rotation corre-
sponds to a negative angular velocity.
The magnitude of the angular velocity is
referred to as the angular speed.

v.

▲ Star trails provide a clear illustration of
the relationship between angle, arc, and ra-
dius in circular motion. The stars, of course,
do not actually move like this, but because
of the Earth’s rotation they appear to fol-
low circular paths across the sky each
night, with Polaris, the North Star, very
near the axis of rotation. This photo was
made by opening the camera shutter for an
extended period of time. Notice that each
star moves through the same angle in the
course of the exposure. However, the far-
ther a star is from the axis of rotation, the
longer the arc it traces out in a given period
of time. (Can you estimate the length of the
exposure?)

In addition to the average angular velocity, we can define an instantaneous
angular velocity as the limit of as the time interval, approaches zero. The
instantaneous angular velocity, then, is

Definition of Instantaneous Angular Velocity, 

10–4

SI unit: 

Generally, we shall refer to the instantaneous angular velocity simply as the an-
gular velocity.

Note that we call the angular velocity, not the angular speed. The reason is
that can be positive or negative, depending on the sense of rotation. For exam-
ple, if the red paint spot rotates in the counterclockwise sense, the angular posi-
tion, increases. As a result, is positive and therefore, so is Similarly, clock-
wise rotation corresponds to a negative and hence a negative 

Sign Convention for Angular Velocity
By convention:

The sign convention for angular velocity is illustrated in Figure 10–4. In analogy
with linear motion, the sign of indicates the direction of the angular velocity
vector, as we shall see in detail in Chapter 11. Similarly, the magnitude of the an-
gular velocity is the angular speed, just as in the one-dimensional case.

In Exercise 10–1 we utilize the definitions and conversion factors presented so
far in this section.

E X E R C I S E  1 0 – 1
(a) An old phonograph record rotates clockwise at (revolutions per minute).
What is its angular velocity in rad/s? (b) If a CD rotates at 22.0 rad/s, what is its angu-
lar speed in rpm?

S O L U T I O N

a. Convert from rpm to rad/s, and note that clockwise rotation corresponds to a
negative angular velocity:

b. Converting angular speed from rad/s to rpm gives

Note that the same symbol, is used for both angular velocity and angular
speed in Exercise 10–1. Which quantity is meant in a given situation will be clear
from the context in which it is used.

As a simple application of angular velocity, consider the following question:
An object rotates with a constant angular velocity, How much time, T, is re-
quired for it to complete one full revolution?

To solve this problem, note that since is constant, the instantaneous angular
velocity is equal to the average angular velocity. That is,

v = vav =
¢u
¢t

v

v.

v,

v = a22.0
rad

s
b a 1 rev

2p rad
b a 60 s

1 min
b = 210

rev
min

= 210 rpm

v = -33 1
3 rpm = a-33 1

3
rev
min
b a2p rad

1 rev
b a1 min

60 s
b = -3.49 rad/s

33 1
3 rpm

v

v 6 0 clockwise rotation
v 7 0 counterclockwise rotation

v.¢u
v.¢uu,

v

v

rad/s = s-1

v = lim
¢t:0

¢u
¢t

V

¢t,vav
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In one revolution, we know that and Therefore,

Finally, solving for T we find

The time to complete one revolution, T, is referred to as the period.

Definition of Period, T

10–5

SI unit: second, s

E X E R C I S E  1 0 – 2
Find the period of a record that is rotating at 45 rpm.

S O L U T I O N

To apply we must first express in terms of rad/s:

Now we can calculate the period:

Angular Acceleration, 
If the angular velocity of the rotating bicycle wheel increases or decreases with
time, we say that the wheel experiences an angular acceleration, The average
angular acceleration is the change in angular velocity, in a given interval of
time,

Definition of Average Angular Acceleration, 

10–6

SI unit: radian per second per second 

Note that the SI units of are which, since rad is dimensionless, is simply 
As expected, the instantaneous angular acceleration is the limit of as the

time interval, approaches zero:

Definition of Instantaneous Angular Acceleration, 

10–7

SI unit: 

When referring to the instantaneous angular acceleration, we will usually just say
angular acceleration.

The sign of the angular acceleration is determined by whether the change in an-
gular velocity is positive or negative. For example, if is becoming more positive,
so that is greater than it follows that is positive. Similarly, if is becoming
more negative, so that is less than it follows that is negative. Therefore, if 
and have the same sign, the speed of rotation is increasing. If and have op-
posite signs, the speed of rotation is decreasing. This is illustrated in Figure 10–5.

ava

vavi,vf

vavi,vf

v

rad/s2 = s-2

a = lim
¢t:0

¢v
¢t

A

¢t,
aav

s-2.rad/s2,a

1rad/s22 = s-2

aav =
¢v
¢t

Aav

¢t:
¢v,

a.

A

T =
2p
v

=
2p rad

4.7 rad/s
= 1.3 s

45 rpm = a45
rev
min
b a2p rad

1 rev
b a1 min

60 s
b = 4.7 rad/s

vT = 2p/v

T =
2p
v

T =
2p
v

v =
¢u
¢t

=
2p
T

¢t = T.¢u = 2p

> 0� < 0�> 0 < 0

< 0� > 0�> 0 < 0

(a) Angular speed
increases

(b) Angular speed
increases

(c) Angular speed
decreases

(d) Angular speed
decreases

▲ FIGURE 10–5 Angular acceleration 
and angular speed
When angular velocity and acceleration
have the same sign, as in (a) and (b), the
angular speed increases. When angular
velocity and angular acceleration have
opposite signs, as in (c) and (d), the an-
gular speed decreases.
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v

v = 0

t = 0 t > 0

v = 0� v < 0v < 0�

▲ FIGURE 10–6 A pulley with constant
angular acceleration
A mass is attached to a string wrapped
around a pulley. As the mass falls, it causes
the pulley to increase its angular speed
with a constant angular acceleration.

E X E R C I S E  1 0 – 3
As the wind dies, a windmill that was rotating at 2.1 rad/s begins to slow down with a
constant angular acceleration of How long does it take for the windmill to
come to a complete stop?

S O L U T I O N

If we choose the initial angular velocity to be positive, the angular acceleration is neg-
ative, corresponding to a deceleration. Hence, Equation 10–6 gives

10–2 Rotational Kinematics
Just as the kinematics of Chapter 2 described linear motion, rotational kinematics
describes rotational motion. In this section, as in Chapter 2, we concentrate on the
important special case of constant acceleration.

As an example of a system with constant angular acceleration, consider the
pulley shown in Figure 10–6. Wrapped around the circumference of the pulley is a
string, with a mass attached to its free end. When the mass is released, the pulley
begins to rotate—slowly at first, but then faster and faster. As we shall see in
Chapter 11, the pulley is accelerating with constant angular acceleration.

Since is constant, it follows that the average and instantaneous angular ac-
celerations are equal. Hence,

Suppose the pulley starts with the initial angular velocity at time and
that at the later time t its angular velocity is Substituting these values into the
preceding expression for yields

Rearranging, we see that the angular velocity, varies with time as follows:

10–8

E X E R C I S E  1 0 – 4
If the angular velocity of the pulley in Figure 10–6 is at a given time, and its
angular acceleration is what is the angular velocity of the pulley 1.5 s
later?

S O L U T I O N

The angular velocity, is found by applying Equation 10–8:

Note that the angular speed has increased, as expected, since and have the same sign.

Note the close analogy between Equation 10–8 for angular velocity and the
corresponding relation for linear velocity, Equation 2–7:

Clearly, the equation for angular velocity can be obtained from our previous equa-
tion for linear velocity by replacing v with and replacing a with This type of
analogy between linear and angular quantities can be most useful both in deriving
angular equations—by starting with linear equations and using analogies—and
in obtaining a better physical understanding of angular systems. Several linear-
to-angular analogs are listed in the adjacent table.

a.v

v = v0 + at

av

v = v0 + at = -8.4 rad/s + 1-2.8 rad/s2211.5 s2 = -12.6 rad/s

v,

-2.8 rad/s2,
-8.4 rad/s

v = v0 + at

v,

a =
¢v
¢t

=
v - v0

t - 0
=
v - v0

t

a

v.
t = 0,v0

a = aav =
¢v
¢t

a

¢t =
¢v
aav

=
vf - vi

a
=

0 - 2.1 rad/s

-0.45 rad/s2
= 4.7 s

0.45 rad/s2.

Linear Quantity Angular Quantity

x
v
a a

v

u
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To throw a curve ball, a pitcher gives the ball an initial angular speed of 36.0 rad/s. When the catcher gloves the ball 0.595 s later,
its angular speed has decreased (due to air resistance) to 34.2 rad/s. (a) What is the ball’s angular acceleration, assuming it to be
constant? (b) How many revolutions does the ball make before being caught?

P I C T U R E  T H E  P R O B L E M

We choose the ball’s initial direction of rotation to be positive.
As a result, the angular acceleration will be negative. We can
also identify the initial angular velocity to be 
and the final angular velocity to be 

S T R A T E G Y

The problem states that the angular acceleration of the ball 
is constant. It follows that Equations 10–8 to 10–11 apply to its
rotation.

a. To relate angular velocity to time, we use 
This can be solved for 

b. To relate angle to time we use The
angular displacement of the ball is 

S O L U T I O N

Part (a)

1. Solve for the angular acceleration, 

2. Substitute numerical values to find 

Part (b)

3. Use to calculate the angular
displacement of the ball:

2. Convert the angular displacement to revolutions:

CONTINUED ON NEXT PAGE

 u - u0 = 20.9 rad = 20.9 rada 1 rev
2p rad

b = 3.33 rev

 = 20.9 rad

 = 136.0 rad/s210.595 s2 + 1
21-3.03 rad/s2210.595 s22

 u - u0 = v0t + 1
2 at2u = u0 + v0t + 1

2 at2

 =
34.2 rad/s - 36.0 rad/s

0.595 s
= -3.03 rad/s2

 a =
v - v0

t
a:

 a =
v - v0

t

 v = v0 + ata:v = v0 + at

u - u0.
u = u0 + v0t + 1

2 at2.

a.
v = v0 + at.

v = 34.2 rad/s.
v0 = 36.0 rad/s,
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Linear Equation Angular Equation
( constant) ( constant)

2–7 10–8
2–10 10–9
2–11 10–10
2–12 10–11v2 = v0 

2 + 2a1u - u02v2 = v0 

2 + 2a1x - x02
u = u0 + v0t + 1

2 at2x = x0 + v0t + 1
2 at2

u = u0 + 1
21v0 + v2tx = x0 + 1

21v0 + v2t
v = v0 + atv = v0 + at

A �a �

Using these analogies, we can rewrite all the kinematic equations in Chapter 2
in angular form. The following table gives both the linear kinematic equations
and their angular counterparts.

P R O B L E M - S O L V I N G  N O T E

Rotational Kinematics

Using analogies between linear and angu-
lar quantities often helps when solving
problems involving rotational kinematics.

In solving kinematic problems involving rotation, we apply these angular
equations in the same way that the linear equations were applied in Chapter 2. In
a sense, then, this material is a review—since the mathematics is essentially the
same. The only difference comes in the physical interpretation of the results. We
will emphasize the rotational interpretations throughout the chapter.

�

w0�
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CONTINUED FROM PREVIOUS PAGE

I N S I G H T

The ball rotates through three-and-one-third revolutions during its time in flight.

An alternative method of solution is to use the kinematic relation given in Equation 10–9. This procedure yields 
in agreement with our previous result.

P R A C T I C E  P R O B L E M

(a) What is the angular velocity of the ball 0.500 s after it is thrown? (b) What is the ball’s angular velocity after it com-
pletes its first full revolution? [Answer: (a) Use to find (b) Use to find

]

Some related homework problems: Problem 19, Problem 22

v = 35.5 rad/s.
v

2 = v0 

2 + 2a1u - u02v = 34.5 rad/s.v = v0 + at

1
21v0 + v2t = 20.9 rad,

u - u0 =

E X A M P L E  1 0 – 2 W H E E L  O F  M I S F O R T U N E

On a certain game show, contestants spin a wheel when it is their turn. One contestant gives the wheel an initial angular speed
of 3.40 rad/s. It then rotates through one-and-one-quarter revolutions and comes to rest on the BANKRUPT space. (a) Find the
angular acceleration of the wheel, assuming it to be constant. (b) How long does it take for the wheel to come to rest?

P I C T U R E  T H E  P R O B L E M

We choose the initial angular velocity to be positive, 
and indicate it with a counterclockwise rotation in our sketch. Since the
wheel slows to a stop, the angular acceleration must be negative; that is,
in the clockwise direction. After a rotation of 1.25 rev the wheel will
read BANKRUPT.

S T R A T E G Y

As in Example 10–1, we can use the kinematic equations for constant
angular acceleration, Equations 10–8 to 10–11.

a. To begin, we are given the initial angular velocity, 
the final angular velocity, (the wheel comes to rest), and the
angular displacement, We can find the angular
acceleration using 

b. Knowing the angular velocity and acceleration, we can find the time
with 

S O L U T I O N

Part (a)

1. Solve for the angular acceleration, 

2. Convert to radians:

3. Substitute numerical values to find 

Part (b)

4. Solve for the time, t:

5. Substitute numerical values to find t: t =
v - v0

a
=

0 - 3.40 rad/s

1-0.736 rad/s22 = 4.62 s

t =
v - v0

a

 v = v0 + atv = v0 + at

a =
v

2 - v0 

2

21u - u02 =
0 - 13.40 rad/s22

217.85 rad2 = -0.736 rad/s2a:

u - u0 = 1.25 rev = 1.25 reva2p rad
1 rev

b = 7.85 radu - u0 = 1.25 rev

a =
v

2 - v0 

2

21u - u0)

 v2 = v0 

2 + 2a1u - u02a:v
2 = v0 

2 + 2a1u - u02

v = v0 + at.

v2 = v0 

2 + 2a1u - u02.
u - u0 = 1.25 rev.
v = 0

v0 = +3.40 rad/s,

v0 = +3.40 rad/s,

$
$

$

$$

$

$

$

$
$

$

$

$

$

$
$

$

$

0�
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I N S I G H T

Note that it was not necessary to define a reference line; that is, a direction for All we need to know is the angular dis-
placement, not the individual angles and Finally, notice that we can also solve Equation 10–9 for the time in part (b),
which yields as expected.

