\qquad
\qquad Date \qquad

1. Rank the vectors from largest to smallest vertical (y) component: $10 \mathrm{~m} / \mathrm{s} @ 25^{\circ}, 10 \mathrm{~m} / \mathrm{s} @ 40^{\circ}, 10 \mathrm{~m} / \mathrm{s} @ 55^{\circ}$, $10 \mathrm{~m} / \mathrm{s} @ 70^{\circ} .2$ pts
2. Why does a bowling ball move without acceleration when it rolls along a bowling alley? 2 pts
3. In the absence of air resistance, why does the horizontal component of velocity for a projectile such as a bullet remain constant while the vertical component changes? 2 pts
4. How does the downward component of projectile motion compare with free fall motion? 2pts
5. Use terms we learned about one dimensional motion to describe projectile motion: 1 pt ea
a. vertical component -
b. horizontal component -
6. A ball is thrown horizontally at a height of 2.2 meters at a velocity of $65 \mathrm{~m} / \mathrm{s}$. Assume no air resistance.
a. How long until the ball reaches the ground? 2 pts
b. How far did the ball travel horizontally when it hit the ground? 2 pts.
7. A bullet is fired horizontally at a height of 1.3 meters at a velocity of $950 \mathrm{~m} / \mathrm{s}$. Assume no air resistance.
a. How long until the bullet reaches the ground? 2 pts
b. How far did the bullet travel horizontally when it hit the ground? 2 pts.
8. A cannonball is fired at a 45.0° angle and an initial velocity of $625 \mathrm{~m} / \mathrm{s}$. Assume no air resistance.
a. What is the vertical component of the cannonball's velocity? 2 pts.
b. What is the horizontal component of the cannonball's velocity? 2 pts.
c. How long until the cannonball hits the ground? 2 pts.
d. How high did the cannonball travel? 2 pts.
e. How far did the cannonball travel horizontally when it hit the ground? 2 pts.
9. A baseball is thrown at a 22.5° angle and an initial velocity of $65 \mathrm{~m} / \mathrm{s}$. Assume no air resistance.
a. What is the vertical component of the ball's velocity? 2 pts.
b. What is the horizontal component of the ball's velocity? 2pts.
c. How long until the ball hits the ground? 2 pts
d. How high did the ball travel? 2 pts
e. How far did the ball travel horizontally when it hit the ground? 2 pts.
10. Use the range and max height equations to calculate the horizontal distance a baseball travels if the initial velocity is $65 \mathrm{~m} / \mathrm{s}$ and the ball is thrown at an angle of: 4 pts / angle

Angle	Range	
30°		

45

