Name $\qquad$ Date $\qquad$
$\qquad$

Show your work and box your answers. (reading pages 657-664) Watch this video as it may help. https://www.youtube.com/watch?v=kCp5yYio9zE

1. How many electrons have a charge of one Coulomb? $\left[6.25 \times 10^{18} \mathrm{e}^{-}\right]$
2. Gravitational forces are always attractive. Explain how electrical forces (which are found using Coulomb's Law) are different. [own answer - think of formula's]
3. Calculate the electric force between two point charges that are separated by 0.1 m . $\mathrm{q} 1=+0.2 \mathrm{C}$ and $\mathrm{q} 2=+0.4 \mathrm{C}\left[7.2 \times 10^{10} \mathrm{~N}\right]$
4. The electron and proton of a hydrogen atom have an average separation of $5.3 \times 10^{-11}$ meters. Calculate the gravitational force ( $\mathrm{F}_{\mathrm{g}}$ ) and electric force ( $\mathrm{Felectatric}^{\prime}$ ).
$\left[F_{g}=3.61 \times 10^{-47} \mathrm{~N} ; F_{e}=8.2 \times 10^{-8} \mathrm{~N}\right]$
5. Calculate the electrical force between two protons in the nucleus of a helium atom when separated by $2.0 \times 10^{-15} \mathrm{~m} .[57.6 \mathrm{~N}]$
6. A balloon rubbed against denim gains a charge of $-8.0 \mu \mathrm{C}$. What is the electric force between the balloon and the denim when the two are separated by a distance of 5.0 cm ? (Assume that the charges are located at a point.) [-230.4 N]
7. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of $+12 \times 10^{-9} \mathrm{C}$ and the other is given a charge of $-18 \times 10^{-9} \mathrm{C}$.
a. Find the electric force exerted on one sphere by the other. $\left[-2.16 \times 10^{-5} \mathrm{~N}\right]$
b. The spheres are connected by a conducting wire. After equilibrium has occurred, find the electric force between the two spheres. [ $9 \times 10^{-7} \mathrm{~N}$ ]
8. A small cork with an excess charge of $+6.0 \mu \mathrm{C}\left(1 \mu \mathrm{C}=10^{-6} \mathrm{C}\right)$ is placed 0.12 m from another cork that carries a charge of $-4.3 \mu \mathrm{C}$.
a. What is the magnitude of the electric force between the corks? [16.125 N ]
b. Is this force attractive or repulsive? [ $\leftrightarrow \square \sigma m) 4 * m$. ]
c. How many excess electrons are on the negative cork? [ $2.69 \times 10^{13} \mathrm{e}^{-}$]
d. How many electrons has the positive cork lost? [ $3.75 \times 10^{13} \mathrm{e}^{-}$]
9. Two electrostatic point charges of $+60.0 \mu \mathrm{C}$ and $+50.0 \mu \mathrm{C}$ exert a repulsive force on each other of 175 N . What is the distance between the two charges? [ 0.393 m ]
10. How many electrons must be removed from a neutral, isolated conducting sphere to give it a positive charge of $8.0 \times 10^{-8} \mathrm{C}$ ? [ $5 \times 10^{11} \mathrm{e}^{-}$]