P R A C T I C E  P R O B L E M

What is the angular speed of the wheel after one complete revolution? [Answer: ]

Some related homework problems: Problem 18, Problem 20

v = 1.52 rad/s

t = 21u - u02/1v0 + v2 = 4.62 s,
u0.uu - u0,

u = 0.

Finally, we consider a pulley that is rotating in such a way that initially it is
lifting a mass with speed v. Gravity acting on the mass causes it and the pulley to
slow and momentarily come to rest.

A C T I V E  E X A M P L E  1 0 – 1 F I N D  T H E  T I M E  T O  R E S T

A pulley rotating in the counterclockwise direction is attached to a mass suspended
from a string. The mass causes the pulley’s angular velocity to decrease with a con-
stant angular acceleration (a) If the pulley’s initial angular velocity
is how long does it take for the pulley to come to rest? (b) Through
what angle does the pulley turn during this time?

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. (a) Relate angular velocity to time:

2. Solve for the time, t:

3. Substitute numerical values:

4. (b) Use to solve
for 

5. Alternatively, use 

I N S I G H T

After the pulley comes to rest, it immediately begins to rotate in the clockwise direction as the mass falls. The pulley’s angular
acceleration is constant—it has the same value before the pulley stops, when it stops, and after it begins rotating in the opposite
direction. This is analogous to a projectile thrown straight upward, where the linear velocity starts out positive, goes to zero,
then changes sign, all while the linear acceleration remains constant in the negative direction.

Y O U R  T U R N

Find the angular displacement of the pulley at the time when its angular velocity is half its initial value.

(Answers to Your Turn problems are given in the back of the book.)

u - u0 = 1v2 - v0 

22/2a = 6.94 radv
2 = v0 

2 + 2a1u - u02:
u - u0:

u - u0 = v0t + 1
2at2 = 6.94 radu = u0 + v0t + 1

2at2

t = 2.57 s

t = 1v - v02/a
v = v0 + at

v0 = 5.40 rad/s,
a = -2.10 rad/s2.

v = 0

Initial

Final

0�

0v

10–3 Connections Between Linear 
and Rotational Quantities

At a local county fair a child rides on a merry-go-round. The ride completes one
circuit every Therefore, the angular velocity of the child, from Equation
10–5, is

The path followed by the child is circular, with the center of the circle at the axis
of rotation of the merry-go-round. In addition, at any instant of time the child is
moving in a direction that is tangential to the circular path, as Figure 10–7 shows.
What is the tangential speed, of the child? In other words, what is the speed of
the wind in the child’s face?

We can find the child’s tangential speed by dividing the circumference of the
circular path, by the time required to complete one circuit, T. Thus,

vt =
2pr
T

= ra2p
T
b

2pr,

vt,

v =
2p
T

=
2p

7.50 s
= 0.838 rad/s

T = 7.50 s.
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r
�

vt = r�

With an angular
speed    ... ... the tangential

speed is vt = r .

▲ FIGURE 10–7 Angular and linear speed
Overhead view of a child riding on a
merry-go-round. The child’s path is a cir-
cle centered on the merry-go-round’s
axis of rotation. At any given time the
child is moving tangential to the circular
path with a speed vt = rv.

Because is simply we can express the tangential speed as follows:

Tangential Speed of a Rotating Object

10–12

SI unit: m/s

Note that must be given in rad/s for this relation to be valid.
In the case of the merry-go-round, if the radius of the child’s circular path is

the tangential speed is 
When it is clear that we are referring to the tangential speed, we will often drop
the subscript t, and simply write 

An interesting application of the relation between linear and angular speeds
is provided in the operation of a compact disk (CD). As you know, a CD is played
by shining a laser beam onto the disk, and then converting the pattern of re-
flected light into a pattern of sound waves. For proper operation, however, the
linear speed of the disk where the laser beam shines on it must be maintained at
the constant value of 1.25 m/s. As the CD is played, the laser beam scans the disk
in a spiral track from near the center outward to the rim. In order to maintain the
required linear speed, the angular speed of the disk must decrease as the beam
scans outward. The required angular speeds are determined in the following
Exercise.

E X E R C I S E  1 0 – 5
Find the angular speed a CD must have to give a linear speed of 1.25 m/s when the
laser beam shines on the disk (a) 2.50 cm and (b) 6.00 cm from its center.

S O L U T I O N

a. Using and in Equation 10–12, we find

b. Similarly, with we find

Thus, a CD slows from about 500 rpm to roughly 200 rpm as it plays.

How do the angular and tangential speeds of an object vary from one point to
another? We explore this question in the following Conceptual Checkpoint.

v =
v
r

=
1.25 m/s
0.0600 m

= 20.8 rad/s = 199 rpm

r = 0.0600 m

v =
v
r

=
1.25 m/s
0.0250 m

= 50.0 rad/s = 477 rpm

r = 0.0250 mv = 1.25 m/s

v = rv.

vt = rv = 14.25 m210.838 rad/s2 = 3.56 m/s.r = 4.25 m,

v

vt = rv

v,2p/T

R E A L - W O R L D  P H Y S I C S

The operation of a CD

C O N C E P T U A L  C H E C K P O I N T  1 0 – 1 C O M P A R E  T H E  S P E E D S

Two children ride on a merry-go-round, with child 1 at a greater distance from the axis
of rotation than child 2. Is the angular speed of child 1 (a) greater than, (b) less than, or
(c) the same as the angular speed of child 2?

R E A S O N I N G  A N D  D I S C U S S I O N

At any given time, the angle for child 1 is the same as the angle for child 2, as shown.
Therefore, when the angle for child 1 has gone through for example, so has the angle
for child 2. As a result, they have the same angular speed. In fact, each and every point on
the merry-go-round has exactly the same angular speed.

The tangential speeds are different, however. Child 1 has the greater tangential speed
since he travels around a larger circle in the same time that child 2 travels around a
smaller circle. This is in agreement with the relation since the radius to child 1 is
greater than the radius to child 2. That is, 

A N S W E R

(c) The angular speeds are the same.

v1 = r1v 7 v2 = r2v.
v = rv,

2p,
u

�

�

Child 2

Child 1
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Because the children on the merry-go-round move in a circular path, they ex-
perience a centripetal acceleration, (Section 6–5). The centripetal acceleration
is always directed toward the axis of rotation and has a magnitude given by

Note that the speed v in this expression is the tangential speed, and
therefore the centripetal acceleration in terms of is

Canceling one power of r, we have

Centripetal Acceleration of a Rotating Object

10–13

SI unit: 

If the radius of a child’s circular path on the merry-go-round is 4.25 m, and the an-
gular speed of the ride is 0.838 rad/s, the centripetal acceleration of the child is

Though the centripetal acceleration of a merry-go-round is typically only a
fraction of the acceleration of gravity, rotating devices referred to as centrifuges
can produce centripetal accelerations many times greater than gravity. For exam-
ple, the world’s most powerful research centrifuge, operated by the U.S. Army
Corps of Engineers, can subject 2.2-ton payloads to accelerations as high as 350g
(350 times greater than the acceleration of gravity). This centrifuge is used to
study earthquake engineering and dam erosion. The Air Force uses centrifuges to
subject prospective jet pilots to the accelerations they will experience during
rapid flight maneuvers, and in the future NASA may even use a human-powered
centrifuge for gravity studies aboard the International Space Station.

acp = rv2 = 14.25 m210.838 rad/s22 = 2.98 m/s2.

m/s2

acp = rv2

acp =
1rv22

r

v

v = vt = rv,

acp =
v2

r

acp

In the photo at left, two identical plastic
letter “E”s have been placed on a rotating
turntable at different distances from the
axis of rotation. The stretching and blurring
of the image of the outermost letter clearly
show that it is moving faster than the letter
closer to the axis. Similarly, the boy near the
rim of this playground merry-go-round is
moving faster than the girl near the hub.

▲
R E A L - W O R L D  P H Y S I C S

The centrifuge

▲ The large centrifuge shown at left, at the Gagarin Cosmonaut Training Center, is used to train Russian cosmo-
nauts for space missions. This device, which rotates at 36 rpm, can produce a centripetal acceleration of over

30 times the acceleration of gravity. The device at right is a microhematocrit centrifuge, used to separate
blood cells from plasma. The volume of red blood cells in a given quantity of whole blood is a major factor in
determining the oxygen-carrying capacity of the blood, an important clinical indicator.

290 m/s2,
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The centrifuges most commonly encountered in everyday life are those found
in virtually every medical laboratory in the world. These devices, which can pro-
duce centripetal accelerations in excess of 13,000g, are used to separate blood cells
from blood plasma. They do this by speeding up the natural tendency of cells to
settle out of plasma from days to minutes. The ratio of the packed cell volume to
the total blood volume gives the hematocrit value, which is a useful clinical indica-
tor of blood quality. In the next Example we consider the operation of a
microhematocrit centrifuge, which measures the hematocrit value of a small (micro)
sample of blood.

R E A L - W O R L D  P H Y S I C S :  B I O

The microhematocrit centrifuge

E X A M P L E  1 0 – 3 T H E  M I C R O H E M A T O C R I T

In a microhematocrit centrifuge, small samples of blood are placed in heparinized capillary tubes
(heparin is an anticoagulant). The tubes are rotated at 11,500 rpm, with the bottoms of the tubes 9.07 cm
from the axis of rotation. (a) Find the linear speed of the bottom of the tubes. (b) What is the centripetal
acceleration at the bottom of the tubes?

P I C T U R E  T H E  P R O B L E M

Our sketch shows a top view of the centrifuge, with the capillary tubes rotating at
11,500 rpm. Notice that the bottoms of the tubes move in a circular path of radius
9.07 cm. 

S T R A T E G Y

a. Linear and angular speeds are related by Once we convert the angular
speed to rad/s we can use this relation to determine v.

b. The centripetal acceleration is Using from part (a) yields the desired
result.

S O L U T I O N

Part (a)

1. Convert the angular speed, to radians per second:

2. Use to calculate the linear speed:

Part (b)

3. Calculate the centripetal acceleration using 

4. As a check, calculate the centripetal acceleration using

I N S I G H T

Note that every point on a tube has the same angular speed. As a result, points near the top of a tube have smaller linear
speeds and centripetal accelerations than do points near the bottom of a tube. In this case, the bottoms of the tubes experience
a centripetal acceleration about 13,400 times greater than the acceleration of gravity on the surface of the Earth; that is,

P R A C T I C E  P R O B L E M

What angular speed must this centrifuge have if the centripetal acceleration at the bottom of the tubes is to be 
[Answer: ]

Some related homework problems: Problem 34, Problem 37

v = 1acp/r = 1040 rad/s = 9930 rpm1L  10,000g2?
98,100 m/s2 

acp = 131,000 m/s2 = 13,400g.

acp = v2/r:
acp =

v2

r
=
1109 m/s22

0.0907 m
= 131,000 m/s2

acp = rv2 = 10.0907 m211.20 * 103 rad/s22 = 131,000 m/s2acp = rv2:

v = rv = 10.0907 m211.20 * 103 rad/s2 = 109 m/sv = rv

 = 1.20 * 103 rad/s

 v = 111,500 rev/min2a2p rad
1 rev

b a1 min
60 s

bv,

vacp = rv2.

v = rv.

R E A L - W O R L D
P H Y S I C S :  B I O

9.07 cm

11,500 rpm
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If the angular speed of the merry-go-round in Conceptual Checkpoint 10–1
changes, the tangential speed of the children changes as well. It follows, then, that
the children will experience a tangential acceleration, We can determine by
considering the relation If changes by the amount with r remain-
ing constant, the corresponding change in tangential speed is

If this change in occurs in the time the tangential acceleration is

Since is the angular acceleration, we find that

Tangential Acceleration of a Rotating Object

10–14

SI unit: 

As with the tangential speed, we will often drop the subscript t in when no con-
fusion will arise.

In general, the children on the merry-go-round may experience both tangen-
tial and centripetal accelerations at the same time. Recall that is due to a chang-
ing tangential speed, and that is caused by a changing direction of motion,
even if the tangential speed remains constant. To summarize:

Tangential Versus Centripetal Acceleration

As the names suggest, the tangential acceleration is always tangential to an ob-
ject’s path; the centripetal acceleration is always perpendicular to its path.

In cases in which both the centripetal and tangential accelerations are present,
the total acceleration is the vector sum of the two, as indicated in Figure 10–8. Note
that and are at right angles to one another, and hence the magnitude of the
total acceleration is given by the Pythagorean theorem:

The direction of the total acceleration, measured relative to the tangential direc-
tion, is

This angle is shown in Figure 10–8.
In the next Active Example, we consider an object that is rotating with a con-

stant angular acceleration, In this case, the tangential acceleration, is
constant in magnitude. On the other hand, the centripetal acceleration, 
changes with time since the angular speed changes.

acp = rv2,
at = ra,a.

f = tan-1a acp

at
b

a = 4at 

2 + acp 

2

a
!
cpa

!
t

acp = rv2  due to changing direction of motion

at = ra  due to changing angular speed

acp

at

at

m/s2

at = ra

a,¢v/¢t

at =
¢vt

¢t
= r

¢v
¢t

¢t,v

¢vt = r¢v

¢v,vvt = rv.
atat.

acp

at

a

�

▲ FIGURE 10–8 Centripetal and tangential
acceleration
If the angular speed of the merry-go-
round is increased, the child will experi-
ence two accelerations: (i) a tangential
acceleration, and (ii) a centripetal
acceleration, The child’s total
acceleration, is the vector sum of 
and a

!
cp.

a
!
ta

!
,

a
!
cp.

a
!
t,

A C T I V E  E X A M P L E  1 0 – 2 F I N D  T H E  A C C E L E R A T I O N

Suppose the centrifuge in Example 10–3 is starting up with a constant angular acceleration of (a) What are the
magnitudes of the centripetal, tangential, and total accelerations of the bottom of a tube when the angular speed is 8.00 rad/s? 
(b) What angle does the total acceleration make with the direction of motion?

