Name:
Date: \qquad Period \qquad Practice Quiz A-D

Formula's: See formula sheet.

Directions: Show all your work - Neatly - in the space provided or attach additional paper to this sheet upon completion. Circle or identify final answers!!!

1. Max, who has a mass of 95 kg and his girlfriend, Allison, who has a mass of 120 kg are wearing skates and are standing together on a frozen lake. If they push apart and Max has a velocity of $0.72 \mathrm{~m} / \mathrm{s}$ in the opposite direction of Allison, then what is the velocity of Allison? (Neglect friction) 5pts.
2. Where is the center of mass of the three-particle system shown below using the origin as the reference point? 10 pts

3. A 120 g bullet is fired horizontally into a 17.0 kg block of wood resting on a horizontal surface, and the bullet becomes embedded in the block. If the muzzle velocity of the bullet is $275 \mathrm{~m} / \mathrm{s}$, what is the velocity of the block containing the embedded bullet immediately after impact? (Neglect surface friction) 5 pts.
before the hit

4. Two bowling balls, A \& B have a masses of 7.25 kg and 5.5 kg respectively, undergo a perfectly elastic headon collision. If the speed of ball "A" was initially $5 \mathrm{~m} / \mathrm{s}$, and the other was $3 \mathrm{~m} / \mathrm{s}$ in the opposite direction, what will be their speeds after the collision?
10 pts.
5. A 2600 kg car (A) heading west collides with a 3500 kg car (B) heading north. The 2600 kg car, after collision moves at 15 degrees east of North @ $5 \mathrm{~m} / \mathrm{s}$ and the 3500 kg car bounces off with a velocity of $18 \mathrm{~m} / \mathrm{s} @ 25^{\circ} \mathrm{W}$ of N . What was the original speed of the 3500 kg and the 2600 cars? 15 pts .