CONTINUED ON NEXT PAGE

95.0 rad/s2.
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CONTINUED FROM PREVIOUS PAGE

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

Part (a)

1. Calculate the centripetal acceleration:

2. Calculate the tangential acceleration:

3. Find the magnitude of the total acceleration:

Part (b)

4. Find the angle for the total acceleration:

I N S I G H T

Note that all points on a tube have the same angular speed. In addition, all points
have the same angular acceleration. In contrast, different points have different cen-
tripetal and tangential accelerations, due to their dependence on the distance r from
the axis of rotation.

Y O U R  T U R N

Find the magnitude and direction of the total acceleration of a point halfway between
the top and bottom of a tube.

(Answers to Your Turn problems are given in the back of the book.)

f = tan-11acp/at2 = 33.9°f

a = 4acp 

2 + at 

2
 = 10.4 m/s2

at = ra = 8.62 m/s2

acp = rv2 = 5.80 m/s2

9.07 cm

α

acp

at

a
�

10–4 Rolling Motion
We began this chapter with a bicycle wheel rotating about its axle. In that case, the
axle was at rest and every point on the wheel, such as the spot of red paint, moved
in a circular path about the axle. We would like to consider a different situation
now. Suppose the bicycle wheel is rolling freely, as indicated in Figure 10–9, with no
slipping between the tire and the ground. The wheel still rotates about the axle, but
the axle itself is moving in a straight line. As a result, the motion of the wheel is a
combination of both rotational motion and linear (or translational) motion.

To see the connection between the wheel’s rotational and translational mo-
tions, we show one full rotation of the wheel in Figure 10–9. During this rotation,
the axle translates forward through a distance equal to the circumference of the
wheel, Because the time required for one rotation is the period, T, the trans-
lational speed of the axle is

Recalling that we find

10–15

Hence, the translational speed of the axle is equal to the tangential speed of a
point on the rim of a wheel spinning with angular speed 

A rolling object, then, combines rotational motion with angular speed and
translational motion with linear speed where r is the radius of the object.
Let’s consider these two motions one at a time. First, in Figure 10–10 (a) we show
pure rotational motion with angular speed In this case, the axle is at rest, and
points at the top and bottom of the wheel have tangential velocities that are equal
in magnitude, but point in opposite directions.v = rv,

v.

v = rv,
v,

v.

v = rv = vt

v = 2p/T,

v =
2pr
T

2pr.

... the linear (v) and
angular (  ) speeds of the
wheel must be related by
v = 2  r/T = r  .

To roll without slipping ...

r

v

2

r r

�

�

FIGURE 10–9 Rolling without slipping
A wheel of radius r rolling without slip-
ping. During one complete revolution,
the center of the wheel moves forward
through a distance 2pr.

▲

r

(a) Pure rotational motion

r

(b) Pure translational motion

v = r�

�

v = r�

v = r�

v = r�

v = r�

▲ FIGURE 10–10 Rotational and
translational motions of a wheel
(a) In pure rotational motion, the veloci-
ties at the top and bottom of the wheel
are in opposite directions. (b) In pure
translational motion, each point on the
wheel moves with the same speed in the
same direction.
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Next, we consider translational motion with speed This is illustrated
in Figure 10–10 (b), where we see that each point on the wheel moves in the same di-
rection with the same speed. If this were the only motion the wheel had, it would
be skidding across the ground, instead of rolling without slipping.

Finally, we combine these two motions by simply adding the velocity vectors
in Figures 10–10 (a) and (b). The result is shown in Figure 10–11. At the top of the
wheel the two velocity vectors are in the same direction, so they sum to give a
speed of At the axle, the velocity vectors sum to give a speed Finally, at
the bottom of the wheel, the velocity vectors from rotation and translation have
equal magnitude, but are in opposite directions. As a result, these velocities can-
cel, giving a speed of zero where the wheel is in contact with the ground.

The fact that the bottom of the wheel is instantaneously at rest, so that it is in
static contact with the ground, is precisely what is meant by “rolling without slip-
ping.” Thus, a wheel that rolls without slipping is just like the situation when you
are walking—even though your body as a whole moves forward, the soles of your
shoes are momentarily at rest every time you place them on the ground. This
point was discussed in detail in Conceptual Checkpoint 6–1.

E X E R C I S E  1 0 – 6
A car with tires of radius 32 cm drives on the highway at 55 mph. (a) What is the an-
gular speed of the tires? (b) What is the linear speed of the tops of the tires?

S O L U T I O N

a. Using Equation 10–15 we find

This is about 12 revolutions per second.

b. The tops of the tires have a speed of 

10–5 Rotational Kinetic Energy and the 
Moment of Inertia

An object in motion has kinetic energy, whether that motion is translational, rota-
tional, or a combination of the two. In translational motion, for example, the ki-
netic energy of a mass m moving with a speed v is We cannot use this
expression for a rotating object, however, because the speed v of each particle
within a rotating object varies with its distance r from the axis of rotation, as we
have seen in Equation 10–12. Thus, there is no unique value of v for an entire
rotating object. On the other hand, there is a unique value of , the angular speed,
that applies to all particles in the object.

To see how the kinetic energy of a rotating object depends on its angular
speed, we start with a particularly simple system consisting of a rod of length r
and negligible mass rotating about one end with an angular speed Attached to
the other end of the rod is a point mass m, as Figure 10–12 shows. To find the kinetic
energy of the mass, recall that its linear speed is (Equation 10–12). There-
fore, the translational kinetic energy of the mass m is

10–16

Notice that the kinetic energy of the mass depends not only on the angular speed
squared (analogous to the way the translational kinetic energy depends on the lin-
ear speed squared), but also on the radius squared—that is, the kinetic energy de-
pends on the distribution of mass in the rotating object. To be specific, mass near the
axis of rotation contributes little to the kinetic energy since its speed is
small. On the other hand, the farther a mass is from the axis of rotation, the greater
its speed v for a given angular velocity, and thus the greater its kinetic energy.

1v = rv2

K = 1
2 mv2 = 1

2 m1rv22 = 1
21mr22v2

v = rv

v.

v

K = 1
2mv2.

2v = 110 mph.

v =
v
r

=
155 mph2a0.447 m/s

1 mph
b

0.32 m
= 77 rad/s

rv.2rv.

v = rv.

v = 0

r

v = 2r�

v = r�
�

▲ FIGURE 10–11 Velocities in rolling
motion
In a wheel that rolls without slipping, the
point in contact with the ground is in-
stantaneously at rest. The center of the
wheel moves forward with the speed

and the top of the wheel moves
forward with twice that speed, v = 2rv.
v = rv,

▲ This photograph of a rolling wheel
gives a visual indication of the speed of its
various parts. The bottom of the wheel is at
rest at any instant, so the image there is
sharp. The top of the wheel has the greatest
speed, and the image there shows the most
blurring. (Compare Figure 10–11.)

Because the mass m has
a linear speed v = r   ...

... it also has
the kinetic energy

K = mv2 =    (mr2) 2.1
2

1
2

Axis of
rotation

r

�

m

v = r�

▲ FIGURE 10–12 Kinetic energy of a
rotating object
As this rod rotates about the axis of rota-
tion with an angular speed the mass
has a speed of It follows that the
kinetic energy of the mass is
K = 1

2mv2 = 1
21mr22v2.

v = rv.
v,
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You have probably noticed that the kinetic energy in Equation 10–16 is simi-
lar in form to the translational kinetic energy. Instead of we now have 

Clearly, then, the quantity plays the role of the mass for the rotating
object. This “rotational mass” is given a special name in physics: the moment of
inertia, I. Thus, in general, the kinetic energy of an object rotating with an angu-
lar speed can be written as:

Rotational Kinetic Energy

10–17

SI unit: J

The greater the moment of inertia—which some books call the rotational inertia—
the greater an object’s rotational kinetic energy. As we have just seen, in the spe-
cial case of a point mass m a distance r from the axis of rotation, the moment of in-
ertia is simply 

We now show how to find the moment of inertia for an object of arbitrary, fixed
shape, as in Figure 10–13. Suppose, for example, that this object rotates about the axis
indicated in the figure with an angular speed To calculate the kinetic energy of
the object, we first imagine dividing it into a collection of small mass elements, 
We then calculate the kinetic energy of each element and sum over all elements.
This extends to a large number of mass elements what we did for the single mass m.

Following this plan, the total kinetic energy of an arbitrary rotating object is

In this expression, is the mass of one of the small mass elements and is its
speed. If is at the radius from the axis of rotation, as indicated in Figure 10–13,
its speed is Note that it is not necessary to write a separate angular speed,

for each element, because all mass elements of the object have exactly the same
angular speed, Therefore,

Now, in analogy with our results for the single mass, we can define the moment
of inertia, I, as follows:

Definition of Moment of Inertia, I

10–18

SI unit: 

The precise value of I for a given object depends on its distribution of mass. A sim-
ple example of this dependence is given in the following Exercise.

E X E R C I S E  1 0 – 7
Use the general definition of the moment of inertia, as given in Equation 10–18, to find
the moment of inertia for the dumbbell-shaped object shown in Figure 10–14. Note that
the axis of rotation goes through the center of the object and points out of the page. In
addition, assume that the masses may be treated as point masses.

S O L U T I O N

Referring to Figure 10–14, we see that and Therefore, the
moment of inertia is

The connection between rotational kinetic energy and the moment of inertia is
explored in more detail in the following Example.

I = amiri
2 = m1r1

2 + m2r2
2 = mr2 + mr2 = 2mr2

r1 = r2 = r.m1 = m2 = m

kg # m2

I = amiri
2

K = a A12miri
2v2 B = 1

2 Aamiri
2 Bv2

v.
vi,

vi = riv.
rimi

vimi

K = a A12mivi
2 B

mi.
v.

I = mr2.

K = 1
2Iv2

v

mr21
21mr22v2.

1
21m2v2,

�

ri

mi

▲ FIGURE 10–13 Kinetic energy of a
rotating object of arbitrary shape
To calculate the kinetic energy of an ob-
ject of arbitrary shape as it rotates about
an axis with angular speed imagine
dividing it into small mass elements, 
The total kinetic energy of the object is
the sum of the kinetic energies of all the
mass elements.

mi.
v,

Axis of
rotation

r

r
�

�

m

m
v = r�

v = r�

▲ FIGURE 10–14 A dumbbell-shaped
object rotating about its center  
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E X A M P L E  1 0 – 4 N O S E  T O  T H E  G R I N D S T O N E

A grindstone with a radius of 0.610 m is being used to sharpen an ax. (a) If the linear speed of the stone relative to the ax is 1.50 m/s,
and the stone’s rotational kinetic energy is 13.0 J, what is its moment of inertia? (b) If the linear speed is doubled to 3.00 m/s, what
is the corresponding kinetic energy of the grindstone?

P I C T U R E  T H E  P R O B L E M

Our sketch shows the grindstone spinning with an angular speed , which is not given
in the problem statement. We do know, however, that the linear speed of the grindstone
at its rim is and that its radius is . At this rate of rotation, the
stone has a kinetic energy of 13.0 J.

S T R A T E G Y

a. Recall that rotational kinetic energy and moment of inertia are related by ; 
thus . We are not given , but we can find it from the connection between
linear and angular speed, . Thus, we begin by finding . We then use , along
with the kinetic energy K, to find I.

b. Find the new angular speed with  . Use I from part (a), along with
, to find the new kinetic energy.

S O L U T I O N

Part (a)

1. Find the angular speed of the grindstone:

2. Solve for the moment of inertia in terms of kinetic energy: or

3. Substitute numerical values for K and :

Part (b)

4. Find the angular speed of the grindstone 
corresponding to :

5. Determine the kinetic energy, K, using the 
moment of inertia, I, from part (a): 

I N S I G H T

(a) We found I by relating it to the rotational kinetic energy of the grindstone. Later in this section we show how to calculate the mo-
ment of inertia of a disk directly, given its radius and mass. (b) Doubling the linear speed, v, results in a doubling of the angular
speed, . The kinetic energy K depends on ; therefore doubling increases K by a factor of 4, from 13.0 J to .

P R A C T I C E  P R O B L E M

When the ax is pressed firmly against the grindstone for sharpening, the angular speed of the grindstone decreases. If the rota-
tional kinetic energy of the grindstone is cut in half to 6.50 J, what is its angular speed? [Answer: The moment of inertia is un-
changed; it depends only on the size, shape, and mass of the grindstone. Hence, , which is smaller than
the original by a factor of .]

Some related homework problems: Problem 56, Problem 57

12v = 2.46 rad/s
v = 12K/I = 1.74 rad/s

4(13.0 J) = 52.0 Jvv2v

K = 1
2 Iv2 = 1

2 (4.30 kg # m2)(4.92 rad/s)2 = 52.0 J

v = 3.00 m/s
v =

v
r

=
3.00 m/s
0.610 m

= 4.92 rad/s

I =
2K

v2
=

2(13.0 J)

(2.46 rad/s)2
= 4.30 J # s2 = 4.30 kg # m2v

I =
2K

v2
K = 1

2 Iv2

v =
v
r

=
1.50 m/s
0.610 m

= 2.46 rad/s

K = 1
2 Iv2

v = v/r

vvv = rv
vI = 2K/v2

K = 1
2 Iv2

r = 0.610 mv = 1.50 m/s

v

v = 1.50 m/s

r = 0.610 m

�

We return now to the dependence of the moment of inertia on the particular
shape, or mass distribution, of an object. Suppose, for example, that a mass M is
formed into the shape of a hoop of radius R. In addition, consider the case where
the axis of rotation is perpendicular to the plane of the hoop and passes through
its center, as shown in Figure 10–15. This is similar to a bicycle wheel rotating about
its axle, if one ignores the spokes. In terms of small mass elements, we can write
the moment of inertia as

Each mass element of the hoop, however, is at the same radius R from the axis of
rotation; that is, Hence, the moment of inertia in this case is

I = amiri 

2 = amiR
2 = Aami BR2

ri = R.

I = amiri 

2

R

mi

▲ FIGURE 10–15 The moment of inertia 
of a hoop
Consider a hoop of mass M and radius R.
Each small mass element is at the same dis-
tance, R, from the center of the hoop. The
moment of inertia in this case is I = MR2.
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Clearly, the sum of all the elementary masses is simply the total mass of the hoop,
Therefore, the moment of inertia of a hoop of mass M and radius R is

In contrast, if the same mass, M, is formed into a uniform disk of the same ra-
dius, R, the moment of inertia is different. To see this, note that it is no longer true
that for all mass elements. In fact, most of the mass elements are closer to
the axis of rotation than was the case for the hoop, as indicated in Figure 10–16.
Thus, since the are generally less than R, the moment of inertia will be smaller
for the disk than for the hoop. A detailed calculation, summing over all mass ele-
ments, yields the following result:

As expected, I is less for the disk than for the hoop.

E X E R C I S E  1 0 – 8
If the grindstone in Example 10–4 is a uniform disk, what is its mass?

S O L U T I O N

Applying the preceding equation yields

Thus, the grindstone has a weight of roughly 51 lb.

Table 10–1 collects moments of inertia for a variety of objects. Note that in all
cases the moment of inertia is of the form It is only the constant 
in front of that changes from one object to another.

Note also that objects of the same general shape but with different mass
distributions—such as solid and hollow spheres—have different moments of in-
ertia. In particular, a hollow sphere has a larger I than a solid sphere of the same
mass, for the same reason that a hoop’s moment of inertia is greater than a
disk’s—more of its mass is at a greater distance from the axis of rotation. Thus, I
is a measure of both the shape and the mass distribution of an object.

MR2
I = 1constant2MR2.

M =
2I

R2
=

214.30 kg # m22
10.610 m22 = 23.1 kg

I = 1
2MR2 1disk2

ri

ri = R

I = MR2 1hoop2
©mi = M.

ri

mi

R

▲ FIGURE 10–16 The moment of inertia
of a disk
Consider a disk of mass M and radius R.
Mass elements for the disk are at dis-
tances from the center ranging from 0 to
R. The moment of inertia in this case is
I = 1

2MR2.

Disk or
solid cylinder
I =    MR21

2

Hoop or
cylindrical shell
I = MR2

Solid sphere
(axis at rim)
I =    MR27

5

Disk or
solid cylinder
(axis at rim)
I =    MR23

2

Solid plate
(axis through center,
in plane of plate)
I =    ML21

12

Solid plate
(axis perpendicular
to plane of plate)
I =    M(L2 + W2)1

12

Hollow sphere
I =    MR22

3

Solid sphere
I =    MR22

5

Long thin rod
(axis through midpoint)
I =    ML21

12

Long thin rod
(axis at one end)
I =    ML21

3

L L
R

R R R

R

L

L

W

R

TABLE 10–1 Moments of Inertia for Uniform, Rigid Objects of Various Shapes and Total Mass M
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Consider, for example, the moment of inertia of the Earth. If the Earth were
a uniform sphere of mass and radius its moment of inertia would be

In fact, the Earth’s moment of inertia is only 
considerably less than for a uniform sphere. This is due to the fact that the Earth
is not homogeneous, but instead has a dense inner core surrounded by a less
dense outer core and an even less dense mantle. The resulting concentration of
mass near its axis of rotation gives the Earth a much smaller moment of inertia
than it would have if its mass were uniformly distributed.

On the other hand, if the polar ice caps were to melt and release their water
into the oceans, the Earth’s moment of inertia would increase. This is because
mass that had been near the axis of rotation (in the polar ice) would now be dis-
tributed more or less uniformly around the Earth (in the oceans). With more of the
Earth’s mass at greater distances from the axis of rotation, the moment of inertia
would increase. If such an event were to occur, not only would the moment of in-
ertia increase, but the length of the day would increase as well. We shall discuss
the reasons for this in the next chapter.

The moment of inertia of an object also depends on the location and orienta-
tion of the axis of rotation. If the axis of rotation is moved, all of the change, lead-
ing to a different result for I. This is investigated for the dumbbell system in the
following Conceptual Checkpoint.

ri

0.331MERE
2,2

5MERE
2 = 0.4MERE

2.
RE,ME

▲ The distribution of mass in the Earth is
not uniform. Dense materials, like iron and
nickel, have concentrated near the center,
while less dense materials, like silicon and
aluminum, have risen to the surface. This
concentration of mass near the axis of rota-
tion lowers the Earth’s moment of inertia.

Linear Quantity Angular Quantity

v
m I

1
2 Iv21

2 mv2

v

C O N C E P T U A L  C H E C K P O I N T  1 0 – 2 C O M P A R E  T H E  M O M E N T S  O F  I N E R T I A

If the dumbbell-shaped object in Figure 10–14 is rotated about one end, is its moment of
inertia (a) more than, (b) less than, or (c) the same as the moment of inertia about its cen-
ter? As before, assume that the masses can be treated as point masses.

R E A S O N I N G  A N D  D I S C U S S I O N

As we saw in Exercise 10–7, the moment of inertia about the center of the dumbbell is
When the axis is at one end, that mass is at the radius and the other

mass is at Therefore, the moment of inertia is

Thus, the moment of inertia doubles when the axis of rotation is moved from the center
to one end.

The reason I increases is that the moment of inertia depends on the radius squared.
Hence, even small increases in r can cause significant increases in I. By moving the axis
to one end, the radius to the other mass is increased to its greatest possible value. As a re-
sult, I increases.

A N S W E R

(a) The moment of inertia is greater about one end than about the center.

I = amiri
2 = m # 0 + m12R22 = 4mR2

r = 2R.
r = 0,I = 2mR2.

Axis of
rotation

2R

�

Axis of
rotation

R

R

m

m

m

m

�

�

Finally, we summarize in the accompanying table the similarities between
the translational kinetic energy, and the rotational kinetic energy, 

As expected, we see that the linear speed, v, has been replaced with the
angular speed, In addition, note that the mass m has been replaced with the
moment of inertia I.

As suggested by these analogies, the moment of inertia I plays the same role in
rotational motion that mass plays in translational motion. For example, the larger
I the more resistant an object is to any change in its angular velocity—an object
with a large I is difficult to start rotating, and once it is rotating, it is difficult to stop.
We shall see further applications of this analogy in the next chapter when we con-
sider angular momentum.

10–6 Conservation of Energy
In this section, we consider the mechanical energy of objects that roll without slip-
ping, and show how to apply energy conservation to such systems. In addition,
we consider objects that rotate as a string or rope unwinds: for example, a pulley

v.
K = 1

2Iv2.
K = 1

2mv2,

R E A L - W O R L D  P H Y S I C S

Moment of inertia of the Earth



316 C H A P T E R  1 0 R O T A T I O N A L  K I N E M A T I C S  A N D  E N E R G Y

with a string wrapped around its circumference, or a yo-yo with a string wrapped
around its axle. As long as the unwinding process and the rolling motion occur
without slipping, the two situations are basically the same—at least as far as en-
ergy considerations are concerned.

To apply energy conservation to rolling objects, we first need to determine the
kinetic energy of rolling motion. In Section 10–4 we saw that rolling motion is a
combination of rotation and translation. It follows, then, that the kinetic energy of
a rolling object is simply the sum of its translational kinetic energy, and its
rotational kinetic energy, 

Kinetic Energy of Rolling Motion

10–19

Note that I in this expression is the moment of inertia about the center of the
rolling object.

We can simplify the expression for the kinetic energy of a rolling object by
using the fact that linear and angular speeds are related. In fact, recall that 
(Equation 10–12), which can be rewritten as Substituting this into our ex-
pression for the rolling kinetic energy yields

Kinetic Energy of Rolling Motion: Alternative Form

10–20

Since the last term in Equation 10–20 is a constant that de-
pends on the shape and mass distribution of the rolling object.

A special case of some interest is the point particle. In this case, by definition,
all of the mass is at a single point. Therefore, and hence Substituting 

in either Equation 10–19 or Equation 10–20 yields as expected.
Next, we apply Equations 10–19 and 10–20 to a disk that rolls with no slipping.

K = 1
2mv2,I = 0
I = 0.r = 0,

I = 1constant2mr2,

K = 1
2mv2 + 1

2Ia v
r
b2

= 1
2mv2a1 +

I

mr2
b

v = v/r.
v = rv

K = 1
2mv2 + 1

2Iv2

1
2Iv2:

1
2mv2,

E X A M P L E  1 0 – 5 L I K E  A  R O L L I N G  D I S K

A 1.20-kg disk with a radius of 10.0 cm rolls without slipping. If the linear speed of the disk is 1.41 m/s, find (a) the translational
kinetic energy, (b) the rotational kinetic energy, and (c) the total kinetic energy of the disk.

P I C T U R E  T H E  P R O B L E M

Because the disk rolls without slipping, the angular speed and
the linear speed are related by Note that the linear
speed is and the radius is Finally, we
are given that the mass of the disk is 1.20 kg.

S T R A T E G Y

We calculate each contribution to the kinetic energy separately.
The linear kinetic energy, of course, is simply For the rota-
tional kinetic energy, we must use the fact that the moment
of inertia for a disk is Finally, since the disk rolls with-
out slipping, its angular speed is 

S O L U T I O N

Part (a)

1. Calculate the translational kinetic energy, 

Part (b)

2. Calculate the rotational kinetic energy symbolically, using
and 

3. Substitute the numerical value for (the translational 
kinetic energy) obtained in Step 1: 

Part (c)

4. Sum the kinetic energies obtained in parts (a) and (b):  K = 1.19 J + 0.595 J = 1.79 J

1
2Iv2 = 1

2(1.19 J) = 0.595 J1
2mv2

v = v/r:I = 1
2mr2

1
2Iv2 = 1

2(1
2mr2)av

r
b2

= 1
2(1

2mv2)

1
2mv2 = 1

2(1.20 kg)11.41 m/s22 = 1.19 J1
2mv2:

v = v/r.
I = 1

2mr2.

1
2Iv2,

1
2mv2.

r = 10.0 cm.v = 1.41 m/s
v = rv. v = 1.41 m/s

r = 10.0 cm

�

P R O B L E M - S O L V I N G  N O T E

Energy Conservation with 
Rotational Motion

When applying energy conservation to a
system with rotational motion, be sure to
include the rotational kinetic energy, 12Iv2.
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5. Note that the same result is obtained using Equation 10–20:

I N S I G H T

The symbolic result in Step 2 shows that the rotational kinetic energy of a uniform disk rolling without slipping is precisely one-
half the disk’s translational kinetic energy. Thus, 2/3 of the disk’s kinetic energy is translational, 1/3 rotational. This result is
independent of the disk’s radius, as we can see by the cancellation of the radius r in Step 2.

To understand this cancellation, note that a larger disk has a larger moment of inertia, since it has mass farther from the axis of ro-
tation. On the other hand, the larger disk also has a smaller angular speed, since the angular speed is inversely proportional to the
radius: These two effects cancel, giving the same rotational kinetic energy for uniform disks of any radius—provided
their linear speed is the same.

P R A C T I C E  P R O B L E M

Repeat this problem for the case of a rolling, hollow sphere. [Answer: (a) 1.19 J, (b) 0.793 J, (c) 1.98 J]

Some related homework problems: Problem 58, Problem 62

v = v/r.

 = 3
2(1

2mv2) = 3
2(1.19 J) = 1.79 J

 K = 1
2mv2a1 +

I

mr2
b = 1

2mv2a1 +
1
2
b

C O N C E P T U A L  C H E C K P O I N T  1 0 – 3 C O M P A R E  K I N E T I C  E N E R G I E S

A solid sphere and a hollow sphere of the same mass and radius roll without slipping at
the same speed. Is the kinetic energy of the solid sphere (a) more than, (b) less than, or
(c) the same as the kinetic energy of the hollow sphere?

R E A S O N I N G  A N D  D I S C U S S I O N

Both spheres have the same translational kinetic energy since they have the same mass and
speed. The rotational kinetic energy, however, is proportional to the moment of inertia.
Since the hollow sphere has the greater moment of inertia, it has the greater kinetic energy.

A N S W E R

(b) The solid sphere has less kinetic energy than the hollow sphere.

Now that we can calculate the kinetic energy of rolling motion, we show how
to apply it to energy conservation. For example, consider an object of mass m, ra-
dius r, and moment of inertia I at the top of a ramp, as shown in Figure 10–17. The
object is released from rest and allowed to roll to the bottom, a vertical height h
below the starting point. What is the object’s speed on reaching the bottom?

v

h

r FIGURE 10–17 An object rolls down 
an incline
An object starts at rest at the top of an in-
clined plane and rolls without slipping
to the bottom. The speed of the object at
the bottom depends on its moment of
inertia—a larger moment of inertia re-
sults in a lower speed.

▲

The simplest way to solve this problem is to use energy conservation. To do
so, we set the initial mechanical energy at the top (i) equal to the final mechanical
energy at the bottom (f). That is,

Since we are dealing with rolling motion, the kinetic energy is

The potential energy is simply that due to the uniform gravitational field. Therefore,

U = mgy

K = 1
2mv2a1 +

I

mr2
b

Ki + Ui = Kf + Uf
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With at the top of the ramp and the object starting at rest, we have

Similarly, with at the bottom of the ramp and the object rolling with a speed
v, we find

Setting the initial and final energies equal yields

Solving for v, we find

Let’s quickly check one special case: namely, With this substitution,
we find

This is the speed an object would have after falling straight down with no rotation
through a distance h. Thus, setting means there is no rotational kinetic en-
ergy, and hence the result is the same as for a point particle. As I becomes larger,
the speed at the bottom of the ramp is smaller.

I = 0

v = 22gh

I = 0.

v =

S
2gh

1 +
I

mr2

mgh = 1
2mv2a1 +

I

mr2
b

Kf + Uf = 1
2mv2a1 +

I

mr2
b + 0 = 1

2mv2a1 +
I

mr2
b

y = 0

Ki + Ui = 0 + mgh = mgh

y = h

C O N C E P T U A L  C H E C K P O I N T  1 0 – 4 W H I C H  O B J E C T  W I N S  T H E  R A C E ?

A disk and a hoop of the same mass and radius are released at the same time at the top
of an inclined plane. Does the disk reach the bottom of the plane (a) before, (b) after, or
(c) at the same time as the hoop?

R E A S O N I N G  A N D  D I S C U S S I O N

As we have just seen, the larger the moment of inertia, I, the smaller the speed, v. Hence
the object with the larger moment of inertia (the hoop in this case) loses the race to the
bottom, because its speed is less than the speed of the disk at any given height.

Another way to think about this is to recall that both objects have the same mechanical energy
to begin with, namely, mgh. For the hoop, more of this initial potential energy goes into rota-
tional kinetic energy, since the hoop has the larger moment of inertia; therefore, less energy is
left for translational motion. As a result, the hoop moves more slowly and loses the race.

A N S W E R

(a) The disk wins the race by reaching the bottom before the hoop.

h

In the next Conceptual Checkpoint, we consider the effects of a surface that
changes from nonslip to frictionless.

C O N C E P T U A L  C H E C K P O I N T  1 0 – 5 C O M PA R E  H E I G H T S

A ball is released from rest on a no-slip surface, as shown. After reaching its lowest point,
the ball begins to rise again, this time on a frictionless surface. When the ball reaches its
maximum height on the frictionless surface, is it (a) at a greater height, (b) at a lesser
height, or (c) at the same height as when it was released?

R E A S O N I N G  A N D  D I S C U S S I O N

As the ball descends on the no-slip surface, it begins to rotate, increasing its angular
speed until it reaches the lowest point of the surface. When it begins to rise again, there
is no friction to slow the rotational motion; thus, the ball continues to rotate with the
same angular speed it had at its lowest point. Therefore, some of the ball’s initial gravi-
tational potential energy remains in the form of rotational kinetic energy. As a result, less
energy is available to be converted back into gravitational potential energy, and the
height is less.

A N S W E R

(b) The height on the frictionless side is less. No-slip Frictionless
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E X A M P L E  1 0 – 6 S P I N N I N G  W H E E L

A block of mass m is attached to a string that is wrapped around the circumference of a wheel of radius R and moment of iner-
tia I. The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel
rotates with an angular speed causing the block to rise with a linear speed v. To what height does the block rise before com-
ing to rest? Give a symbolic answer.

v,

We can also apply energy conservation to the case of a pulley, or similar object,
with a string that winds or unwinds without slipping. In such cases, the relation

is valid and we can follow the same methods applied to an object that rolls
without slipping.
v = rv

P I C T U R E  T H E  P R O B L E M

Note in our sketch that we choose the origin of the y axis to be at
the initial height of the block. The positive y direction, as usual,
is chosen to be upward. When the block comes to rest, then, it is
at the height where h is to be determined from the
initial speed of the block and the properties of the wheel.

S T R A T E G Y

The problem statement gives two key pieces of information.
First, the string wraps onto the disk without slipping; therefore,

Second, the wheel rotates freely, which means that the
mechanical energy of the system is conserved. Thus, at the
height h the initial kinetic energy of the system has been con-
verted to gravitational potential energy. This condition can be
used to find h.

Before we continue, note that the mechanical energy of the sys-
tem includes the following contributions: (i) linear kinetic en-
ergy for the block, (ii) rotational kinetic energy for the wheel,
and (iii) gravitational potential energy for the block. We do not
include the gravitational potential energy of the wheel because
its height does not change.

S O L U T I O N

v = Rv.

y = h 7 0,

�

v v = 0

 = 0

y = h

y = 0

m

m

Initial Final

R

y
�

R

1. Write an expression for the initial mechanical energy of
the system, including all three contributions mentioned
in the Strategy:

Ei,
 = 1

2mv2 + 1
2Ia v

R
b2

+ 0

 Ei = 1
2mv2 + 1

2Iv2 + mgy

2. Write an expression for the final mechanical energy of 
the system, 

3. Set the initial and final mechanical energies equal 
to one another, 

4. Solve for the height, h:

I N S I G H T

If the block were moving upward with speed v on its own—not attached to anything—it would rise to the height We
recover this result if since in that case it is as if the wheel were not there. If the wheel is there, and I is nonzero, the block
rises to a height that is greater than The reason is that the wheel has kinetic energy, in addition to the kinetic energy of the
block, and the sum of these kinetic energies must be converted to gravitational potential energy before the block and the wheel
stop moving.

P R A C T I C E  P R O B L E M

Suppose the wheel is a disk with a mass equal to the mass m of the block. Find an expression for the height h in this case.
[Answer: The moment of inertia of the wheel is Therefore, ]

Some related homework problems: Problem 66, Problem 70, Problem 73

h = 13/221v2/2g2.I = 1
2mR2.

v2/2g.
I = 0,

h = v2/2g.

h = a v2

2g
b a1 +

I

mR2
b

 = Ef = mgh
Ei = Ef:

 Ei = 1
2mv2 + 1

2Ia v
R
b2

= 1
2mv2a1 +

I

mR2
b

 = 0 + 0 + mghEf:
 Ef = 1

2mv2 + 1
2Iv2 + mgy

The situation with a yo-yo is similar, as we see in the next Active Example.
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A C T I V E  E X A M P L E  1 0 – 3 F I N D  T H E  Y O - Y O’ S  S P E E D

Yo-Yo man releases a yo-yo from rest and allows it to drop, as he keeps the top end of
the string stationary. The mass of the yo-yo is 0.056 kg, its moment of inertia is

and the radius, r, of the axle the string wraps around is 0.0064 m.
What is the linear speed, v, of the yo-yo after it has dropped through a height

S O L U T I O N (Test your understanding by performing the calculations indicated in each step.)

1. Write the initial energy of the system:

2. Write the final energy of the system:

3. Set and solve for v:

4. Substitute numerical values:

I N S I G H T

The linear speed of the yo-yo is where r is the radius of the axle from which the
string unwraps without slipping. Therefore, the r in the term is the radius of the
axle. The outer radius of the yo-yo affects its moment of inertia, but since I is given to us
in the problem statement, the outer radius is not pertinent.

Y O U R  T U R N

If the yo-yo’s moment of inertia is increased, does its final speed increase, decrease, or
stay the same? Calculate the final speed for the case 

(Answers to Your Turn problems are given in the back of the book.)

I = 3.9 * 10-5 kg # m2.

I/mr2
v = rv,

v = 0.85 m/s

v = 42gh/11 + I/mr22Ef = Ei

Ef = 1
2mv211 + I/mr22

Ei = mgh

h = 0.50 m?

2.9 * 10-5 kg # m2,

h = 0.50 m

v

v = 0

T H E  B I G  P I C T U R E P U T T I N G  P H Y S I C S  I N  C O N T E X T
L O O K I N G  B A C K L O O K I N G  A H E A D

Our definitions of position, velocity, and acceleration from
Chapter 2 are generalized in Section 10–1 to apply to
rotational motion. We then use the kinematics of Chapters 2
and 4 in Section 10–2 to relate these quantities. The basic
equations of motion are the same; only the names have been
changed.

In Chapter 11 we relate force to angular acceleration, in
much the same way that force and acceleration are related
in linear motion. This results in the concept of torque in
Section 11–1.

The kinetic energy, first defined in Chapter 7, plays a key
role in defining the moment of inertia in Section 10–5.

Conservation of energy (Chapter 8) is just as important in
rotational motion as it is in linear motion. We apply it to
rotational motion in Section 10–6.

Just as linear speed is related to linear momentum 
(Chapter 9), angular speed is related to angular momentum.
This is discussed in detail in Section 11–6.

Though a bit surprising at first, rotational motion is directly
related to the motion of a pendulum swinging back and forth,
and to the motion of a mass oscillating up and down on a
spring. These connections are established in Section 13–3.

C H A P T E R  S U M M A RY

1 0 – 1 A N G U L A R  P O S I T I O N ,  V E L O C I T Y,  A N D  A C C E L E R AT I O N

To describe rotational motion, rotational analogues of position, velocity, and
acceleration are defined.

Angular Position
Angular position, is the angle measured from an arbitrary reference line:

10–2

Angular Velocity
Angular velocity, is the rate of change of angular position. The average angu-
lar velocity is

10–3vav =
¢u
¢t

v,

u 1in radians2 = arc length/radius = s/r

u,

> 0�

< 0�
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The instantaneous angular velocity is the limit of as approaches zero:

10–4

Angular Acceleration
Angular acceleration, is the rate of change of angular velocity. The average
angular acceleration is

10–6

The instantaneous angular acceleration is the limit of as approaches zero:

10–7

Period of Rotation
The period, T, is the time required to complete one full rotation. If the angular
velocity is constant, T is related to as follows:

10–5

Sign Convention
Counterclockwise rotations are positive; clockwise rotations are negative.

1 0 – 2 R O TAT I O N A L  K I N E M AT I C S

Rotational kinematics is the description of angular motion, in the same way that
linear kinematics describes linear motion. In both cases, we assume constant
acceleration.

Linear–Angular Analogues
Rotational kinematics is related to linear kinematics by the following linear–
angular analogies:

T =
2p
v

v

a = lim
¢t:0

¢v
¢t

¢taav

aav =
¢v
¢t

a,

v = lim
¢t:0

¢u
¢t

¢tvav

v = 0

= 0

v

t = 0 t > 0

�  < 0�
 < 0

Linear Quantity Angular Quantity

x
v
a a

v

u

Linear Equation Angular Equation

2–7 10–8
2–10 10–9
2–11 10–10
2–12 10–11v

2 = v0
2 + 2a1u - u02v2 = v0

2 + 2a1x - x02
u = u0 + v0t + 1

2at2x = x0 + v0t + 1
2 at2

u = u0 + 1
21v0 + v2tx = x0 + 1

21v0 + v2t
v = v0 + atv = v0 + at

Kinematic Equations (Constant Acceleration)
The equations of rotational kinematics are the same as the equations of linear
kinematics, with the substitutions indicated by the linear–angular analogies:

1 0 – 3 C O N N E C T I O N S  B E T W E E N  L I N E A R  
A N D  R O TAT I O N A L  Q U A N T I T I E S

A point on a rotating object follows a circular path. At any instant of time, the
point is moving in a direction tangential to the circle, with a linear speed and
acceleration. The linear speed and acceleration are related to the angular speed
and acceleration.

Tangential Speed
The tangential speed, of a point on a rotating object is

10–12

Centripetal Acceleration
The centripetal acceleration, of a point on a rotating object is

10–13

Centripetal acceleration is due to a change in direction of motion.

acp = rv2

acp,

vt = rv

vt,
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Tangential Acceleration
The tangential acceleration, of a point on a rotating object is

10–14

Tangential acceleration is due to a change in speed.

Total Acceleration
The total acceleration of a rotating object is the vector sum of its tangential and
centripetal accelerations.

1 0 – 4 R O L L I N G  M O T I O N

Rolling motion is a combination of translational and rotational motions. An
object of radius r, rolling without slipping, translates with linear speed v and
rotates with angular speed

10–15

1 0 – 5 R OTAT I O N A L  K I N E T I C  E N E R GY  A N D  T H E  
M O M E N T  O F  I N E RT I A

Rotating objects have kinetic energy, just as objects in linear motion have kinetic
energy.

Rotational Kinetic Energy
The kinetic energy of a rotating object is

10–17

The quantity I is the moment of inertia.

Moment of Inertia, Discrete Masses
The moment of inertia, I, of a collection of masses, at distances from the
axis of rotation is

10–18

Moment of Inertia, Continuous Distribution of Mass
In a continuous object, the moment of inertia is calculated by dividing the object
into a collection of small mass elements and summing for each element.
Results for a variety of continuous objects are collected in Table 10–1 on p. 314.

Linear–Angular Analogue
The moment of inertia is the rotational analogue to mass in linear systems. In
particular, an object with a large moment of inertia is hard to start rotating and
hard to stop rotating.

1 0 – 6 C O N S E R VAT I O N  O F  E N E R GY

Energy conservation can be applied to a variety of rotational systems in the
same way that it is applied to translational systems.

Kinetic Energy of Rolling Motion
The kinetic energy of an object that rolls without slipping is

10–19

Since rolling without slipping implies that the kinetic energy can be
written as follows:

10–20

Energy Conservation
Conservation of mechanical energy is a statement that the initial kinetic plus
potential energy is equal to the final kinetic plus potential energy: 

By taking into account both rotational and translational kinetic energy,
energy conservation can be applied in the same way as was done for linear
systems.

Kf + Uf.
Ki + Ui =

K = 1
2mv2 + 1

2Iav
r
b2

= 1
2mv2a1 +

I

mr2
b

v = v/r,

K = 1
2mv2 + 1

2Iv2

miri
2

I = amiri
2

rimi,

K = 1
2Iv2

v = v/r

at = ra

at,

v = 2r�

v = r

r

�

v = 0

�
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rotation

m

�

�
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P R O B L E M - S O L V I N G  S U M M A RY

Type of Problem Relevant Physical Concepts Related Examples

Apply rotational kinematics with Rotational kinematics is completely analogous to the linear Example 10–1,
constant angular acceleration. kinematics studied in Chapter 2. Angular problems are solved Example 10–2

in the same way as the corresponding linear problems. Active Example 10–1

Relate linear and angular motion. Linear speed and angular speed are related by Example 10–3 
Similarly, linear and angular accelerations are related Active Example 10–2
by The centripetal acceleration of an object in 
circular motion is 

Find the rotational kinetic energy Rotational kinetic energy is given by The moment Example 10–4,
of an object. of inertia, I, plays the same role in rotational motion as the Example 10–5

mass in linear motion.

Apply energy conservation to a To use energy conservation in a system with rotational motion, Example 10–6
rotational system. it is necessary to include the kinetic energy of rotation as one of Active Example 10–3

the forms of energy.

C O N C E P T U A L  Q U E S T I O N S

(Answers to odd-numbered Conceptual Questions can be found in the back of the book.)

K = 1
2Iv2.

acp = rv2.
a = ra.

v = rv.

1. A rigid object rotates about a fixed axis. Do all points on the ob-
ject have the same angular speed? Do all points on the object
have the same linear speed? Explain.

2. Can you drive your car in such a way that your tangential ac-
celeration is zero while at the same time your centripetal accel-
eration is nonzero? Give an example if your answer is yes, state
why not if your answer is no.

3. Can you drive your car in such a way that your tangential ac-
celeration is nonzero while at the same time your centripetal
acceleration is zero? Give an example if your answer is yes,
state why not if your answer is no.

4. The fact that the Earth rotates gives people in New York a linear
speed of about 750 mi/h. Where should you stand on the Earth
to have the smallest possible linear speed?

5. At the local carnival you and a friend decide to take a ride on
the Ferris wheel. As the wheel rotates with a constant angular
speed, your friend poses the following questions: (a) Is my lin-
ear velocity constant? (b) Is my linear speed constant? (c) Is the
magnitude of my centripetal acceleration constant? (d) Is the
direction of my centripetal acceleration constant? What is your
answer to each of these questions?

6. Why should changing the axis of rotation of an object change its
moment of inertia, given that its shape and mass remain the same?

7. Give a common, everyday example for each of the following:
(a) An object that has zero rotational kinetic energy but nonzero
translational kinetic energy. (b) An object that has zero trans-
lational kinetic energy but nonzero rotational kinetic energy.
(c) An object that has nonzero rotational and translational ki-
netic energies.

8. Two spheres have identical radii and masses. How might you
tell which of these spheres is hollow and which is solid?

9. At the grocery store you pick up a can of beef broth and a can of
chunky beef stew. The cans are identical in diameter and
weight. Rolling both of them down the aisle with the same ini-
tial speed, you notice that the can of chunky stew rolls much
farther than the can of broth. Why?

10. Suppose we change the race shown in Conceptual Check-
point 10–4 so that a hoop of radius R and mass M races a
hoop of radius R and mass 2M. (a) Does the hoop with mass
M finish before, after, or at the same time as the hoop with
mass 2M? Explain. (b) How would your answer to part (a)
change if the hoops had different radii? Explain.

P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S

Note: Answers to odd-numbered Problems and Conceptual Exercises can be found in the back of the book. IP denotes an integrated problem, with both conceptual
and numerical parts; BIO identifies problems of biological or medical interest; CE indicates a conceptual exercise. Predict/Explain problems ask for two re-
sponses: (a) your prediction of a physical outcome, and (b) the best explanation among three provided. On all problems, red bullets (•, ••, •••) are used to in-
dicate the level of difficulty.

S E C T I O N  1 0 – 1    A N G U L A R  P O S I T I O N ,  V E L O C I T Y,
A N D  A C C E L E R AT I O N

1. • The following angles are given in degrees. Convert them to
radians: 30°, 45°, 90°, 180°.

2. • The following angles are given in radians. Convert them to
degrees: .

3. • Find the angular speed of (a) the minute hand and (b) the
hour hand of the famous clock in London, England, that rings
the bell known as Big Ben.

p/6, 0.70p, 1.5p, 5p

4. • Express the angular velocity of the second hand on a clock in
the following units: (a) rev/hr, (b) deg/min, and (c) rad/s.

5. • Rank the following in order of increasing angular speed: an
automobile tire rotating at , an electric drill
rotating at 400.0 rev/min, and an airplane propeller rotating at
40.0 rad/s.

6. • A spot of paint on a bicycle tire moves in a circular path of ra-
dius 0.33 m. When the spot has traveled a linear distance of
1.95 m, through what angle has the tire rotated? Give your an-
swer in radians.

2.00 * 103 deg/s

For instructor-assigned homework, go to www.masteringphysics.com
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The photo at left is a true-color visible light image of the 
Crab nebula. In the false-color breakout, the pulsar can be seen 

as the left member of the pair of stars just above 
the center of the frame. (Problems 9 and 106)

7. • What is the angular speed (in rev/min) of the Earth as it or-
bits about the Sun?

8. • Find the angular speed of the Earth as it spins about its axis.
Give your result in rad/s.

9. • The Crab Nebula One of the most studied objects in the
night sky is the Crab nebula, the remains of a supernova explo-
sion observed by the Chinese in 1054. In 1968 it was discovered
that a pulsar—a rapidly rotating neutron star that emits a pulse
of radio waves with each revolution—lies near the center of the
Crab nebula. The period of this pulsar is 33 ms. What is the an-
gular speed (in rad/s) of the Crab nebula pulsar?

17. • The angular speed of a propeller on a boat increases with con-
stant acceleration from 11 rad/s to 28 rad/s in 2.4 seconds.
Through what angle did the propeller turn during this time?

18. •• After fixing a flat tire on a bicycle you give the wheel a spin.
(a) If its initial angular speed was 6.35 rad/s and it rotated 14.2
revolutions before coming to rest, what was its average angular
acceleration? (b) For what length of time did the wheel rotate?

19. •• IP A ceiling fan is rotating at 0.96 rev/s. When turned off, it
slows uniformly to a stop in 2.4 min. (a) How many revolutions
does the fan make in this time? (b) Using the result from part
(a), find the number of revolutions the fan must make for its
speed to decrease from 0.96 rev/s to 0.48 rev/s.

20. •• A discus thrower starts from rest and begins to rotate with a
constant angular acceleration of . (a) How many rev-
olutions does it take for the discus thrower’s angular speed to
reach 6.3 rad/s? (b) How much time does this take?

21. •• Half Time At 3:00 the hour hand and the minute hand of a
clock point in directions that are 90.0° apart. What is the first
time after 3:00 that the angle between the two hands has de-
creased by half to 45.0°?

2.2 rad/s2

10. •• IP A 3.5-inch floppy disk in a computer rotates with a pe-
riod of . What are (a) the angular speed of the
disk and (b) the linear speed of a point on the rim of the disk?
(c) Does a point near the center of the disk have an angular
speed that is greater than, less than, or the same as the angu-
lar speed found in part (a)? Explain. (Note: A 3.5-inch floppy
disk is 3.5 inches in diameter.)

11. •• The angle an airplane propeller makes with the horizon-
tal as a function of time is given by 

. (a) Estimate the instantaneous angular velocity
at by calculating the average angular velocity from

to . (b) Estimate the instantaneous angular
velocity at by calculating the average angular veloc-
ity from to . (c) Estimate the instanta-
neous angular velocity at by calculating the average
angular velocity from to . (d) Based on
your results from parts (a), (b), and (c), is the angular acceleration
of the propeller positive, negative, or zero? Explain. (e) Calculate
the average angular acceleration from to 
and from to .

S E C T I O N  1 0 – 2    R O TAT I O N A L  K I N E M AT I C S

12. • CE An object at rest begins to rotate with a constant angular
acceleration. If this object rotates through an angle in the time
t, through what angle did it rotate in the time ?

13. • CE An object at rest begins to rotate with a constant angular
acceleration. If the angular speed of the object is after the time
t, what was its angular speed at the time ?

14. • In Active Example 10–1, how long does it take before the an-
gular velocity of the pulley is equal to ?

15. • In Example 10–2, through what angle has the wheel turned
when its angular speed is 2.45 rad/s?

16. • The angular speed of a propeller on a boat increases with con-
stant acceleration from 12 rad/s to 26 rad/s in 2.5 revolutions.
What is the acceleration of the propeller?

-5.0 rad/s

t/2
v

t/2
u

t = 2.00 st = 1.00 s
t = 1.00 st = 0.00 s

t = 2.010 st = 2.000 s
t = 2.000 s

t = 1.010 st = 1.000 s
t = 1.000 s

t = 0.010 st = 0.00 s
t = 0.00 s

(42.5 rad/s2)t2
u = (125 rad/s)t +

2.00 * 10-1 s

When the little hand is on the 3 and the
big hand is on the 12 . . . . (Problem 21)

22. •• BIO A centrifuge is a common laboratory instrument that
separates components of differing densities in solution. This is
accomplished by spinning a sample around in a circle with a
large angular speed. Suppose that after a centrifuge in a med-
ical laboratory is turned off, it continues to rotate with a con-
stant angular deceleration for 10.2 s before coming to rest. (a) If
its initial angular speed was 3850 rpm, what is the magnitude
of its angular deceleration? (b) How many revolutions did the
centrifuge complete after being turned off?

23. •• The Slowing Earth The Earth’s rate of rotation is con-
stantly decreasing, causing the day to increase in duration. In
the year 2006 the Earth took about 0.840 s longer to complete
365 revolutions than it did in the year 1906. What was the aver-
age angular acceleration of the Earth during this time? Give
your answer in .

24. •• IP A compact disk (CD) speeds up uniformly from rest to
310 rpm in 3.3 s. (a) Describe a strategy that allows you to cal-
culate the number of revolutions the CD makes in this time. (b)
Use your strategy to find the number of revolutions.

25. •• When a carpenter shuts off his circular saw, the 10.0-inch-
diameter blade slows from 4440 rpm to 0.00 rpm in 2.50 s.
(a) What is the angular acceleration of the blade? (b) What is the
distance traveled by a point on the rim of the blade during the
deceleration? (c) What is the magnitude of the net displacement
of a point on the rim of the blade during the deceleration?

26. •• The World’s Fastest Turbine The drill used by most dentists
today is powered by a small air turbine that can operate at angu-
lar speeds of 350,000 rpm. These drills, along with ultrasonic den-
tal drills, are the fastest turbines in the world—far exceeding the
angular speeds of jet engines. Suppose a drill starts at rest and
comes up to operating speed in 2.1 s. (a) Find the angular acceler-

rad/s2



P R O B L E M S  A N D  C O N C E P T U A L  E X E R C I S E S 325

An air-turbine dentist drill—faster
than a jet engine. (Problem 26)

v = 8.50 m/s

r = 7.20 m

▲ FIGURE 10–18 Problems 34 and 35S E C T I O N  1 0 – 3    C O N N E C T I O N S  B E T W E E N
L I N E A R  A N D  R O TAT I O N A L  Q U A N T I T I E S

27. • CE Predict/Explain Two children, Jason and Betsy, ride on the
same merry-go-round. Jason is a distance R from the axis of rota-
tion; Betsy is a distance 2R from the axis. Is the rotational period
of Jason greater than, less than, or equal to the rotational period of
Betsy? (b) Choose the best explanation from among the following:

I. The period is greater for Jason because he moves more
slowly than Betsy.

II. The period is greater for Betsy since she must go around a
circle with a larger circumference.

III. It takes the same amount of time for the merry-go-round to
complete a revolution for all points on the merry-go-round.

28. • CE Referring to the previous problem, what are (a) the ratio of
Jason’s angular speed to Betsy’s angular speed, (b) the ratio of
Jason’s linear speed to Betsy’s linear speed, and (c) the ratio of
Jason’s centripetal acceleration to Betsy’s centripetal acceleration?

29. • CE Predict/Explain A Tall Building The world’s tallest
building is the Taipei 101 Tower in Taiwan, which rises to a
height of 508 m (1667 ft). (a) When standing on the top floor of
the building, is your angular speed due to the Earth’s rotation
greater than, less than, or equal to your angular speed when you
stand on the ground floor? (b) Choose the best explanation from
among the following:

I. The angular speed is the same at all distances from the axis
of rotation.

II. At the top of the building you are farther from the axis of
rotation and hence you have a greater angular speed.

III. You are spinning faster when you are closer to the axis of
rotation.

30. • The hour hand on a certain clock is 8.2 cm long. Find the tan-
gential speed of the tip of this hand.

31. • Two children ride on the merry-go-round shown in Concep-
tual Checkpoint 10–1. Child 1 is 2.0 m from the axis of rotation,
and child 2 is 1.5 m from the axis. If the merry-go-round com-
pletes one revolution every 4.5 s, find (a) the angular speed and
(b) the linear speed of each child.

32. • The outer edge of a rotating Frisbee with a diameter of 29 cm
has a linear speed of 3.7 m/s. What is the angular speed of the
Frisbee?

33. • A carousel at the local carnival rotates once every 45 seconds.
(a) What is the linear speed of an outer horse on the carousel,
which is 2.75 m from the axis of rotation? (b) What is the linear
speed of an inner horse that is 1.75 m from the axis of rotation?

34. •• IP Jeff of the Jungle swings on a vine that is 7.20 m long
(Figure 10–18). At the bottom of the swing, just before hitting the
tree, Jeff’s linear speed is 8.50 m/s. (a) Find Jeff’s angular speed
at this time. (b) What centripetal acceleration does Jeff experi-
ence at the bottom of his swing? (c) What exerts the force that is
responsible for Jeff’s centripetal acceleration?

v

▲ FIGURE 10–19 Problem 38

35. •• Suppose, in Problem 34, that at some point in his swing Jeff of
the Jungle has an angular speed of 0.850 rad/s and an angular ac-
celeration of . Find the magnitude of his centripetal,
tangential, and total accelerations, and the angle his total acceler-
ation makes with respect to the tangential direction of motion.

36. •• A compact disk, which has a diameter of 12.0 cm, speeds up
uniformly from 0.00 to 4.00 rev/s in 3.00 s. What is the tangen-
tial acceleration of a point on the outer rim of the disk at the mo-
ment when its angular speed is (a) 2.00 rev/s and (b) 3.00 rev/s?

37. •• IP When a compact disk with a 12.0-cm diameter is rotating
at 5.05 rad/s, what are (a) the linear speed and (b) the cen-
tripetal acceleration of a point on its outer rim? (c) Consider a
point on the CD that is halfway between its center and its outer
rim. Without repeating all of the calculations required for parts
(a) and (b), determine the linear speed and the centripetal ac-
celeration of this point.

38. •• IP As Tony the fisherman reels in a “big one,” he turns the
spool on his fishing reel at the rate of 3.0 complete revolutions
every second (Figure 10–19). (a) If the radius of the reel is 3.7 cm,
what is the linear speed of the fishing line as it is reeled in?
(b) How would your answer to part (a) change if the radius of
the reel were doubled?

0.620 rad/s2

39. •• A Ferris wheel with a radius of 9.5 m rotates at a constant
rate, completing one revolution every 36 s. Find the direction
and magnitude of a passenger’s acceleration when (a) at the top
and (b) at the bottom of the wheel.

ation produced by the drill, assuming it to be constant. (b) How
many revolutions does the drill bit make as it comes up to speed?
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40. •• Suppose the Ferris wheel in the previous problem begins to
decelerate at the rate of when the passenger is at the
top of the wheel. Find the direction and magnitude of the pas-
senger’s acceleration at that time.

41. •• IP A person swings a 0.52-kg tether ball tied to a 4.5-m rope
in an approximately horizontal circle. (a) If the maximum ten-
sion the rope can withstand before breaking is 11 N, what is the
maximum angular speed of the ball? (b) If the rope is short-
ened, does the maximum angular speed found in part (a) in-
crease, decrease, or stay the same? Explain.

42. •• To polish a filling, a dentist attaches a sanding disk with a
radius of 3.20 mm to the drill. (a) When the drill is operated at

, what is the tangential speed of the rim of the
disk? (b) What period of rotation must the disk have if the tan-
gential speed of its rim is to be 275 m/s?

43. •• In the previous problem, suppose the disk has an angular
acceleration of when its angular speed is 640 rad/s.
Find both the tangential and centripetal accelerations of a point
on the rim of the disk.

44. •• The Bohr Atom The Bohr model of the hydrogen atom pic-
tures the electron as a tiny particle moving in a circular orbit about
a stationary proton. In the lowest-energy orbit the distance from
the proton to the electron is , and the linear speed
of the electron is . (a) What is the angular speed of
the electron? (b) How many orbits about the proton does it make
each second? (c) What is the electron’s centripetal acceleration?

45. ••• A wheel of radius R starts from rest and accelerates with a
constant angular acceleration about a fixed axis. At what time
t will the centripetal and tangential accelerations of a point on
the rim have the same magnitude?

S E C T I O N  1 0 – 4    R O L L I N G  M O T I O N

46. • CE As you drive down the highway, the top of your tires
are moving with a speed v. What is the reading on your
speedometer?

47. •• The tires on a car have a radius of 31 cm. What is the angu-
lar speed of these tires when the car is driven at 15 m/s?

48. • A child pedals a tricycle, giving the driving wheel an angular
speed of 0.373 rev/s (Figure 10–20). If the radius of the wheel is
0.260 m, what is the child’s linear speed?

a

2.18 * 106 m/s
5.29 * 10-11 m

232 rad/s2

2.15 * 104 rad/s

0.22 rad/s2
51. •• IP A bicycle coasts downhill and accelerates from rest to a

linear speed of 8.90 m/s in 12.2 s. (a) If the bicycle’s tires have a
radius of 36.0 cm, what is their angular acceleration? (b) If the
radius of the tires had been smaller, would their angular accel-
eration be greater than or less than the result found in part (a)?

S E C T I O N  1 0 – 5    R O TAT I O N A L  K I N E T I C  E N E R GY
A N D  T H E  M O M E N T  O F  I N E RT I A

52. • CE Predict/Explain The minute and hour hands of a clock
have a common axis of rotation and equal mass. The minute
hand is long, thin, and uniform; the hour hand is short, thick,
and uniform. (a) Is the moment of inertia of the minute hand
greater than, less than, or equal to the moment of inertia of the
hour hand? (b) Choose the best explanation from among the
following:

I. The hands have equal mass, and hence equal moments of
inertia.

II. Having mass farther from the axis of rotation results in a
greater moment of inertia.

III. The more compact hour hand concentrates its mass and
has the greater moment of inertia.

53. • CE Predict/Explain Tons of dust and small particles rain
down onto the Earth from space every day. As a result, does the
Earth’s moment of inertia increase, decrease, or stay the same?
(b) Choose the best explanation from among the following:

I. The dust adds mass to the Earth and increases its radius
slightly.

II. As the dust moves closer to the axis of rotation, the mo-
ment of inertia decreases.

III. The moment of inertia is a conserved quantity and cannot
change.

54. CE • Predict/Explain Suppose a bicycle wheel is rotated about
an axis through its rim and parallel to its axle. (a) Is its moment
of inertia about this axis greater than, less than, or equal to its
moment of inertia about its axle? (b) Choose the best explanation
from among the following:

I. The moment of inertia is greatest when an object is rotated
about its center.

II. The mass and shape of the wheel remain the same.
III. Mass is farther from the axis when the wheel is rotated

about the rim.

55. • The moment of inertia of a 0.98-kg bicycle wheel rotating
about its center is . What is the radius of this wheel,
assuming the weight of the spokes can be ignored?

56. • What is the kinetic energy of the grindstone in Example 10–4
if it completes one revolution every 4.20 s?

57. • An electric fan spinning with an angular speed of 13 rad/s has
a kinetic energy of 4.6 J. What is the moment of inertia of the fan?

58. • Repeat Example 10–5 for the case of a rolling hoop of the
same mass and radius.

59. •• CE The L-shaped object in Figure 10–21 can be rotated in one
of the following three ways: case 1, rotation about the x axis;
case 2, rotation about the y axis; and case 3, rotation about the 

0.13 kg #  m2

v

0.373 rev/s
R = 0.260 m

▲ FIGURE 10–20 Problem 48

1.2 kg

1.0 m

9.0 kg

2.0 m 2.5 kg

x

y

▲ FIGURE 10–21 Problem 59

49. • A soccer ball, which has a circumference of 70.0 cm, rolls 14.0
yards in 3.35 s. What was the average angular speed of the ball
during this time?

50. •• As you drive down the road at 17 m/s, you press on the gas
pedal and speed up with a uniform acceleration of 
for 0.65 s. If the tires on your car have a radius of 33 cm, what is
their angular displacement during this period of acceleration?

1.12 m/s2
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z axis (which passes through the origin perpendicular to the
plane of the figure). Rank these three cases in order of increas-
ing moment of inertia. Indicate ties where appropriate.

60. •• IP A 12-g CD with a radius of 6.0 cm rotates with an angu-
lar speed of 34 rad/s. (a) What is its kinetic energy? (b) What
angular speed must the CD have if its kinetic energy is to be
doubled?

61. •• When a pitcher throws a curve ball, the ball is given a fairly
rapid spin. If a 0.15-kg baseball with a radius of 3.7 cm is
thrown with a linear speed of 48 m/s and an angular speed of
42 rad/s, how much of its kinetic energy is translational and
how much is rotational? Assume the ball is a uniform, solid
sphere.

62. •• IP A basketball rolls along the floor with a constant linear
speed v. (a) Find the fraction of its total kinetic energy that is in
the form of rotational kinetic energy about the center of the ball.
(b) If the linear speed of the ball is doubled to 2v, does your an-
swer to part (a) increase, decrease, or stay the same? Explain.

63. •• Find the rate at which the rotational kinetic energy of the Earth
is decreasing. The Earth has a moment of inertia of ,
where and , and its ro-
tational period increases by 2.3 ms with each passing century.
Give your answer in watts.

64. •• A lawn mower has a flat, rod-shaped steel blade that rotates
about its center. The mass of the blade is 0.65 kg and its length
is 0.55 m. (a) What is the rotational energy of the blade at its op-
erating angular speed of 3500 rpm? (b) If all of the rotational ki-
netic energy of the blade could be converted to gravitational
potential energy, to what height would the blade rise?

S E C T I O N  1 0 – 6    C O N S E R VAT I O N  O F  E N E R GY

65. • CE Consider the physical situation shown in Conceptual
Checkpoint 10–5. Suppose this time a ball is released from rest
on the frictionless surface. When the ball comes to rest on the
no-slip surface, is its height greater than, less than, or equal to
the height from which it was released?

66. • Suppose the block in Example 10–6 has a mass of 2.1 kg and
an initial upward speed of 0.33 m/s. Find the moment of iner-
tia of the wheel if its radius is 8.0 cm and the block rises to a
height of 7.4 cm before momentarily coming to rest.

67. • Through what height must the yo-yo in Active Example 10–3
fall for its linear speed to be 0.65 m/s?

68. •• CE Suppose we change the race shown in Conceptual
Checkpoint 10–4 to a race between three different disks. Let
disk 1 have a mass M and a radius R, disk 2 have a mass M and
a radius 2R, and disk 3 have a mass 2M and a radius R. Rank the
three disks in the order in which they finish the race. Indicate
ties where appropriate.

69. •• Calculate the speeds of (a) the disk and (b) the hoop at the
bottom of the inclined plane in Conceptual Checkpoint 10–4 if
the height of the incline is 0.82 m.

70. •• IP Atwood’s Machine The two masses ( and 
) in the Atwood’s machine shown in Figure 10–22 are

released from rest, with at a height of 0.75 m above the floor.
When hits the ground its speed is 1.8 m/s. Assuming that the
pulley is a uniform disk with a radius of 12 cm, (a) outline a strat-
egy that allows you to find the mass of the pulley. (b) Implement
the strategy given in part (a) and determine the pulley’s mass.

71. •• In Conceptual Checkpoint 10–5, assume the ball is a solid
sphere of radius 2.9 cm and mass 0.14 kg. If the ball is released
from rest at a height of 0.78 m above the bottom of the track on
the no-slip side, (a) what is its angular speed when it is on the

m1

m1

m2 = 3.0 kg
m1 = 5.0 kg

ME = 5.97 * 1024 kgRE = 6.38 * 106 m
0.331MERE

2

72. •• IP After you pick up a spare, your bowling ball rolls with-
out slipping back toward the ball rack with a linear speed of
2.85 m/s (Figure 10–23). To reach the rack, the ball rolls up a
ramp that rises through a vertical distance of 0.53 m. (a) What is
the linear speed of the ball when it reaches the top of the ramp?
(b) If the radius of the ball were increased, would the speed
found in part (a) increase, decrease, or stay the same? Explain.

m2

m1

h

▲ FIGURE 10–22 Problem 70

v = 2.85 m/s

v = ?

0.53 m

▲ FIGURE 10–23 Problem 72

73. •• IP A 1.3-kg block is tied to a string that is wrapped around
the rim of a pulley of radius 7.2 cm. The block is released from
rest. (a) Assuming the pulley is a uniform disk with a mass of
0.31 kg, find the speed of the block after it has fallen through a
height of 0.50 m. (b) If a small lead weight is attached near the
rim of the pulley and this experiment is repeated, will the speed
of the block increase, decrease, or stay the same? Explain.

74. •• After doing some exercises on the floor, you are lying on
your back with one leg pointing straight up. If you allow your
leg to fall freely until it hits the floor (Figure 10–24), what is the
tangential speed of your foot just before it lands? Assume the
leg can be treated as a uniform rod 0.95 m long that pivots
freely about the hip.

v

0.95 m

▲ FIGURE 10–24 Problem 74

75. ••• A 2.0-kg solid cylinder 
is released from rest at the top of a ramp and allowed to roll
without slipping. The ramp is 0.75 m high and 5.0 m long.
When the cylinder reaches the bottom of the ramp, what are

(radius = 0.10 m, length = 0.50 m)

frictionless side of the track? (b) How high does the ball rise on
the frictionless side?



328 C H A P T E R  1 0 R O T A T I O N A L  K I N E M A T I C S  A N D  E N E R G Y

86. •• The accompanying double-exposure photograph illustrates
a method for determining the speed of a BB. The circular disk in
the upper part of the photo rotates with a constant angular
speed of 50.4 revolutions per second. A single white radial line
drawn on the disk is seen in two locations in the double expo-
sure. Below the disk are two bright images of a BB taken during
the two exposures. Use the information given here and in the
photo to estimate the speed of the BB.

(a) its total kinetic energy, (b) its rotational kinetic energy, and
(c) its translational kinetic energy?

76. ••• A 2.5-kg solid sphere is released from rest
at the top of a ramp and allowed to roll without slipping. The
ramp is 0.75 m high and 5.6 m long. When the sphere reaches the
bottom of the ramp, what are (a) its total kinetic energy, (b) its ro-
tational kinetic energy, and (c) its translational kinetic energy?

G E N E R A L  P R O B L E M S

77. • CE When you stand on the observation deck of the Empire
State Building in New York, is your linear speed due to the
Earth’s rotation greater than, less than, or the same as when you
were waiting for the elevators on the ground floor?

78. • CE Hard-Boiled Versus Raw Eggs One way to tell whether an
egg is raw or hard boiled—without cracking it open—is to place
it on a kitchen counter and give it a spin. If you do this to two
eggs, one raw the other hard boiled, you will find that one spins
considerably longer than the other. Is the raw egg the one that
spins a long time, or the one that stops spinning in a short time?

79. • CE When the Hoover Dam was completed and the reservoir
behind it filled with water, did the moment of inertia of the
Earth increase, decrease, or stay the same?

80. • Weightless on the Equator In Quito, Ecuador, near the
equator, you weigh about half a pound less than in Barrow,
Alaska, near the pole. Find the rotational period of the Earth
that would make you feel weightless at the equator. (With this
rotational period, your centripetal acceleration would be equal
to the acceleration due to gravity, g.)

81. • A diver completes somersaults during a 2.3-s dive. What
was the diver’s average angular speed during the dive?

82. • What linear speed must a 0.065-kg hula hoop have if its total
kinetic energy is to be 0.12 J? Assume the hoop rolls on the
ground without slipping.

83. • BIO Losing Consciousness A pilot performing a horizontal
turn will lose consciousness if she experiences a centripetal accel-
eration greater than 7.00 times the acceleration of gravity. What is
the minimum radius turn she can make without losing con-
sciousness if her plane is flying with a constant speed of 245 m/s?

84. •• CE Place two quarters on a table with their rims touching, as
shown in Figure 10–25. While holding one quarter fixed, roll the
other one—without slipping—around the circumference of the
fixed quarter until it has completed one round trip. How many
revolutions has the rolling quarter made about its center?

21
2

(radius = 0.10 m)

Speeding BB and spinning wheel. (Problems 86 and 87)

▲ FIGURE 10–25 Problem 84
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M

x
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R
R

M

M/2 yM/2

▲ FIGURE 10–26 Problem 85

87. •• Referring to the previous problem, (a) estimate the linear
speed of a point on the rim of the rotating disk. (b) By compar-
ing the arc length between the two white lines to the distance
covered by the BB, estimate the speed of the BB. (c) What radius
must the disk have for the linear speed of a point on its rim to
be the same as the speed of the BB? (d) Suppose a 1.0-g lump of
putty is stuck to the rim of the disk. What centripetal force is re-
quired to hold the putty in place?

88. •• IP When the Hands Align A mathematically inclined
friend e-mails you the following instructions: “Meet me in the
cafeteria the first time after 2:00 P.M. today that the hands of a
clock point in the same direction.” (a) Is the desired meeting
time before, after, or equal to 2:10 P.M.? Explain. (b) Is the
desired meeting time before, after, or equal to 2:15 P.M.? Explain.
(c) When should you meet your friend?

89. •• IP A diver runs horizontally off the end of a diving tower
3.0 m above the surface of the water with an initial speed of
2.6 m/s. During her fall she rotates with an average angular
speed of 2.2 rad/s. (a) How many revolutions has she made
when she hits the water? (b) How does your answer to part (a)
depend on the diver’s initial speed? Explain.

90. •• IP A potter’s wheel of radius 6.8 cm rotates with a period
of 0.52 s. What are (a) the linear speed and (b) the centripetal
acceleration of a small lump of clay on the rim of the wheel?
(c) How do your answers to parts (a) and (b) change if the pe-
riod of rotation is doubled?

85. • CE The object shown in Figure 10–26 can be rotated in three
different ways: case 1, rotation about the x axis; case 2, rotation
about the y axis; and case 3, rotation about the z axis. Rank these
three cases in order of increasing moment of inertia. Indicate
ties where appropriate.
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r = 6.00 cm

Laser
beam

r = 2.50 cm

r
vt

�

▲ FIGURE 10–27 Problem 91

92. •• BIO Roller Pigeons Pigeons are bred to display a number of
interesting characteristics. One breed of pigeon, the “roller,” is re-
markable for the fact that it does a number of backward somer-
saults as it drops straight down toward the ground. Suppose a
roller pigeon drops from rest and free falls downward for a dis-
tance of 14 m. If the pigeon somersaults at the rate of 12 rad/s,
how many revolutions has it completed by the end of its fall?

93. •• As a marble with a diameter of 1.6 cm rolls down an in-
cline, its center moves with a linear acceleration of .
(a) What is the angular acceleration of the marble? (b) What is
the angular speed of the marble after it rolls for 1.5 s from
rest?

94. •• A rubber ball with a radius of 3.2 cm rolls along the hori-
zontal surface of a table with a constant linear speed v. When
the ball rolls off the edge of the table, it falls 0.66 m to the floor
below. If the ball completes 0.37 revolution during its fall, what
was its linear speed, v?

95. •• A college campus features a large fountain surrounded by a
circular pool. Two students start at the northernmost point of the
pool and walk slowly around it in opposite directions. (a) If the
angular speed of the student walking in the clockwise direction
(as viewed from above) is 0.045 rad/s and the angular speed of
the other student is 0.023 rad/s, how long does it take before they
meet? (b) At what angle, measured clockwise from due north, do
the students meet? (c) If the difference in linear speed between
the students is 0.23 m/s, what is the radius of the fountain?

96. •• IP A yo-yo moves downward until it reaches the end of its
string, where it “sleeps.” As it sleeps—that is, spins in
place—its angular speed decreases from 35 rad/s to 25 rad/s.
During this time it completes 120 revolutions. (a) How long
did it take for the yo-yo to slow from 35 rad/s to 25 rad/s?
(b) How long does it take for the yo-yo to slow from 25 rad/s
to 15 rad/s? Assume a constant angular acceleration as the yo-
yo sleeps.

97. •• IP (a) An automobile with tires of radius 32 cm accelerates
from 0 to 45 mph in 9.1 s. Find the angular acceleration of the
tires. (b) How does your answer to part (a) change if the radius
of the tires is halved?

98. •• IP In Problems 75 and 76 we considered a cylinder and a
solid sphere, respectively, rolling down a ramp. (a) Which ob-
ject do you expect to have the greater speed at the bottom of the
ramp? (b) Verify your answer to part (a) by calculating the
speed of the cylinder and of the sphere when they reach the bot-
tom of the ramp.

3.3 m/s2

101. •• The rotor in a centrifuge has an initial angular speed of
430 rad/s. After 8.2 s of constant angular acceleration, its an-
gular speed has increased to 550 rad/s. During this time,
what were (a) the angular acceleration of the rotor and (b)
the angle through which it turned?

102. •• BIO A honey bee has two pairs of wings that can beat 250
times a second. Estimate (a) the maximum angular speed of
the wings and (b) the maximum linear speed of a wing tip.

103. •• The Sun, with Earth in tow, orbits about the center of the
Milky Way galaxy at a speed of 137 miles per second, com-
pleting one revolution every 240 million years. (a) Find the an-
gular speed of the Sun relative to the center of the Milky Way.
(b) Find the distance from the Sun to the center of the Milky
Way.

104. •• A person walks into a room and switches on the ceiling fan.
The fan accelerates with constant angular acceleration for 15 s
until it reaches its operating angular speed of 1.9 rotations/s—
after that its speed remains constant as long as the switch is
“on.” The person stays in the room for a short time; then, 5.5
minutes after turning the fan on, she switches it off again and
leaves the room. The fan now decelerates with constant angu-
lar acceleration, taking 2.4 minutes to come to rest. What is the
total number of revolutions made by the fan, from the time it
was turned on until the time it stopped?

105. •• BIO Preventing Bone Loss in Space When astronauts re-
turn from prolonged space flights, they often suffer from bone
loss, resulting in brittle bones that may take weeks for their
bodies to rebuild. One solution may be to expose astronauts to
periods of substantial “g forces” in a centrifuge carried aboard
their spaceship. To test this approach, NASA conducted a
study in which four people spent 22 hours each in a compart-
ment attached to the end of a 28-foot arm that rotated with an
angular speed of 10.0 rpm. (a) What centripetal acceleration
did these volunteers experience? Express your answer in
terms of g. (b) What was their linear speed?

A brain or just a clutch? 
(Problem 100)

99. •• A centrifuge (Problem 22) with an angular speed of 6050 rpm
produces a maximum centripetal acceleration equal to 6840g
(that is, 6840 times the acceleration of gravity). (a) What is the di-
ameter of this centrifuge? (b) What force must the bottom of the
sample holder exert on a 15.0-g sample under these conditions?

100. •• A Yo-Yo with a Brain Yomega (“The yo-yo with a brain”)
is constructed with a clever clutch mechanism in its axle that
allows it to rotate freely and “sleep” when its angular speed is
greater than a certain critical value. When the yo-yo’s angular
speed falls below this value, the clutch engages, causing the
yo-yo to climb the string to the user’s hand. If the moment of
inertia of the yo-yo is , its mass is 0.11 kg,
and the string is 1.0 m long, what is the smallest angular speed
that will allow the yo-yo to return to the user’s hand?

7.4 * 10-5 kg #  m2

91. •• IP Playing a CD The record in an old-fashioned record
player always rotates at the same angular speed. With CDs, the
situation is different. For a CD to play properly, the point on the
CD where the laser beam shines must have a linear speed

, as indicated in Figure 10–27. (a) As the CD plays
from the center outward, does its angular speed increase, de-
crease, or stay the same? Explain. (b) Find the angular speed of a
CD when the laser beam is 2.50 cm from its center. (c) Repeat part
(b) for the laser beam 6.00 cm from the center. (d) If the CD plays
for 66.5 min, and the laser beam moves from 2.50 cm to 6.00 cm
during this time, what is the CD’s average angular acceleration?

vt = 1.25 m/s
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106. ••• Angular Acceleration of the Crab Nebula The pulsar
in the Crab nebula (Problem 9) was created by a supernova
explosion that was observed on Earth in A.D. 1054. Its current
period of rotation (33.0 ms) is observed to be increasing by

per year. (a) What is the angular acceler-
ation of the pulsar in ? (b) Assuming the angular accel-
eration of the pulsar to be constant, how many years will it
take for the pulsar to slow to a stop? (c) Under the same as-
sumption, what was the period of the pulsar when it was
created?

107. ••• A thin, uniform rod of length L and mass M is pivoted
about one end, as shown in Figure 10–28. The rod is released
from rest in a horizontal position, and allowed to swing down-
ward without friction or air resistance. When the rod is verti-
cal, what are (a) its angular speed and (b) the tangential
speed of its free end?vt

v

rad/s2
1.26 * 10-5 seconds

108. ••• Center of Percussion In the previous problem, suppose
a small metal ball of mass is attached to the rod a dis-
tance d from the pivot. The rod and ball are released from rest
in the horizontal position. (a) Show that when the rod reaches
the vertical position, the speed of its tip is

(b) At what finite value of is the speed of the rod the same
as it is for ? (This value of is the center of percus-
sion, or “sweet spot,” of the rod.)

109. ••• A wooden plank rests on two soup cans laid on their
sides. Each can has a diameter of 6.5 cm, and the plank is 3.0 m
long. Initially, one can is placed 1.0 m inward from either end
of the plank, as Figure 10–29 shows. The plank is now pulled 
1.0 m to the right, and the cans roll without slipping. (a) How
far does the center of each can move? (b) How many rotations
does each can make?

d/Ld = 0
d/L

vt = 23gLA 1 + 4(d/L)
1 + 6(d/L)2

m = 2M

0.61 m

d

1.22 m

▲ FIGURE 10–30 Problem 111

Human-powered centrifuge, designed to give
astronauts exercise and artificial gravity during

long space flights.

x

x = center of mass
x

vt

�

L

L/2

� = 0

▲ FIGURE 10–28 Problem 107

3.0 m 1.0 m

▲ FIGURE 10–29 Problem 109

PA S S A G E  P R O B L E M S

BIO Human-Powered Centrifuge
Space travel is fraught with hazards, not the least of which are the
many side effects of prolonged weightlessness, including weak-
ened muscles, bone loss, decreased coordination, and unsteady
balance. If you are fortunate enough to go on a trip to Mars, which
could take more than a year each way, you might be a bit “weak
in the knees” by the time you arrive. This could lead to problems
when you try to take your first “small step” on the surface.

To counteract these effects, NASA is looking into ways to
provide astronauts with “portable gravity” on long space
flights. One method under consideration is the human-
powered centrifuge, which not only subjects the astronauts to
artificial gravity, but also gives them aerobic exercise. The de-
vice is basically a rotating, circular platform on which two as-
tronauts lie supine along a diameter, head-to-head at the center,
with their feet at opposite rims, as shown in the accompanying
photo. The radius of the platform in this test model is 6.25 ft. As
one astronaut pedals to rotate the platform, the astronaut facing
the other direction can exercise in the artificial gravity. Alterna-
tively, a third astronaut on a stationary bicycle can provide the
rotation for the other two.

110. ••• A person rides on a 12-m-diameter Ferris wheel that ro-
tates at the constant rate of 8.1 rpm. Calculate the magnitude
and direction of the force that the seat exerts on a 65-kg person
when he is (a) at the top of the wheel, (b) at the bottom of the
wheel, and (c) halfway up the wheel.

111. ••• IP A solid sphere with a diameter of 0.17 m is released
from rest; it then rolls without slipping down a ramp, dropping

through a vertical height of 0.61 m. The ball leaves the bottom
of the ramp, which is 1.22 m above the floor, moving horizon-
tally (Figure 10–30). (a) Through what horizontal distance d
does the ball move before landing? (b) How many revolutions
does the ball make during its fall? (c) If the ramp were to be
made frictionless, would the distance d increase, decrease, or
stay the same? Explain.

Figure 10–31 shows the centripetal acceleration (in gs) produced
by a rotating platform at four different radii. Notice that the ac-
celeration increases as the square of the angular speed. Also in-
dicated in Figure 10–31 are acceleration levels corresponding to
1, 3, and 5 gs. It is thought that enhanced gravitational effects
may be desirable since the astronauts will experience the artifi-
cial gravity for only relatively brief periods of time during the
flight.
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I N T E R A C T I V E  P R O B L E M S

116. •• Referring to Conceptual Checkpoint 10–4 Suppose we
race a disk and a hollow spherical shell, like a basketball. The
spherical shell has a mass M and a radius R; the disk has a
mass 2M and a radius 2R. (a) Which object wins the race? If the
two objects are released at rest, and the height of the ramp is

, find the speed of (b) the disk and (c) the spherical
shell when they reach the bottom of the ramp.

117. •• Referring to Conceptual Checkpoint 10–4 Consider a
race between the following three objects: object 1, a disk; object
2, a solid sphere; and object 3, a hollow spherical shell. All ob-
jects have the same mass and radius. (a) Rank the three objects
in the order in which they finish the race. Indicate a tie where
appropriate. (b) Rank the objects in order of increasing kinetic
energy at the bottom of the ramp. Indicate a tie where appro-
priate.

118. •• Referring to Active Example 10–3 (a) Suppose the
radius of the axle the string wraps around is increased. Does
the speed of the yo-yo after falling through a given height in-
crease, decrease, or stay the same? (b) Find the speed of the 
yo-yo after falling from rest through a height if the
radius of the axle is 0.0075 m. Everything else in Active Exam-
ple 10–3 remains the same.

119. •• Referring to Active Example 10–3 Suppose we use a new
yo-yo that has the same mass as the original yo-yo and an axle
of the same radius. The new yo-yo has a different mass dis-
tribution—most of its mass is concentrated near the rim. (a) Is
the moment of inertia of the new yo-yo greater than, less than,
or the same as that of the original yo-yo? (b) Find the moment
of inertia of the new yo-yo if its speed after dropping from rest
through a height is .v = 0.64 m/sh = 0.50 m

h = 0.50 m

h = 0.75 m2A
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▲ FIGURE 10–31 Problems 112, 113, 114, and 115

112. • Rank the four curves shown in Figure 10–31 in order of in-
creasing radius. Indicate ties where appropriate.

113. • What angular speed (in rpm) must the platform in this test
model have to give a centripetal acceleration of 5.00 gs at the
rim?

A. 5.07 rpm B. 26.1 rpm

C. 36.2 rpm D. 48.5 rpm

114. • Which of the curves shown in Figure 10–31 corresponds to
the test model?

A. 1 B. 2

C. 3 D. 4

115. •• Estimate the radius corresponding to curve 4 in Figure
10–31.

A. 0.03 ft B. 0.3 ft

C. 3 ft D. 6 ft




